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Transient Analysis of Manufacturing 
Systems Performance 

Y. Narahari and N. Viswanadham, Fel lm, ,  IEEE 

Abstract- Studies in performance evaluation of automated 
manufacturing systems, using simulation or analytical models, 
have always emphasized steady-state or equilibrium performance 
in preference to transient performance. In this study, we present 
several situations in manufacturing systems where transient anal- 
ysis is very important. Manufacturing systems and models in 
which such situations arise include: systems with failure states 
and deadlocks, unstable queueing systems, and systems with 
fluctuating or non-stationary workloads. Even in systems where 
equilibrium exists, transient analysis is important in studying 
issues such as accumulated performance rewards over finite 
intervals, first passage times, sensitivity analysis, settling time 
computation, and deriving the behavior of queueing models as 
they approach equilibrium. In certain systems, convergence to 
steady-state is so slow that only transient analysis can throw light 
on the system performance. In this paper, we focus on transient 
analysis of Markovian models of manufacturing systems. After 
presenting several illustrative manufacturing situations where 
transient analysis has significance, we discuss two problems for 
demonstrating the importance of transient analysis. The first 
problem is concerned with the computation of distribution of time 
to absorption in Markov models of manufacturing systems with 
deadlocks or failures, and the second problem shows the relevance 
of transient analysis to a multiclass manufacturing system with 
significant setup times. We also briefly discuss computational 
aspects of transient analysis. 

I. INTRODUCTION 

TUDIES in performance analysis of discrete manufac- S turing systems and in general, discrete event dynam- 
ical systems have traditionally emphasized steady-state or 
equilibrium performance over transient or time-dependent 
performance. This paper is concerned with transient analysis of 
manufacturing systems performance. Transient analysis is very 
important in manufacturing system models that do not attain a 
steady state or equilibrium. Examples of such systems include, 
systems with failure states, unstable queueing systems, and 
systems with fluctuating or non-stationary workloads. Even 
in systems where equilibrium does exist, transient analysis 
is important for studying performance over finite intervals, 
sensitivity analysis, first passage time computation, settling 
time computation, and for deriving the behavior of models as 
they approach equilibrium. 

In this paper, we view a manufacturing system as a discrete 
event dynamical system [ 1,2] and consider that the evolution 
of a manufacturing system constitutes a discrete state space 
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stochastic process. In particular, we focus on Markov chain 
models. Such a model could be generated directly or using 
higher level models such as queueing networks, stochastic 
Petri nets, or discrete event simulation [2]. 

A.  Steady-State Analysis 

Steady-state analysis has been the focus of most perfor- 
mance studies in the area of discrete manufacturing systems. 
The two recent textbooks in this area, by Viswanadham 
and Narahari [2], and by Buzacott and Shantikumar [ 3 ]  are 
concerned mostly with steady-state analysis. There are also 
many survey articles that discuss steady-state analysis of 
manufacturing systems using simulation modeling [4], Markov 
chain models [5], queues and queueing network models [6], 
[7], [SI, and stochastic Petri net models [9], [lo]. 

Steady-state analysis deals mainly with customer average 
measures or time average measures. Performance measures 
such as steady-state waiting time belong to the first category 
whereas measures such as steady-state number of jobs in 
system are time average measures. In the literature, much 
of the analysis deals with only mean values of these perfor- 
mance measures. Higher moments and distributions are only 
occasionally computed, for special classes of systems. 

There are three main reasons for the popularity of steady- 
analysis: 
There are computationally efficient and simple methods 
for steady-state analysis. For example, the computation 
of steady-state probabilities in a Markov chain is carried 
out by solving a system of linear equations; the computa- 
tion of performance measures in product form queueing 
networks is accomplished through efficient polynomial- 
time algorithms; and so on. Availability of a wide variety 
of efficient linear equation solvers, including parallelized 
algorithms, has made possible the solution of Markov 
chains with several hundred thousand states. 
Major results in queueing theory, such as Burke’s result 
[ l l ] ,  Little’s law [12], Jackson’s theorem [13], product 
form of closed queueing networks [14], the BCMP 
formulation [15], and the arrival theorem [16] are all 
concemed with steady-state analysis. 
Developments in aggregation and decomposition meth- 
ods for solving large Markov chain models or large 
queueing models have also focused on steady-state anal- 
ysis (see, for example, the paper by Curtois [17]). 

Often, manufacturing system models do not have a steady 
state or do not reach a steady state in the observation period 
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of interest. Transient analysis becomes important in such 
situations. In Section 11, we will be looking at several such 
situations. 

Fig. 1. Markov chain model of a single machine system 
B .  Transient Analysis 

this example, we have Let us assume that a manufacturing system evolves in time 
as a homogeneous continuous time Markov chain (CTMC) 
{ X ( t )  : t 2 0) with state space S = (0, 1,.  . .} and 
infinitesimal generator Q .  Let i , j  E Sand 

p ; ; ( t )  = P { X ( t )  = j l X ( 0 )  = i} 

H ( t )  = bij(t)l 
The forward and backward differential equations that govem 

The forward equations (1) in this case are given by 

the behavior of this CTMC are respectively given b; 1181, 
11919 121, 

d 
1,(POO(t)) = Poo(t)qoo + Pol(t)qlo 

d 

d 
s ( H ( t ) )  = H ( t ) Q  (1) 

- ( H ( t ) )  dt = Q H ( t )  (2) 

with initial conditions H ( 0 )  = I in both the cases. Note that 
these are first order, linear, ordinary differential equations. In 
terms of the individual matrix elements, the above equations 
become 

d 
- ( P i j ( t ) )  d t  = qjjpij(t) f x q k j p i k ( t )  (3) 

k f j  

The forward and backward equations have the same unique 
solution given by 

where eQt is the matrix exponential defined by the Taylor 
series 

~ ( t )  = eQt ( 5 )  

If we are interested in the state probabilities 

where p j ( t )  = P { X ( t )  = j } : j  E S ,  then we need to solve 
the differential equation 

W t )  = bO(t) ,Pl( t ) ,  ’ . . I  

d 
~ ( “ ( t ) )  = W t ) Q  (7) 

