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Foundations of mechanism design: A tutorial
Part 1 – Key concepts and classical results
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Abstract. Mechanism design, an important tool in microeconomics, has found
widespread applications in modelling and solving decentralized design problems in
many branches of engineering, notably computer science, electronic commerce, and
network economics. Mechanism design is concerned with settings where a social
planner faces the problem of aggregating the announced preferences of multiple
agents into a collective decision when the agents exhibit strategic behaviour. The
objective of this paper is to provide a tutorial introduction to the foundations and
key results in mechanism design theory. The paper is in two parts. Part 1 focuses on
basic concepts and classical results which form the foundation of mechanism design
theory. Part 2 presents key advanced concepts and deeper results in mechanism
design.
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1. Introduction

In the second half of the twentieth century, game theory and mechanism design have found
widespread use in a gamut of applications in engineering. More recently, game theory and
mechanism design have emerged as an important tool to model, analyse, and solve decen-
tralized design problems in engineering involving multiple autonomous agents that interact
strategically in a rational and intelligent way. The importance of mechanism design in the
current context can be seen by the fact that the Nobel Prize in Economic Sciences for the
year 2007 was jointly awarded to three economists, Leonid Hurwicz, Eric Maskin, and Roger
Myerson for having laid the foundations of mechanism design theory (The Nobel Founda-
tion 2007). Earlier, in 1996, William Vickrey, the inventor of the famous Vickrey auction had
been awarded the Nobel Prize in Economic Sciences.

The agents are rational in the game theoretic sense of making decisions consistently
in pursuit of their own individual objectives. Each agent’s objective is to maximize the
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expected value of his/her own payoff measured in some utility scale. Selfishness or self-
interest is an important implication of rationality. Each agent is intelligent in the game
theoretic sense of knowing everything about the underlying game that a game theorist
knows and each agent can make any inferences about the game that a game theorist can
make. In particular, each agent is strategic, that is, takes into account his/her knowl-
edge or expectation of behaviour of other agents and is capable of doing the required
computations.

The theory of mechanism design is concerned with settings where a policy maker (or social
planner) faces the problem of aggregating the announced preferences of multiple agents
into a collective (or social) decision when the actual preferences are not publicly known.
Mechanism design theory uses the framework of non-cooperative games with incomplete
information and seeks to study how the privately held preference information can be elicited
and the extent to which the information elicitation problem constrains the way in which
social decisions can respond to individual preferences. In fact, mechanism design can be
viewed as reverse engineering of games or equivalently as the art of designing the rules
of a game to achieve a specific desired outcome. The main focus of mechanism design is
to design institutions or protocols that satisfy certain desired objectives, assuming that the
individual agents, interacting through the institution, will act strategically and may hold
private information that is relevant to the decision at hand.

1.1 Mechanism design: A brief history

Leonid Hurwicz (Nobel laureate in Economic Sciences in 2007) first introduced the notion
of mechanisms with his work in 1960 (Hurwicz 1960). He defined a mechanism as a commu-
nication system in which participants send messages to each other and perhaps to a message
center and a pre-specified rule assigns an outcome (such as allocation of goods and payments
to be made) for every collection of received messages. William Vickrey (1961) (Nobel lau-
reate in Economic Sciences in 1996) wrote a classic paper (Vickrey 1961) which introduced
the famous Vickrey auction (second price auction). To this day, the Vickrey auction contin-
ues to enjoy a special place in the annals of mechanism design. John Harsanyi (1967, 1968a,
1968b) (Nobel laureate in Economic Sciences in 1994 jointly with John Nash and Richard
Selten) developed the theory of games with incomplete information, in particular Bayesian
games, through a series of three seminal papers. Harsanyi’s work later proved to be of foun-
dational value to mechanism design. Hurwicz (1972) introduced the key notion of incentive
compatibility. This notion allowed mechanism design to incorporate the incentives of rational
players and opened up mechanism design. Clarke (1971) and Groves (1973) came up with a
generalization of the Vickrey mechanisms and helped define broad class of dominant strategy
incentive compatible mechanisms in the quasi-linear environment.

