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Abstract. Product form queueing networks (PFQN) and generalized
stochastic Petri nets (GSPN) have emerged as the principal performance
modelling tools for flexible manufacturing systems (FMS). In this paper,
we present integrated PFQN-GSPN models, which combine the computa-
tional efficiency of PFQN and representational power of GSPN by employing
the principle of flow-equivalence. We show that FMS that include non-
product form characteristics such as dynamic routing and synchronization
can be evaluated efficiently and accurately using the integrated models.
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1. Introduction

Flexible manufacturing systems: (FMS) (Ranky 1983) represent an important recent
development in manufacturing automation, on account of improved productivity,
quality and resilience to demand fluctuations. An FMS is essentially a discrete event
dynamic system (Ho 1987) and therefore Markov chains constitute the basic stochastic
model of FMS. Queueing networks (QN) (Buzacott & Yao 1986) and generalized
stochastic Petri nets (GSPN) (Viswanadham & Narahari 1988) have emerged as the
principal analytical modelling tools for FMS. Product form queueing network (PFQN)
models of FMS have gained prominence because of their computational efficiency,
however, they cannot capture FMS characteristics such as priority decision rules,
blocking of resources, dynamic routing, multiple resource holding, and synchroni-
zation. To model] these (non-product form) features, researchers have often employed
approximations (Chandy & Sauer 1978). GSPN provide an exact way of modelling
non-product form features and as natural models of concurrency and synchronization,
GSPN have emerged as a strong alternative to PFQN in many modelling situations.
However, as FMS grow in size and complexity, the GSPN models lead to large state
space, making them intractable.

The concept of flow-equivalence in queueing networks (Chandy et al 1975) can be
used in building realistic and efficiently solvable performance models that include
two parts: one a queueing network part and the other a Petri net (PN) part. In
particular, we shall consider models that include a PFQN part and a GSPN part. Such
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models were first considered by Balbo et al (1986) to evaluate computer systems with
non-product form features such as priorities, blocking, forking and joining, dynamic
routing, and multiple resource holding. Meenakshisundaram (1990) and Ramesh
(1990) have looked at the application of this modelling technique in the context of
parallel and distributed computing systems. In this paper, we bring out the use of
such models, which we shall refer to as integrated PFQN-GSPN models (IQP models
for short) in the FMS context.

In the next section, we introduce the notation of GSPN and explain the basic
mechanism of IQP modelling. In §3, we present two illustrative examples. All the
examples are concerned with the closed central server models of FMS. In example 1,
we present an IQP model of a central server FMS where parts are routed to machines
dynamically using the SQR (shortest queue routing) policy. In example 2, we consider
a central server FMS in which fresh raw parts are released into the FMS only when
an explicit demand is pending for a finished part and develop an IQP model. In §4,
we discuss the accuracy of IQP modelling and show with numerical reults that the
performance estimates are remarkably accurate.

2. Integrated PFQN-GSPN modelling

Here, we first introduce GSPN and then explain integrated PFQN-GSPN models.

2.1 Generalized stochastic Petri nets

In the following definitions (Murata 1989), N denotes the set of non-negative integers.

DEFINITION 1
A Petri net G is a four-tuple (P, T,IN,OU T) where

P={p,p2,DP3,---,Pay} is a set of places,
T={t,t,,...,t,} is a set of transitions,
PUT#Z;, PAnT=(;

IN: (P x T)— N is a function called the input function and associates directed arcs
from places to transitions, and
OUT: (P x T)— N is an output function that defines directed arcs from transitions
to places. [
Pictorially, places are represented by circles and transitions by horizontal bars. If
IN(p;t;) =k, where k> 1 is an integer, a directed arc from place p; to transition L
is drawn with label k. If IN(p;,t;)=0, no arc is drawn from p; to t;. Similarly, 1f
OUT(p;,t;) =k, a directed arc is included from transition t; to place p;, with label
k if k> 1 and without label if k= 1. If k =0, no arc is mcluded from ¢; to pl

DEFINITION 2
Let 27 be the powerset of P. We then define functions
IP: T—2f and OP: T - 2" as follows.