The solution of the above is given by 

n(t) = “(O)eQt (8) 
1 )  An Example: To get a feel for the equations above, let us 

consider a simple example [ 191, 121. Consider a manufacturing 
system comprising a single machine that fails with failure time 
exponentially distributed with rate X and gets repaired, once 
failed, with repair time exponentially distributed with rate p. 
Assuming that the failure and repair times are independent, 
the system can be formulated as a CTMC with state space 
S = (0, l} where state 0 indicates, say, “machine in the up 
condition” and state 1 denotes “machine undergoing repair.” 
Figure 1 depicts the state diagram of this Markov chain. For 

The backward equations are given by 

The solution of the coupled differential equations above 
is straightforward and it can be shown that the transition 
probabilities are given by 

Figure 2 illustrates the evolution of these state probabilities. 
Note that 

lim p o o ( t )  = lirn plo(t) = - P 
t-co t-co A + P  

lim p l l ( t )  = lirrl pol(t) = - 
t’co x + p  

x 
t-m 

The above limiting probabilities are precisely the steady-state 
probabilities TO and TI  of the states 0 and 1, respectively. For 
j = 0,1, the state probabilities p j ( t )  are given by 

P j ( t )  = POj(t)PO(O) + Plj(t)Pl(O) (13) 
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distributions of throughput and cycle time in the presence of 
unreliable machines and components which may fail randomly. 
The papers by Viswanadham et al (481, Viswanadham and 
Ram [46], and Ram and Viswanadham [47] comprise results 
to compute the performability distributions for single part 
type manufacturing systems. The recent works of Viswanad- 
ham, Pattipati, and Gopalkrishna 1491 and Gopalakrishna [45] 
treat the multiple part type case and show that the per- 
formability distributions can be obtained by solving a set 
of forward or adjoint linear hyperbolic partial differential 
equations. These papers also develop efficient computational 
methods for solving such equations. Other notable contribu- 
tions towards transient analysis of manufacturing systems are 1 

Fig. 2. Evolution of transition probabilities 

2 )  Relevant Literature: Literature on transient analysis of 
Markov chain models is vast and is scattered across several 
inter-disciplinary areas. We shall only mention here some 
papers that are of direct interest. 

Grassman’s article [20] is an authentic survey on transient 
analysis whereas the paper by Stewart [21] discusses numerical 
techniques for transient analysis. The edited volume by Stewart 
[22] has several papers that touch upon transient analysis 
of Markovian models. The recent survey paper by Philippe, 
Saad, and Stewart [23] on numerical methods in Markov 
chain modeling also has some relevant discussion on transient 
analysis. In a highly relevant survey, Reibman and Trivedi 
[24], [25] have provided an overview of the various numerical 
techniques for transient analysis while Marie et al. [26] have 
discussed the transient analysis of acyclic Markov chains. 
Bobbio and Trivedi [27], [28] have discussed an aggregation 
method for transient analysis of Markov chains. 

Reliability and availabilty modeling has been a major mo- 
tivating factor for conducting transient analysis. For example, 
see the papers by Reibman et al. [29], Bavuso et a1 [30], 
Dyer [31], and de Souza de Silva and Gail [32,33]. The 
paper by Dyer [31] directly deals with transient analysis of 
Markovian models that arise in reliability, availability, and 
repairability modeling, and develops an efficient approximate 
method for transient analysis, that exploits the special structure 
of the transition rate matrix in such models. Analysis of fault- 
tolerant computer systems and performability modeling have 
also spurred several research efforts in transient analysis. For 
example, see the works by de Souza de Silva and Gail [33], 
Gerber [34], Meyer [35], and Trivedi et a1 [36]. 

Transient analysis of queueing models arising in computer 
and communication systems is the subject of the works by 
Baiocchi et a1 [37], Kotiah [38], Konstantopoulis and Baccelli 
[39], Tripathi and Duda [40], Upton and Tripathi [41], Weiss 
and Mitra [42], and Kobayashi [43]. 

In the manufacturing context, some work on transient analy- 
sis has been reported in the works of Ram [44], Gopalakrishna 

the papers by Miltenburg [50], Gershwin [51], and Malhame 
and Boukas [52]. The papers by Miltenburg and Gershwin 
contain transient analysis results for tandem or serial pro- 
duction lines and both address the problem of computing 
the variance of throughput in those systems. Malhame and 
Boukas look at the statistical evolution of a manufacturing 
system producing a single product, under hedging point control 
policies. They formulate partial differential equations that 
describe this evolution and show that transient analysis is very 
important here since the convergence to steady state is very 
slow. 

The aim of this paper is to spell out clearly the need 
for transient analysis of manufacturing system models and to 
explore the major issues of relevance. 

C. Organization of the Papei- 

In this section, we have introduced the transient analysis 
problem in performance modeling. In the next section, we 
discuss several situations in manufacturing systems analysis 
where transient analysis is relevant. We discuss these under 
four categories: 

1) Systems where steady state does not exist. 
2) Models with absorbing states. 
3) Performance computation over finite time durations. 
4) Other important transient phenomena. 

In Section 111, we present two illustative examples. The 
first is concerned with the computation of time to absorption 
in Markov models with absorbing states. This analysis can 
be used to study manufacturing systems with deadlocks and 
systems with total failure states. The second example is that 
of a machine center that produces two types of products with 
substantial setup times to switch over from one product type to 
another. For this system, we show that transient analysis can 
yield performance values that are often significantly different 
from those obtained using steady-state analysis. 

In Section IV, we briefly touch upon important computa- 
tional issues in transient analysis. In Section V, we provide a 
summary of the paper. 

[45], Viswanadham and Ram [46], Ram and Viswanadham 
[47], Viswanadham and Narahari [ 2 ] ,  and Viswanadham et 
a1 [48,49]. In these works, transient analysis is applied to 
manufacturing situations from a performability viewpoint. The 
main objective of these works is to compute the complete 

11. WHY TRANSIENT ANALYSIS? 

The aim of this section is to provide various situations 
in manufacturing system analysis where transient analysis 
assumes much significance. 
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Fig. 3. Open central server queueing netuorh rriodel 

A. Systems with No Steady State 

It is only in special classes of Markov chain models. 
such as ergodic Markov chains, that a unique steady state 
or equilibrium exists. We now give some examples where a 
steady state does not exist. 

E2xample I :  An Unstable Queue. 
Consider an M/M/l queue with arrival rate X and service 

rate p. The queue is stable if and only if X < p and steady-state 
performance measures will be meaningful only in this case. 
When X = p, it is known that the underlying Markov chain 
states are all null recurrent [53] and the number of customers in 
the system grows to infinity in the long term. If X > 11. all the 
states are transient and the system is again unstable. Similar 
arguments hold for any single or multiple server queueing 
system. The operation of machine centers that are flooded 
with a large number of demands or crippled machines with 
reduced service capacities can be faithfully represented by 
such unstable queues. 