There were two major advances in mechanism design in the 1970s. The first was the rev-
elation principle which essentially showed that direct mechanisms are the same as indirect
mechanisms. This meant that mechanism theorists needed to worry only about direct mecha-
nisms, leaving the development of real-world mechanisms (which are mostly indirect mech-
anisms) to mechanism designers and practitioners. Gibbard (1973) formulated the revelation
principle for dominant strategy incentive compatible mechanisms. This was later extended to
Bayesian incentive compatible mechanisms through several independent efforts (The Nobel
Foundation 2007) — Maskin and Myerson (both Nobel laureates in Economic Sciences in
2007) had a leading role to play in this. In fact, Myerson developed the revelation princi-
ple in its greatest generality (The Nobel Foundation 2007). The second major advance in
mechanism design in the 1970s was on implementation theory which addresses the following
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problem: Can a mechanism be designed so that all its equilibria are optimal? Maskin (1999)
gave the first general solution to this problem.

Mechanism design has made numerous significant advances during 1980s, 1990s, and
during the past few years. It has found widespread applicability in a variety of disciplines.
These include: design of markets and trading institutions (The Nobel Foundation 2007, Mas-
Collell et al 1995, Milgrom 2004), regulation and auditing (The Nobel Foundation 2007),
social choice theory (The Nobel Foundation 2007), computer science (Nisan et al 2007),
and network economics (Narahari et al 2008). The above list is by no means exhaustive. In
this tutorial, our discussion is motivated by applications of mechanism design in network
economics which is concerned with an economics based approach to solving design problems
in distributed systems and networks. We now provide below several examples from network
economics.

1.2 Examples of mechanism design problems in network economics

1.2a Mechanism design and algorithms for selfish agents: In distributed settings, there are
certain algorithmic problems where the agents cannot be assumed to follow the algorithm
but are driven by selfish goals (Nisan 1999). In such situations, the agents are capable of
manipulating the algorithm. For example, in a shortest path problem where edges are owned
by individual agents and the costs of the edges are known only to the owning agents, the
algorithm designer is faced with the challenge of eliciting the true costs of the edges from the
owning agents before applying an algorithm for computing the shortest paths. The objective
of the algorithm designer in such situations should be to come up with a scheme which ensures
that the agents’ interests are best served by behaving truthfully. Mechanism design theory
provides a handle for studying and designing such algorithms. The mechanism is designed
in a way that all agents are motivated to act truthfully and according to the wishes of the
algorithm designer.

1.2b Mechanism design and selfish routing: A major difficulty that is faced by networks
such as road transportation networks, communication networks, and the Internet is that most
of the time, the demand of the users for the network resources exceeds the available supply of
the resources. This phenomenon causes congestion in the network. The traffic congestion can
be avoided or mitigated if the arrival rates can be controlled and/or the traffic can be routed
across the network in an effective manner. However, in most of these networks, the users of
such networks are free to act according to their own interests and moreover, they are rational
and intelligent in the sense that they care more for their own individual welfare and less for
the health or performance of the overall network. Game theory and mechanism design can
play an important role in the analysis and design of protocols in such networks. Indeed, in the
past few years, there has been a spurt of research activities in this direction. See, for example,
the work of Roughgarden (2005), Feigenbaum et al (2002), Feigenbaum & Shenker (2002),
Hershberger & Suri (2001), and Nisan & Rohen (2000, 2001).

1.2c Mechanism design and ad-hoc networks: Wireless ad-hoc networks also face the traffic
congestion problem just like other wired networks such as communication networks and the
Internet. However, due to the wireless nature of the communication medium, the physics of
the problem is somewhat different. In the case of wireless ad-hoc networks, conservation
of battery power by the individual nodes is of primary importance. Individual nodes are
required to forward packets so as to ensure connectivity in an ad-hoc network and nodes
therefore double up as routers. Forwarding of packets involves draining battery power and it
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may not always be in the self-interest of a node to forward packets. Design of protocols that
stimulate cooperative actions from the nodes uses game theory and mechanism design in a
significant way. There are several recent efforts in this direction. See, for example, the work
of Anderegg & Eidenbenz (2003) in unicast environment, where they use the VCG (Vickrey–
Clarke–Groves) mechanism to compute a power efficient path using which the nodes transmit
or forward the packets. Eidenbenz, et al (2005) further generalize this model to achieve budget
balance property. Wang et al (2004) propose strategy-proof pricing schemes for multicast
environment. Suri (2006) has generalized the model of Wang et al (2004) and has proposed
incentive compatible broadcast protocols in ad-hoc wireless networks.