IP(t)) = {p:eP: IN(p;,t;)) #0} Vi,eT,
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IP(t;) is called the set of input places of t; and
OP(t;), the set of output places of ¢, ' ®

DEFINITION 3

A marking M of a Petri net G is a function M: P— N. A marked Petri net Wis a
Petri net G together with a marking defined on it. We denote it by (G, M) and write
W = (G, M). We always associate an initial marking M, with a given PN. M, will
represent the initial state of the system which the PN is modelling. @

It can be noted that a marking of a Petri net with n places is an n-dimensional
vector and associates with each place a certain number of tokens which are represented
by means of dots inside the places.

DEFINITION 4

A transition ¢; of a Petri net is said to be enabled in a marking M iff
M(p;) = IN(p,,t;) Vp,elP(t;).

An enabled transition ; can fire at any instant of time. When a transition ¢;, enabled
in a marking of M fires, a new marking M’ is reached according to the equation,

M'(p;))=M(p;) + OU T(p;, t;)— IN(p;, t;) VpeP,

we say marking M’ is reachable from M and write M Am e

DEFINITION 5

The set of all markings reachable from an initial marking M, of a Petri net is called
the reachability set of M, and is denoted by R[M,]. ®

DEFINITION 6
A GSPN is a six-tuple (P,T,IN,0U T, M,, F) where

(@) (P,T,IN,0UT,M,) is a marked Petri net;

(b) T is partitioned into two sets: T; of immediate transitions and T, of timed
transitions;

(¢) Fis a function with domain R[M,] x Ty, which associates to each te Ty in each
MeR[M,], a continuous random variable that indicates the firing time of ¢ in
M; and

(d) each teT, has zero firing time in all reachable markings. e

In the graphical representation of GSPN, a horizontal line represents an immediate
transition and a rectangular bar represents a timed transition. GSPN markings are
classified into two types: vanishing markings (those in which at least one immediate
transition is enabled) and tangible markings (those in which only timed transitions
are enabled). In vanishing markings, as a rule, only an immediate transition is selected
to fire even if timed transitions are enabled.

In a vanishing marking, if two or more conflicting immediate transitions are enabled,
then any of them may fire, according to a predefined probability distribution. The
set of conflicting transitions together with associated probabilities is referred to as a
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random switch. A random switch may be static or dynamic. In a static random switch,
the switching probabilities are constant whereas in a dynamic random switch, the
probabilities will depend on the current marking of the GSPN. Also, note that the
firing rates of exponential transitions are in general marking dependent. Dynamic
random switches and marking dependent firing rates add significantly to the modelling
power of GSPN.

Often, special arcs called inhibitor arcs are employed to test for the absence of a
token and capture priorities. An inhibitor arc from a place p to a transition ¢ is

indicated by a directed arc with a black dot at the end. ¢ will now be enabled only

if p has no token and all its other (normal) input places have adequate numbers of
tokens.

2.2 Integrated PFQN-GSPN models

IQP modelling is based on the concept of flow-equivalence. The basic idea is to isolate
one or more subsystems of a given system and compute the flow-equivalents for these
subsystems. The overall model (also called the high level model) of the given system
will then have these subsystems represented by the flow-equivalents. To compute the
flow-equivalent of a subsystem, one has to evaluate a model (PFQN or GSPN) of the
subsystem for all possible populations (i.e., number of jobs in the subsystem) and
compute the throughput in each case. Thus an IQP model can be of two types: (i) IQP
model with GSPN as the high level model and (ii) IQP model with PFQN as the high
level model. If the high level model is a GSPN, then some of its transitions represent
flow-equivalents of subsystems computed using PFQN models of the subsystem. If the
high level model is a PFQN, some of its individual nodes correspond to flow-equivalents
of subsystems computed using GSPN models of these subsystems.

It is not necessary that the high level model and the models for computing flow-
equivalents be of different types (i.e., one is a PFQN and the other a GSPN). If the high
level model and the model for flow-equivalence are both PFQN, then we have the
classical flow-equivalence of queueing networks (Chandy et al 1975). If one is a PFQN
and the other a GSPN, we have the integrated PFQN-GSPN models (IQP models) which
are the main focus of this paper.

3. IQP models for central server FMS

The closed central server network model of figure 1 is a well-formulated representation
for an FMS with a transport mechanism such as automated guided vehicles (AGV) and
several versatile numerically controlled (NC) machines. The network has two subsystems
which we shall call the AGV subsystem and the machine subsystem. The transport
mechanism serves as the central server and the probabilities do-41s- - - »qm help capture
the routing of parts inside the system. The closedness of the network is ensured by
the availability of a limited number of fixtures for parts inside the system. Thus the
population of jobs inside the network is equal to the total number of fixtures, assuming
a perennial supply of raw parts. The central server network is an easily solvable PFQN
but in this section, we shall consider variants of this model by including several
non-product form features. Also, for ease of discussion, we consider a model with
one AGV and two machines M, and M,.

e g
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Figure 1. Closed central server model of an FMS with m machines and one AGYV.