E.xample 2:  An Unstable Queueing Netr \wk.  
Consider the open central s e n w  qireueirrg tietbivrk model 

shown in Fig. 3. This is a very popular model of flexible 
manufacturing systems [54], [7], [3] .  [ 2 ] .  This network is a 
special class of a Jackson netM3or.k 1131. If X is the extemal 
arrival rate of jobs and p l ( i  = 0. 1 . .  . . . m )  are the service 
rates (see Fig. 3), it is known that the above network is stable 
if and only if p j  < 1 for all j = 0.1. .  . . .u t .  where 

X 
['U = ~ 

Q0I'o 

p, = * , j=  1 . . . . .  7n 
QOPJ 

If even one of these conditions is not satisfied. the network is 
unstable and steady-state analysis loses significance. Such an 
unstable queueing network could be the model of a heavily 
loaded job shop or a manufacturing system whose service 
capacity is reduced by machine or subsystem failures. 

Example 3: A Kanban Cell with Non-Stationary Demands. 
Mitra and Mitrani [55]  have studied the performance of 

a linear network of Kanban cells, subjected to stochastic 
demands. Figure 4 depicts a single Kanban cell subjected to 
extemal demands. The input to the machines is modulated by 
the arrival processes of demands and raw parts. 

Mitra and Mitrani [55]  assume that the demands for finished 
parts arrive according to a Poisson process. However. in the 

Consumers + Products 

Fig. 4. A Kanban cell subjected to external demands 

real-world context, the demands arrive in very complex fashion 
and the workload to the system is highly non-stationary . 
For example, during rush hours, the demands arrive rapidly 
and during other times, their arrival follows some stochastic 
pattem. The underlying queueing system belongs to the realm 
of non-stationary queues and the system here may be unstable 
or stable depending on the maximum rate of arrivals of 
demands and raw parts. There is a rich body of literature in 
the area of non-stationary queueing systems [56],  where the 
issue of stability has been resolved for a very limited class 
of models. 

Esample 4: Re-Entrant Lines. 
Re-entrant lines [S7] constitute a class of manufacturing 

systems models where the flows are non-acyclic since the parts 
visit the same machines several times. These are characteristic 
of semiconductor and thin film manufacturing. Scheduling is 
an important problem in these systems and several distributed 
policies based on buffer priorities and due dates have been 
formulated for these systems (see, for example, the papers 
by Kumar [57] and by Lu and Kumar [58] ) .  Stability is an 
important issue in evaluating these scheduling policies. Not 
all the policies suggested in the above papers are stable [57], 
[58] and performance analysis of re-entrant lines under such 
unstable policies can only be carried out via transient analysis. 

B. Models with Absorbing States 
Markov models with absorbing states have a trivial steady- 

state, namely that the chain ends up in some absorbing state, 
remaining there forever; therefore, transient analysis alone 
throws any light on the system performance. We consider two 
examples below. 

Esample 5: Reliability Analysis. 
Manufacturing systems with no or limited repair of failed 

elements will lead to models with absorbing states. In such 
systems, reliability is an important performance index. Con- 
sider, for instance, a manufacturing system with m identical 
machines and an automated guided vehicle (AGV). Both the 
machines and the AGV are failure-prone and let us assume that 
repair is not possible. If the failure times are all independent 
exponential random variables, then the model that describes 
the failure-repair behavior of this system is a Markov chain. 
It is reasonable to assume that the system is operational only 
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Fig. 5. Markov chain model for failure-repair behavior. 
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Fig. 6. A robotic cell to illustrate deadlock 

when the AGV is “up” and at least one machine is “up” (this is 
because the AGV is involved in the successful completion of 
processing of every job). In such a case, the Markov chain 
model has state space S = {0,1, .  . . ,m},  where state 0 
corresponds to the failed state (all machines are down or 
AGV is down or both) and state i (i = 1, . . . . 71-1 ) indicates 
AGV “up” and exactly i machines “up.” Figure 5 shows this 
Markov chain model, assuming XA as the AGV failure rate 
and X as the failure rate of each machine. This same model 
is discussed in depth in [48]. State 0 is an absorbing state 
and the reliability of this system at time t is the probability 
that the system is not in state 0 at time t ,  given some initial 
condition. The reliability in this case can only be computed 
through transient analysis. 

Example 6 : A Manufacturing System with Deadlocks. 
This example is taken from [2]. Consider the robotic cell 

shown in Fig. 6, where there is a single machine that produces 
parts, with processing time exponentially distributed with rate 
p. Raw parts arrive onto an input conveyor according to a 
Poisson process having rate A. A robot picks up a raw part 
from the input conveyor and loads it onto the machine if the 
machine is free or to its buffer if the machine is busy. The robot 
picks up the finished part and puts it on the output conveyor. 
Assume that arrival of raw parts into the system is inhibited 
whenever the machine is busy, the buffer is full, and the robot 
is holding a raw part. Hence, if the buffer capacity is R, the 

Fig. 7. Markov chain model of the robotic cell. 

maximum number of jobs inside the system is n + 2 .  Let us 
assume that the robot takes negligible time to load and unload 
parts. 

First, consider the case where there is no buffer. Here, 
the states of the system are 0 ,1 ,2 .3 ,  with the following 
interpretation: 

0: no raw parts; machine idle. 
1: machine processing a part, no raw parts waiting. 
2: machine processing a part, robot holding a raw part. 
3:  machine waiting for the robot to transfer the finished 

part and the robot waiting for the machine to release the 
finished part. 

The CTMC model of the above system is shown in Fig. 7. 
In state 3, the waiting is indefinite if we assume that the robot 
controller and the machine controller are not programmed 
to react to such mutual or circular waiting. Such a state is 
called a deadlock, which stalls further activity and production 
in the system. In this simple example, it is easy to see 
how the deadlock may be prevented, but in a real-world 
manufacturing system having a large number of resources 
and concurrent interactions, deadlocks can occur commonly. 
Deadlock prevention or deadlock avoidance policies can be 
used to eliminate such deadlock situations, but such policies 
often lead to poor resource utilization [2]. For this reason, 
resource allocation policies that might result in deadlocks are 
preferred to avoidance or prevention strategies, in order to 
maintain an acceptable level of resource utilization. 