3.1 Example 1: FMS with dynamic routing

In this example, we construct an IQP model of a central server FMS with parts routed
to the machines M, and M, dynamically. The dynamic routing policy we consider
is the SQR (shortest queue routing) which has a good deal of intuitive appeal. To
construct an IQP model, we first observe that the non-product form feature, SQR in
this case, is localized in the subsystem comprising the machines M, and M. Therefore,
a GSPN model of this subsystem can be used to compute the flow-equivalent. The
AGV node together with this flow-equivalent will make up a high level PFQN model
as shown in figure 2. The GSPN model for the subsystem is shown in figure 3, with
description of the model in table 1.

In the GSPN model for computing the flow-equivalent, observe that the AGV is
short circuited. The transitions ¢, and t, will constitute a dynamic random switch
that implements SQR routing, as follows.

Prob(t,)=0,  if M(p,)> M(p,),
=], if M(p,) < M(ps),
=05, if M(p,)=M(ps).

Prob(t,) =0, if M(p,)> M(p,),
=1, if M(p,) <M(ps),
=05, if M(p,)=M(p,).

Note in the above that ties are resolved with equal probabilities.

flow - equivalent of the Figure 2. High level PFQN model for
subsystem example 1. :
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Figure 3. GSPN model for computing the flow-
equivalent in example 1.

To compute the flow-equivalent, we observe that the number of jobs in the subsystem
at any time can only vary from O to N where N is the total number of jobs in the
closed network model of our FMS. The GSPN model is to be run for each of the
populations0,1,2,,..., N and to compute the service rate of the flow-equivalent server,
we have to sum the throughput rates of the transitions ¢5 and ts. The PFQN high level
model of figure 2 can now be solved using standard computational algorithms. It
would now be very efficient to study the effect of variations of parameters connected
with the AGV node on the performance of the overall system because the experimentation
is required on a 2-node PFQN.

To see the computational advantage obtained, notice that an exact GSPN model of
the entire system will have O(N) states where N is the total number of jobs. Solving

Table 1. GSPN model for computing the flow-
equivalent in example 1. (See figure 3.)

Places

1 Parts ready to be routed to M, or M,
2 Queue of parts waiting for M,
3 Queue of parts waiting for M,
4 M, available

5 M, available

6 M, processing a part

7 M, processing a part
Immediate transitions

1 Part routed to queue for M,
2 Part routed to queue for M,

3 M, starts processing a part

4 M, starts processing a part

Exponential transitions
5 Processing of part by M,
6 Processing of part by M,

Dynamic random switch
The transitions ; and t, constitute a dynamic
random switch to model shortest queue routing.
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the exact GSPN model will therefore entail solving a Markov chain with O(N) states.
On the other hand, the GSPN submodel of figure 3 has at most two states for any
value of N, because of SQR routing. In particular, when the population n is even, the
submodel has only one tangible state and for odd n, there are exactly two tangible
states. This would mean that the flow-equivalent can be obtained by solving (N + 1)
Markov chains of at most 2 states, each. Finally, the solution of the PFQN high level
model is also a very trivial affair. We can therefore conclude that the exact GSPN
model leads to a time complexity of O(N?) whereas the IQP model leads to O(N)
complexity. '

3.2. Example 2: FMS with finite demand for products

Here, we employ a GSPN high level model and compute the flow-equivalent using a
PFQN submodel. The system considered is the céntral server FMS with a non-product
form feature in the AGV subsystem rather than in the machine subsystem.

The FMS in question, depicted in figure 4, has a total of N fixtures, thus limiting
the maximum number of in-process jobs to N. Raw parts are always available, however,
a fixture released before the unloading of a finished part is not utilized for a waiting
raw part until a specific demand for a finished part is posted in the demand queue.
These demands are random and are assumed to constitute a Poisson arrival stream.
When k (k > 0) demands are waiting unfulfilled, no further demands are entertained
and the demands that arrive when the demand buffer is full are assumed to be lost.
There are two potential non-product form features in the AGV subsystem here, namely
finiteness of the demands buffer and the joining operation for demands and fixtures.
Assuming product-form characteristics for the machine subsystem, we then have a
model that is congenial for IQP modelling. Note that the overall model here is not a
closed queueing network, but a network in which a2 maximum of N jobs can circulate.

A high level GSPN model of the above system is shown in figure 5 (description of
tiae model in table 2). In this model, ¢, is an exponential transition that aggregately
represents the machine subsystem. Needless to say, ¢, has a marking dependent firing
rate that can be computed by solving the PFQN model shown in figure 6.

Thus the solution of the IQP model in this case proceeds in the following way. In’
stage 1, the flow-equivalent of the PFQN model of figure 6 is computed by solving this
simple model for different populations n ranging from 0 to N. This determines

— -6
demands -
—_— -~ join
finite buffer

Figure 4. Central server FMS model with a finite external demand for finished products.
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Figure 5. High level GSPN model for example 2.

the marking dependent firing rates of the transition t,. In stage 2, the GSPN model
of figure 5 is analysed using the standard techniques. This GSPN model has only 3
exponential transitions whereas the exact GSPN model for the entire system has
m + 2 exponential transitions where m is the number of machines.

Table 2. High level GSPN model for example 2. (See
figure 5.)

Places
1 Future demands for products

2 Queue of waiting demands for products

3 Fixtures available

4 Queue of parts waiting for AGV

5 AGYV available

6 AGYV transporting a part

7 A part just transported by AGV

8 Service in progress in the machine subsystem
I

mmediate transitions
2 A fixtured part is released into the system
3 AGYV starts transporting a part
5 Part carried by AGV is for unloading
6 Part carried by AGV is for some more machining

Exponential transitions

1 Arrival of demands for finished products
4 Transport operation by AGV

7 Service in the machine subsystem

4
e
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population =n€ {0,1 ---,N}

i )
] Uy
. H1
T
{ | < ; Figure 6. PFQN model for computing the flow-equivalent
Hm in example 2.

4. Error analysis

The integrated PFQN-GSPN modelling technique is essentially an approximate
technique for obtaining the mean values of performance measures. It has the
advantages of computational efficiency of PFQN and representational power of GSPN.
The accuracy of performance estimates using the integrated technique will depend
on the degree of coupling between the subnetworks. The method leads to highly
accurate estimates if this degree of coupling is very small. We shall see this with a
simple example abstracted from the central server model we discussed in § 3.

Example 3. Consider a performance model with two subnetworks A and B, as shown
in figure 7. Let the network B contain some non-product form features whereas the
network A is product form. If we employ the IQP modelling, we typically compute
the flow-equivalent of network B using a GSPN model which is run for different
populations in the network. The computation of the flow-equivalent assumes that -
the duration for which a population in network B remains constant is long enough
to offset any interference from network A. That is, between two successive interactions
between the subnetworks A and B, network B reaches an equilibrium. If this condition
is not met, then the flow-equivalent is bound to be inaccurate. In the specific case of
the model of figure 6, this condition is met when either the value of p is close to 1
or the relative throughput is much higher than that of A.

We shall now present some numerical experiments conducted with examples 1
and 2, to see the accuracy of the IQP modelling technique. Table 3 shows the mean
throughput and mean lead time values for example 1, with the following parameters.

Ho = AGV service rate = 50 parts per hour;
py = M service rate = 10 parts per hour;
U, = M, service rate = 5 parts per hour;
91 =q2=(1—4o)/2;

g, varies from 0-01 to 0-99.

subnetwork 1-P | subnetwork
A B

Figure 7. Performance model for
example 3.
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Table 3. Mean throughput and mean lead time for
example 1.

Mo = 50 parts per hour; yu;, =10 parts per hour; u, =35
parts per hour; q; =g, = (1 —go)/2;
Number of fixtures = 8.