State 3 is an absorbing state in Fig. 7. If we need to compute 
the distribution of time before the deadlock is reached or the 
number of parts produced before deadlock, transient analysis 
becomes important. 

In the above example, if there is a buffer in front of the 
machine, the number of states will increase; in fact, if the 
buffer capacity is n, there will be exactly n + 4 states in the 
model and state n + 3 will be the absorbing state. 

C. Performance in Finite Intervals 

In a manufacturing system, we would often be interested in 
computing the cumulative performance in a finite duration of 
time, for example in a shift period. It is not realistic to expect 
the system to reach a steady state during this finite observation 
period. We consider three examples below. 

Example 7: A Wafer Fabrication Line. 
In a typical semiconductor wafer fabrication line [59], [60], 

each lot of wafers goes through a large number of operations 
and spends several days, inside clean rooms, repeatedly vis- 
iting many workcenters. The typical cycle time and queueing 
time of a lot of wafers is much larger compared to a shift 
duration. Therefore, if we are interested in the production or 
congestion levels at the end of a shift duration, we cannot 
rely on steady-state performance estimates. Furthermore, some 
scheduling policies in such re-entrant lines are known to be 
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Fig. 8 Failure-repair model of a two-machine system 

unstable (see Example 4) and transient analysis becomes even 
more important. 

Example 8: Interval Dependability Measures. 
Fault-tolerance and flexibility are the prime attributes of ad- 

vanced manufacturing systems. The degree of fault-tolerance 
of a manufacturing system is characterized by dependability 
measures such as reliability and availability. To define these 
measures, we partition the system states into operational states 
(states in which the system produces useful output) and failed 
states. Given an interval [0, t ] ,  the reliability of the system 
is the probability that the system never reaches a failed state 
during that interval. The point availability at time U E [0, t]  is 
the probability that, at time U ,  the system is in an operational 
state. The interval availability is the fraction of time during 
[ O , t ] ,  the system is in operational states. To compute these 
measures, one needs to do transient analysis. 

As an illustative example, we consider a manufacturing 
system comprising two machines M I  and M2 (this example 
is taken from [48]). Let the failure times of M, (i = 1.2) 
be exponentially distributed with rate a, and be independent. 
When a machine fails, assume that repair starts immediately, 
with repair time for machine M, being an exponential random 
variable having rate p,. The failure-repair behavior of this 
system is a Markov chain with four states given by 

s = ((11). (10). (01). (00)) 

where each state is a pair (x1.x2) ,  with x ,  = 1 when M, is 
“up” and x ,  = 0 when M, is “down.” Figure 8 shows this 
Markov chain. 

Obviously, the set of operational states is given by 

s o  = {(11), (10). (01)) 

Sf = {(OO))  

and the set of failed states is given by 

Let { Z ( U )  : U 2 0} be this Markov chain. Given an interval 
[O. t ] ,  the reliability R(t)  is given by 

R(t)  = P{Z(U)  E sovu E [ O . t ] }  

The point availability is given by 

PA(u)  = P { Z ( u )  E So}  

The interval availability is given by 

The above failure-repair process is often referred to as the 
structure state process [48]. 

Example 9: Performability Measures. 
Performability is a generic, composite measure of per- 

formance and dependability. There is a vast literature on 
performability of computer and communication systems [33]. 
More recently, performability has been investigated in the 
manufacturing systems context also [48]. 

We shall give a simple example, based on the system in 
Example 8. Assume that raw parts are always available and 
that parts undergo exactly one operation, either on M I  or 
on M2, and leave the system. Also, assume that machine 
M, processes parts at rate pi. Then in state (1 l),  the total 
production rate is p 1  + 112. The production rates in states 
(10). (01). (00) are respectively, P I ,  p2,  and zero. During the 
interval [O, t ] ,  let 7 1 1  , r10, r01,roo be the total times spent in 
the corresponding states. Note that these are random variables. 
The total accumulated production in the interval is then given 
by 

Y ( t )  = T l l ( P 1  + Pz)  + 7 1 O P l  + 701112 
Y ( t )  is called the throughput-related performability. In gen- 

eral, performability could be with respect to any performance 
measure such as throughput, lead time, queueing time, etc. To 
compute the distribution of Y ( t ) ,  one needs to do transient 
analysis. 

D. Other Transient Phenomena 

There are many other aspects of manufacturing system 
performance that can be effectively addressed only by transient 
analysis. 
1)  Performance under Real-Time Control Policies: When real- 
time control decisions are taken, for example, in the dynamic 
scheduling of manufacturing system operations, it is of in- 
trinsic interest to look at the transient performance, especially 
if the evolution is such that it takes a long time before a 
steady state is reached. For instance, Malhame and Boukas 
[52] have considered the operation of a failure-prone, single- 
product manufacturing system under dynamic hedging point 
control policies. They characterize the transient performance 
using a system of coupled partial differential equations. 

2 )  Settling Time of Queueing Systems: The settling time of 
a queueing system with a given initial number of customers in 
the system is the total time until the number in the system 
is zero. There have been a few efforts at computing the 
distribution of settling time of multiserver queues and open 
queueing networks [61,62,63]. 

The notion of settling time is analogous to the makespan 
of a manufacturing network, which is the total amount of 
time required to complete the processing of a given number 
of workpieces. Makespan computation is quite important in 
stochastic manufacturing systems. 

3)  Sensitivity Analysis: It is often required to determine 
the performance or reliability bottleneck of a system. In 
this context, it is necessary to evaluate the derivative of the 
desired performance measure with respect to important system 
parameters. The parameter with the largest derivative deserves 
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the attention of the designers to improve the characteristics 

in a system optimization effort based on gradient search tech- 

A 

of the designed system. Such derivatives can also be used 
)I 

niques. Sensitivity analysis often relies on transient analysis of Fig. 9. A Markov chain with an absorbing state 
performance. For example, Heidelberger and Goyal [64] have 
shown how transient analysis techniques can be effectively 
utilized for sensitivity analysis in continuous time Markov 
chains. The SPNP (Stochastic Petri Net Package) tool [65], in 

Hence the cumulative distribution function of T is given by 
71 

fact, includes procedures for analyzing sensitivity of various W t )  = Po,m+J ( t )  (14) 
performance measures to changes in system parameters. J I 1  

4 )  Cut-Off Phenomenon: An interesting quantity to study 
in the evolution of a stochastic manufacturing system is the 
rate at which the steady state is approached. This depends on 
the time constants (eigen values) of the system [42]. There 
is a class of Markov chain models and queueing systems (for 
example, see the articles by Konstantopoulos and Baccelli [39] 
and Anantharam [66] ) which exhibit a cut-off phenomenon 
namely, the existence of a time such that before this time, 
the system is far from steady state, while, after this time, the 
system is very close to steady state. The existence of cut- 
off phenomenon is a good indicator to whether a transient 
or a steady-state analysis is appropriate in a given setting. 
For example, if the cut-off time is known and the duration of 
observation is less than the cut-off time, then transient analysis 
is more meaningful than steady-state analysis. 