Mean throughput Mean lead time

Exact GSPN IQP Exact GSPN IQP
90 model model model model

0-99 49-50 49-50 0-16161 016161
0-95 4749992 4749993 0-16842 0-16842
0-90 44-98879  44-98999 0-17782 0-17781
0-80 39-14079  39-21808 0-20439 0-20398
0-70 30-37088 3060465 0-26341 0-26139
0-60 2144702  21-63114 0-37301 0-36983
0-50 1471864  14-81111 0-54352 0-54013
0-40 9-91265 995348 0-80705 0-80374
0-30 639908 641611 1-25017 1-24686
0-20 3-74009 3-74664 2-13898 2:13524
010 1-66394 1-66592 4-80784 4-80215
0-05 0-78844 0-78921  10-14656  10-13663
0-01 0-15134 0-15147  52:85555  52-85521

Note that the throughput is the number of finished parts per hour and the lead
time is the average time spent by a job inside the system. The numerical results in
table 3 show the estimates using the IQP modelling and exact GSPN modelling. The
estimates obtained through IQP models are found to be remarkably accurate, specially
for small values of g,,.

Table 4. Mean throughput and mean lead time for
example 2.

o =50 parts per hour; u, = 10 parts per hour; u, =5

parts per hour; ¢, =¢, = (1 — g,)/2;
Number of fixtures = 4.

Mean throughput Mean lead time

Exact GSPN 1QP Exact GSPN 1QP
9o model model mode] model

0-99 19-86499 1986499 0-03396 003396
0-90 19-62480 - 19-62429 0-05668 0-05671
0-80 18-:50368  18-49833 0-09763 0-09784
0-70 1584976 1583368 0-16315 0-16376
0-60 12:29868  12:27539 0-26070 026186
0-50 892581 8-90384 0-40232 0-40405
0-40 617814 6-16185 0-61550 0-61781
0-30 4-04035 4-03002 0-96859 097164
0-20 2:37657 2-37095 1-67004 1-67440
010 1-06081 1-05850 376461 3-77304
0-05 0-50316 0-50211 794671 796081
0-01 0-09664 0-09645  41-38727  41-47170

ot
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Table 4 shows similar results for example 2. The accuracy of IQP modelling is
again illustrated by these results.

5. Concluding remarks
5.1 Advantages and limitations

In this paper, we have shown through illustrative examples, that integrated PFQN-GSPN
models provide an efficient and accurate performance modelling paradigm for flexible
manufacturing systems. We collect together below the main advantages of the IQP
models.

(1) 1QP models have a solution efficiency comparable to that of PFQN and a
representational power equalling that of GSPN.

(2) The flow-equivalents computed in the integrated technique are exact since they
are computed by solving the PFQN or GSPN.

(3) The accuracy of solution given by IQP models is very good, especially when the
subsystems in the given system are loosely coupled.

(4) In the area of queueing networks, different kinds of approximations have been
developed for different non-product form features. The integrated models provide a
unified technique for all non-product form features. Also, flow-equivalents computed
using queueing networks are approximate and not exact.

(5) When two or more non-product form features are present in a subsystem, there
are few techniques available in queueing theory to handle them. The IQP technique
can handle any combination and any number of non-product features in a subsystem,
in a unified way.

A limitation of the integrated technique is that it could be used only to compute
average performance measures. However, this is true of any approximation technique
based on flow-equivalence. Another limitation arises when the non-product form
features are distributed across all subsystems. In such a case, the efficiency of IQP
models suffers. The efficiency of these models will be appealing if the non-product
form features are localized in a single subsystem.

5.2 Use of other modelling paradigms

In this paper, we have specifically looked at integrated models where PFQN and GSPN
are employed. It is needless to add here that other analytical models could be used
in the place of the above two models. For example, the flow-equivalent for the SQR
subsystem in example 1, which was computed using a GSPN model (figure 3), can as
well be computed by visualizing the underlying Markov chain model and solving it.
In fact, in this particular case, it is easy to write down the generator matrix of the
underlying Markov chain in a straightforward way. In a general situation where it
is hard to visualize let alone compute the generator matrix of the underlying Markov
chain, GSPN provide an easy-to-use, high level paradigm for automatic computation
of the Markov model. -

As another example, let us consider the central server FMS model of figure 4 and
assume that the routing is SQR in the machine subsystem. In this situation, both the
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AGYV subsystem and the machine subsystem have a non-product form feature. Three
ways of solving it become immediately obvious: (1) Exact GSPN modelling; (2) compute
flow-equivalent of AGV subsystem using GSPN and then solve a high level GSPN model;
(3) compute flow-equivalent of machine subsystem using GSPN and then solve a high
level GSPN model. In methods 2 and 3, all the models are GSPN. For numerical results
using methods 2 and 3, see Hanumantha Rao (1991). If one wishes, one could use
any combination of analytical or simulation models.
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