111. DETAILED EXAMPLES 

In this section, we illustrate transient analysis of manufac- 
turing systems using two examples. In the first, we show the 
computation of distributions of time to absorption in a Markov 
model with absorbing states. In the second, we show how 
performance estimates, obtained using transient analysis, may 
be significantly different from those of steady-state analysis. 

A .  Time to Absorption 

We have observed in Section 11-B that absorbing states occur 
in manufacturing system models that capure non-repairable 
behavior and phenomena such as deadlocks. An important 
quantity of interest in such systems is the time until an 
absorbing state is reached. Let { X ( U )  : U 2 O} be the Markov 
chain under consideration. Let the state space be finite and 
given by 

s = (0.1. .  . . ,7n,m + 1,. . . ,m  + 7 1 )  

where m 2 0, n > 0, the first ( m  + 1) states are transient 
states, and the rest of the states are absorbing states. Let 0 be 
the initial state and T ,  the time to reach any absorbing state. 
Define 

& ( t )  = P { X ( t )  = j l X ( 0 )  = i }  

Then, we have, for any t > 0, 

P ( T  > t }  = P ( X ( t )  6 { m  + 1.. . . . m + n } }  

In other words, we have 
n 

P{T > t> = 1 - CPo.m+Z(t) 
3=1 

The individual probabilities p ~ , ~ + ~  ( t )  have to be computed 
by solving the differential equations shown in (1) or (2). 

We now show the computation of the distribution of time to 
absorption for a simple Markov chain. Consider the Markov 
chain of Fig. 9. 

There are two possible interpretations for the above model. 
In the first interpretation, we have a single machine system 
which is in state 0 when there is no part being processed, in 
state 1 when there is a part being processed, and in state 2 
when there is a deadlock. The amval rate of parts is X and 
the service rate of each part is ,u. This interpretation is similar 
to Example 6. The time to absorption here is the time elapsed 
before a deadlock is reached. 

In the second interpretation, we consider a two-machine 
system with exponential failures and repairs. In state 0, both 
machines are “up” but only one of them is chosen to process 
parts. When this chosen machine fails, the system reaches state 
1, in which the non-failed machine starts processing parts and 
the repair of the failed machine is in progress. If the non-failed 
machine now fails before completion of repair of the already 
failed machine, we reach state 2 and we abandon any further 
repair. On the other hand, if the failed machine in state 1 is 
repaired before the non-failed machine fails, we return to state 
0. State 2 corresponds to a total failure state and the time to 
absorption corresponds to the time to total failure. 

We know in this case that F T ( ~ )  = p o z ( t ) .  To compute 
p 0 2 ( t ) ,  we first write down the infinitesimal generator Q of 
this Markov chain: 

First consider the backward equation (4) for p02( t ) :  

d 
dt  - ( p 0 2 ( t ) )  = 400POdt)  + 4OlPlZ(t) + qo2P22( t )  

Since q02 = 0, the above becomes 

The backward equation for p l 2 ( t )  is given by 

Since p 2 2 ( t )  = 1, the above becomes 
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We shall solve for by the Laplace transform method. 
Let PiJ (s) denote the Laplace transform of p,, ( t ) .  Taking the 
transform on either side of the equations above, we get 

sP02(s) = -xPoz(s) + X P 1 2 ( S )  (15) 

x 
SP12(S) = pPop(s) - (A + p)P12(s) + ; (16) 

Simplifying using (15) and (161, we get 

Now, p o z ( t )  can be obtained from equation (17) by inverse 
Laplace transformation. It is a simple matter to show that 

p 0 2 ( t )  = A + Bepat + Ce-bt 

where the constants are given by 

2 x + c l + J F z G .  b =  2x+p-J\/TLT+4XIL 
3 2 

U =  
2 

x c=- 
ab ub(b - a )  ' b(b  - a )  
x X ( b  - 2 a )  A = - - :  B=-. 

In the above case, we were able to give a closed form 
expression for the cumulative distribution function of time to 
absorption, only because of the small number of states and 
simple structure. In general, this computation is a formidable 
task and in fact, is the subject of several research efforts. The 
problem is identical to computation of first passage times in 
Markov chains [67], [68], [69]. Marie, Reibman, and Trivedi 
have given a general way of obtaining such distributions 
efficiently for acyclic Markov chains [26]. There are several 
software tools that have been developed in this context and 
we will be briefly covering those in Section 4. 

The early works of Kemeny [68] and Buzacott [70], [71] 
contain a discussion similar to the one presented in the above 
example. The recent book by Buzacott and Shantikumar [3] 
also has a brief discussion on computing the mean time to 
absorption. 

B .  Transient Analysis of a Multiproduct Manufacturing Facility 

Here, we consider a versatile machine center that is operated 
to produce two different classes of products, say A and B. The 
machine center switches production between the two product 
types based on the exhaustive service policy. That is, once set 
up for a particular product type, say A, processing is done 
on all class A parts until no more of them are waiting in 
queue. The machine will then switch over to produce class 
B products provided raw parts are available. Otherwise, it 
becomes idle. The switchover (setup) times are assumed to 
be quite substantial and this makes it interseting to study the 
transient characteristics of the system. We shall assume that 
there are two buffers, bufferl and buffer2, of capacities N I  
and N2, respectively. See Fig. 10 for a schematic of the above 

A i  ;: Buffer1 ~~ < t A  

A1 Product B 
Buffer2 

Fig. 10. A multiproduct manufacturing facility. 

system. The items in bufferl (buffed) could correspond to 
any of the following: 

1) Raw parts of class A (class B) waiting for their tum 
to get processed by the machine. In this case, the 
exogeneous arrivals into buffer 1 (buffed) correspond to 
extemally arriving raw parts of class A (class B). 

2) Extemal demands for class A (class B) products. In 
this case, the exogeneous arrivals into bufferl (buffed) 
correspond to arriving extemal demands for class A 
(class B) products. 

In the discussion that follows, we shall assume the first 
interpretation. The discussion is equally valid and relevant for 
the other interpretation. We make the following assumptions 
about the operation of the system. 

1)  Raw parts of class A (class B) arrive into the system ac- 
cording to a Poisson process with rate XI (A2). Arriving 
raw parts of type A (type B) that find bufferl (buffed) 
full leave the system without undergoing service. 

2) The setup time for product A (product B), which is 
also the time to switch over from product B to product 
A (product A to product B) is a stochastic variable, 
distributed exponentially with rate s1 ( ~ 2 ) .  We assume 
that s1 = 0.5/h and s2 = 0.4/h. That is, the average 
setup time for class A (class B) is 2 hours (2.5 hours). 

3) The processing time for class A (class B) jobs is expo- 
nentially distributed with rate p1 (112) .  In the numerical 
experimentation on the system, we have assumed p1 = 
4/h and p2 = 6/h.  

4) The exhaustive service policy [2] is used for switching 
over from one product type to another. That is, for 
example, if the machine is currently set up for product 
A, it will process class A parts as long as class A raw 
parts can be found in bufferl. When no more class A 
raw parts are available, the machine will switch over to 
product B if class B raw parts are available, otherwise 
the machine becomes idle with a setup for producing 
product A. When the machine is idle with a setup for 
product A and the next raw part to arrive is of class 
A, the machine will start processing that part without 
having to go through a setup; if the next raw part to 
amve is of class B, the machine is set up for product B 
and then the processing starts. 

5 )  FCFS (first come first serve) policy is used for dispatch- 
ing parts in the individual buffers. 

6) The machine does not fail during the interval of obser- 
vation. 

7) All the random variables involved are mutually inde- 
pendent. 
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8) The initial state of the system is: machine idle with setup 
for product A; buffer1 empty; and buffer2 empty. If the 
first arrival corresponds to class A, the machine will 
start directly processing the part. If the first arrival is of 
class B, the machine switches over to class B and starts 
processing. 

Under the assumptions above, the model corresponds to a 
continuous time Markov chain. Using the SPNP (Stochastic 
Petri Net Package) [65] tool, the above Markov model was 
studied, to gain insight into the transient and steady-state per- 
formance of the system. The performance measures considered 
were: 

1) Average cumulative throughput of class A (class B) parts 
during an interval [ O , t ] .  Here, t can be any period of 
observation, for example, a shift of 8 hours duration or 
a full day’s operation, etc. 

2) Average manufacturing lead time (MLT) of class A 
(class B) jobs during an observation period [ O , t ] .  The 
MLT of a job is the total time the job spends waiting 
and getting serviced in the system. 

3) Mean steady-state throughput and mean steady-state 
MLT. 

The performance results obtained for this system are shown 
in the graphs given in Figs. 11-16. The following convention is 
followed in these graphs: solid lines represent transient perfor- 
mance whereas dotted lines indicate steady-state performance; 
individual values for product A are shown by unfilled circles, 
while filled circles (i.e., black dots) indicate values for product 
B. 
1 )  Performance Over Finite Observation Periods: For differ- 
ent observation intervals [0, t ] ,  where t is varied from 1 hour 
to 12 hours in steps of 1 hour, the transient performance of 
the system is shown in Figs. 11 and 12. It is assumed that 
A1 = XZ = 4/h, and N 1  = N2 = 4. Recall that s1 = 0.5/h, 
32 = 0.4/h, p1 = 4/h,  and p2 = 6/h. In Fig. 11, the average 
accumulated throughput during [O. t]  (the average number of 
parts produced during [ O , t ] )  for each class is shown. As can 
be observed, both transient and steady-state values are shown. 
Note that the transient values are appreciably different from 
steady-state values. The effect of switchover times can be seen 
in the transient values. In the steady-state case, the effect of 
switchover times is averaged out and the throughput rate for 
the two classes is in the ratio of their procesing rates. 

Figure 12 shows the average MLT for the two product 
classes, for different observation intervals. Note that the tran- 
sient values for class A reach a peak value around t = 4 and 
the values slowly converge towards the steady-state values. 
The effect of the initial state is most appreciable in the case of 
class B, as can be seen from the steep decline in the beginning. 
If the interval of observation is [O,4], it can be observed 
that the average MLT of class A jobs reaches a maximum 
value whereas that for class B reaches a minimum value. Such 
interesting trends in system behavior can only be captured via 
transient analysis. 

2 )  Effect of Buffer Size: Fixing the interval of observation 
as 8 hours and XI = X2 = 4/h, we study the behavior of 
accumulated throughput in 8 hours and average MLT, as a 

l6 r 

2 4 6 8 1 0 1 2  
Interval duration. f hours 

Fig. 1 1. Variation of average accumulated throughput. 

Steady-state values (class A) 
-O-O-O-Q-O-O-.C--O-*-* 

Transient values (class B) 

Steady-state values (class B) 
2 

2 4 6 8 IO 12 14 

Interval duration, f hours 

Fig. 12. Variation of average MLT with interval duration. 

function of the size of the buffers. We assume that N I  = Nz 
and vary this size from 1 to 12 in unit steps. With increase in 
buffer size, less number of arrivals leave the system without 
service leading to enhanced throughput and increased delay. 
This trend is exhibited in Figs. 13 and 14, except in some 
ranges of buffer sizes. We observe that: 

1) Throughput of class B dominates over that of class A 
and the average MLT of class B is also relatively less. 
The throughput of class A jobs is found to decrease 
in certain ranges of buffer sizes since in those ranges, 
class B jobs are processed much more in a given setup 
due to their lower processing times. Consequently, the 
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Fig. 13. Effect of buffer size on average accumulated throughput. 
Fig. 15. Effect of anival rate on average accumulated throughput. 

average MLT of class B jobs in those ranges shows a 
slight decreasing trend. 

2) Steady-state values of throughput are higher than the 
corresponding transient values whereas the reverse hap- 
pens in the case of average MLT. The reason for this is 
that the effect of setup times is averaged out in the case 
of steady-state values. 

3) The difference between transient values and steady-state 
values is quite appreciable and increases with buffer size. 
This happens because the size of the underlying Markov 
chain increases with buffer size and the time to attain 
steady state correspondingly increases. 

3 )  Effect of Arrival Rate: Assuming an 8-hour observation 
period and fixing N I  = N2 = 5, we now study the variation 
of average accumulated throughput in 8 hours and the average 

MLT during 8 hours of operation, with change in input arrival 
rate. We assume XI = X2 and vary this parameter from 1 
per hour (slow arrivals) to 12 per hour (rapid arrivals) in unit 
steps. The resulting graphs are shown in Figs. 15 and 16. The 
behavior in these cases is quite interesting. For example, the 
average accumulated throughput for class A parts reaches a 
minimum around XI = A2 = 7, whereas that for class B parts 
reaches a peak around the same point (Fig. 15). The throughput 
of class A jobs is found to decrease in the initial ranges of 
values of arrival rates since in those ranges, the machine tends 
to produce a long sequence of class B jobs once a switch-over 
from class A to class B takes place. Again there is appreciable 
difference between transient and steady-state values, and this 
difference increases with increase in input arrival rate. This 
happens since the time to reach steady-state increases when 
the arrival rate increases. 
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In Fig. 16, the difference in the transient and steady-state 
values for class B shows a rather interesting behavior and 
indicates that steady-state analysis can sometimes lead to 
wildly inaccurate performance estimates. An unusual behavior 
observed is that the MLT of class A parts decreases with 
increase in the arrival rate in certain ranges. This is because 
of the long waiting times incurred by class A parts while the 
machine produces a long sequence of class B parts. Some of 
these trends would change if the initial state of the system is 
varied. 

IV. COMPUTATIONAL ISSUES 

In transient analysis, we are interested in computing the 
transition probabilities p , ,  ( t )  or state probabilities p 1  ( t )  or 
cumulative performance measures over finite time intervals. To 
obtain the transition probabilities, we need to solve equations 
(1)  or (2), and to obtain state probabilities, we need to solve 
equations given by (3). These are coupled, linear, first order, 
ordinary differential equations. The computation of cuniulative 
measures also involves solving linear differential equations 
1251. There are three basic ways in which the above differential 
equations may be solved: 

Obtain a general solution by deriving and symboli- 
cally inverting Laplace transforms. Analytic Laplace 
transform inversion requires that the eigen values of 
the infinitesimal generator of the Markov model be 
accurately determined. If the size of the state space is 
this would have a worst-case computational complexity 

Evaluate the matrix exponential series (6) directly. This 
approach is however beset with numerical instabilities, 
such as severe round off errors 1241. 
Numerically solve the differential equations using well 
developed techniques such as the fourth fifth order 
Runge-Kutta method, or the TR-BDF2 method (Trape- 
zoid Rule-Second order Backward Difference) [ 241. 

of O ( N 5 ) .  

The above methods are not always tractable and other 
numerical methods have been proposed for transient analysis. 
Among these, Uniformization or r-andomixition [ 721 has 
assumed prominence as an excellent numerical tool. There 
are also approximate techniques based on, for example, ag- 
gregation and decomposition 1271, [28] and diffusion ap- 
proximations 1431. In some special cases, exact closed form 
expressions can be obtained for transient measures, such as in 
acyclic Markov chains 1261. 

There are excellent review articles dealing with computa- 
tional aspects of transient analysis. The papers by Grassman 
[20] and Stewart 1211 are two of the earliest ones. More 
recently, Reibman and Trivedi [24,25] have done a neat 
survey of numerical transient analysis techniques for transition 
probabilities, state probabilities, and cumulative measures. The 
article by Johnson and Malek [73] is a detailed survey on 
software packages for reliability and availability evaluation; 
many of these packages, in fact, carry out transient analysis. 
Much of the following discussion is based on these survey 
articles. 

A .  C'onipututionul Dificulries 

There are mainly three problems that one is confronted with 
in transient analysis: largeness , 5tiflne.n , and ill-conditioning 

1 ) State Space E.xplosion: Markov models of real-world 
manufacturing systems will have a large number of states, 
often exceeding tens of thousands. So, even an algorithm 
of low polynomial complexity can become intractable. Also, 
this will call for a large amount of storage, though, often the 
matrices are sparse. If the algorithms preserve the sparsity of 
the matrices involved, savings in storage can be obtained. 

2 )  Sr#rws.s: In a manufacturing system, the activities fall 
into different time scales. For example, operation times are 
typically small compared to mean time to failure or mean time 
to repair. Set-up times, depending on the specific system, may 
be much larger or much smaller than other activity durations. 
The result is, the transition rates in the Markov chain model 
will exhibit several orders of magnitude difference. This causes 
the problem of stiffness. In general, we say a system of 
differential equations is stiff on the interval [O, t ]  if there exists 
a solution component that has variation on that interval that is 
large compared to 1241. A component with large variation 
changes rapidly relative to the length of the interval. Stiffness 
makes many integration methods, such as unifomization and 
Runge-Kutta method, inefficient [74]. 

3 )  Ill-Contlitioriirig: Manufacturing system models often 
lead to transition rate matrices that are ill-conditioned. That 
is. small changes in the matrix elements can produce large 
changes in the solution. This will lead to inaccurate estimation 
of transient performance. 

~ 4 1 .  

B. Conil~utatiori~il M erhods 

We shall discuss the computational methods under various 
heads. 

1 Arialysis of Special Classes: Acyclic Markov chains 
arise frequently in reliability and performability modeling. 
Marie, Reibman, and Trivedi [26] have proposed a method for 
automatically deriving transient solutions that are symbolic 
in the time duration t .  for acyclic chains. Their method 
is applicable to cuniulative measures of performance and 
sensitivity analysis of the transient solution. Donatiello and 
Iyer [ 751 have proposed a double transform-based procedure 
for computing performability distributions of systems whose 
failure-repair behavior is described by acyclic Markov chains. 
Goyal and Tantawi 1761 have proposed a different numerical 
method for the same problem. In all these cases, the acyclic 
structure of the Markov model plays a crucial role in the 
solution procedure. 

2 )  Laplace Transform Initersion: This technique was illus- 
trated in Section 111-A. This method is good for hand com- 
putation on small or special case models. It has a worst-case 
computational complexity of O(AJ5)  where N is the number 
of states and requires that the eigen values of the transition rate 
matrix be accurately determined. For acyclic Markov chains, 
this technique is adequate. as shown in 1261, [75]. Laplace 
transform inversion using Fourier series 1771 is a promising 
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technique but both analytic and numerical Laplace transform 
inversions are unstable, in general. 

3 )  Computation of Matrix Exponential: For small values of 
f ,  the matrix exponential method gives accurate and efficient 
solutions for transient analysis. For large values of t ,  the 
exponential series has poor numerical properties even for 
small problems. Round-off error is a common problem with 
these computations [20]. There are many altemative ways of 
evaluating the matrix exponential [78], [79], but they are not 
efficient for large sized problems and for large values of t. 

4 )  Numerical Solution of Differential Equations: The clas- 
sical techniques for numerical solution of the differential 
equations ( l) ,  ( 2 ) ,  or (6), first find the eigen values and the 
eigen vectors of the transition rate matrix Q. The solution 
is then obtained using the Lagrange-Sylvester formula [go]. 
This method has complexity of O(N4) when all the eigen 
values are distinct and O ( N 5 )  otherwise. Thus this approach 
is impractical for solving large models. Furthermore, for large 
matrices, it is difficult to accurately generate the entire eigen 
system. 

Numerical differential equation solvers fall into two classes: 
explicit methods and implicit methods. Explicit methods re- 
quire only function evaluations, whereas implicit methods 
require the solution of a linear algebraic system at each time 
step [29]. The Runge-Kutta method [81] is the most popular 
explicit method for solving differential equations. This method 
is widely available and is satisfactory for nonstiff problems 
with normal accuracy requirements. It is however not suitable 
for the solution of stiff equations. Popular implicit methods in- 
clude, the Backwards Euler and the Trapezoid Rule [82]. These 
methods are very good for handling stiffness, however they 
are less accurate and incur substantial performance penalties 
on nonstiff problems. 

5 )  Uniformization: Uniformization or randomization 1721 
is probably the most popular numerical method for transient 
analysis. In this method, a continuous time Markov chain is 
reduced to a discrete time Markov chain subordinated to a 
Poisson process [20], [72]. Uniformization first transforms the 
transition rate matrix Q to the matrix Q* given by 

Q Q * = - + I  
rl 

where q is the largest magnitude of a diagonal element of Q. 
The solution is then given in the form of an infinite series. 
The series can be truncated at a desired stage and the error 
bounds are immediately known. Uniformization is not subject 
to the round-off errors encountered while directly evaluating 
the matrix exponential series. It is quite accurate and efficient, 
and allows accurate error control. It is however not very good 
for stiff problems. 

Uniformization has now emerged as a method of choice for 
many typical problems in transient analysis. It is extensively 
used in performability evaluation [32], [33] and sensitivity 
analysis [64]. It has been implemented in several software 
packages [73], [29], [65]. Dyer [31] describes an efficient 
method, based on unifomization, to carry out transient analysis 
of large Markov chains that arise in reliability, availability, and 

repairability modeling. The method uses the special structure 
of the transition rate matrices arising in such models. 

Aggregation Methods These methods are approximate and 
are intended to transform a stiff Markov chain into a nonstiff 
chain having a smaller state space. Bobbio and Trivedi [27], 
[28] have proposed an aggregation technique that exploits the 
stiffness of the chain. In their method, the states are classified 
into fast and slow states. Fast states are further classified into 
fast recurrent subsets and a fast transient subset. A separate 
analysis of each of these fast subsets is done and each fast 
recurrent subset is replaced by a single slow state while the 
fast transient subset is replaced by a probabilistic switch. The 
resulting smaller and nonstiff chain is then analyzed using any 
suitable method. 

Other Methods Other methods for transient analysis in- 
clude, using diffusion approximations [43], fluid approxima- 
tions [42], and approximate techniques for transform inversion 
[381. 

C. Software Packages 

Johnson and Malek [73] have surveyed several software 
packages for evaluating reliability, availability, and yrvice- 
ability. Several of these are useful for transient analysi;. 

CARE (Computer Aided Reliability Estimator program) 
[83] is a general purpose reliability estimation tool for large, 
highly reliable digital fault-tolerant avionic systems. For tran- 
sient analysis, this package uses the method of convolution 
integral. 

HARP (Hybrid Automated Reliability Predictor) [30] pro- 
vides a hybrid model for evaluation of reliability and availabil- 
ity of large complex systems. This uses an extended stochastic 
Petri net model for specifying fault handling and employs the 
Runge-Kutta method for solving the differential equations. 

METASAN (Michigan Evaluation Tool for the Analysis of 
Stochastic Activity Networks) [84] evaluates performability 
for non-repairable and repairable systems, over finite intervals 
of time, by analyzing or simulating a stochastic activity 
network model, which is an extension of stochastic Petri nets. 

SHARPE (Symbolic Hierarchical Reliability and Perfor- 
mance Evaluator) [85] provides a hierarchical modeling 
framework for evaluating reliability and availability of non- 
repairable and repairable systems. This uses the technique of 
Laplace transform inversion for transient analysis. 

SAVE (System Availability Estimator) [86] computes reli- 
ability and availability of all classes of systems, by doing a 
transient analysis using the technique of uniformization. 

Marie, Reibman, and Trivedi [26] describe an algorithm 
called ACE (Acyclic Markov chain Evaluator) for evaluat- 
ing the transition probabilities in symbolic form, for acyclic 
chains. Reibman, Trivedi, Sanjayakumar, and Ciardo [29] 
describe a software package for the specification and solution 
of stiff Markov chains, using the technique proposed by 
Bobbio and Trivedi [27], [28]. The package ESP (Evaluation 
Package for Stochastic Petri Nets) [87] is a stochastic Petri 
net-based package for transient and steady-state analysis. The 
tool SPNP [65] is a powerful package, developed by Cia- 
rdo, Trivedi, and Muppala, that uses stochastic Petri nets as 
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a specification language and carries out both transient and 
steady-state analyses. This package uses unifomization for 
transient analysis and also implements sensitivity analysis. 

V. SUMMARY 
In this article, we have made a case for enhancing research 

efforts in analyzing the transient performance of discrete man- 
ufacturing systems. There are available several computational 
methods and software tools for conducting transient analysis 
of Markov models. Application of these methods and tools 
can facilitate a better understanding of the manufacturing 
system dynamics and an improved methodology for design. In 
addition to the issues discussed in this paper, there are certain 
others that deserve attention of researchers in this area: 

1) Performance optimization studies using transient analy- 
sis. 

2 )  Transient analysis of semi-Markov models, M/G/l type 
of models, and renewal processes. 

3) Improved algorithms and numerical techniques for tran- 
sient analysis, including methods based on aggregation. 
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