1.2d Mechanism design and grid computing: One of the most important issues concerned
with grid computing is that of application scheduling. In a global grid setting, the individual
users must be provided with an incentive to offer their resources. The situation becomes non-
trivial because of the fact that these entities are rational and intelligent resource providers who,
for strategic reasons, may not provide truthful information about their processing power and
cost structure. Thus, resource allocation decisions in computational grids and other general
grids have to take into account the rationality of the grid resource providers. In particular, there
is a need for providing appropriate incentives to the nodes to stimulate their participation in
grid computing. Mechanism design is useful in designing incentives and also for auction based
mechanisms for grid resource allocation. There are several recent efforts in this direction.
See, for example, the work of Grosu & Chronopoulos (2003, 2004), Das & Grosu (2005),
Walsh et al (1998), and Buyya (2002). Prakash & Narahari (2005) have recently proposed
several innovative mechanisms for resource procurement in computational grids with rational
resource providers.

1.2e Mechanism design and cryptography: Mechanism design can be viewed as a science
of synthesis of protocols for selfish parties to achieve certain properties. In mechanism design,
it is often assumed that the central authority (or social planner) can be trusted by the parties,
but this might not always be true, especially in an Internet environment. If the social planner
is corrupt, then it may misuse the information received from the agents. Privacy is therefore
essential in order to ensure the social planer’s credibility (Naor 2001). This problem was first
stated by Varian (1995). Because cryptography deals with preserving privacy and integrity of
data in computer and communication systems, it is obvious that techniques from cryptography
may help implementing the mechanism design protocols in the real word. There has been some
progress in the recent past in applying cryptographic tools and techniques to the problems of
mechanism design. For example, see the work related to privacy preserving auctions by Noar
et al (1999) and Brandt (2003).

1.2f Mechanism design and the world wide web: We know that the world wide web has
become an integral part of our day-to-day life. As engineers and scientists are making progress
in developing innovative web based services, the hackers and spammers are bent on mak-
ing such services collapse. Examples of such services include search engines page ranking
system, recommender systems, and reputation systems. Note that it is not always the case
that these hackers and spammers invest their energy and efforts just for nothing. More often
than not, they do have a stake in not letting such systems run smoothly. The only solution
for such a problem is to design the system in a way that there is no incentive for the hack-
ers and spammers to put their energy and time in destroying it. Game theory and mechanism
design theory play an important role in designing such systems. For example see the work of
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Altman & Tennenholtz (2005, 2006) for a mechanism design view of page ranking systems,
and Gyongyi & Garcia-Molina (2005) for a kind of threat to the page ranking system, namely
link spam.

1.2g Mechanism design and electronic commerce: Electronic commerce is an area where
the rationality in general and self-interest in particular of the participating agents is a significant
factor to be taken into account. Game theory and mechanism design, therefore, have come to
play a natural role here. For example, in a bargaining problem between a buyer and a seller,
the seller would like to act as if the item is very expensive thus raising its price and the buyer
would like to pretend to have a low value for the object to keep the price down. In this context,
mechanism design helps to come up with a bargaining protocol that ensures an efficient trade
of the good, so that successful trade occurs whenever the buyer’s valuation exceeds that of
the seller.

There are a variety of game theoretic design problems currently being explored in the area
of electronic commerce. These design problems are well-documented in the literature; the
following is a representative listing:

• Auctions for selling spectrum (Cramton 2005)
• Mechanisms for selling advertising space through keyword auctions (Edelman et al

2006, Garg 2006, Aggarwal et al 2006)
• Auctions for selling products/services as part of private marketplaces set-up by

e-business companies (Narahari & Dayama 2005)
• Bandwidth exchanges (Eso et al 2001)
• Procurement auctions and private marketplaces for e-procurement (Chandrashekar et al

2006, Kameshwaran et al 2006, Gautam et al 2007)
• Logistics and transportation marketplaces (Caplice & Sheffi 2005)
• Mechanisms for supply chain formation (Walsh et al 2000, Walsh & Wellman 2003,

Karabuk & David Wu 2005, Narahari & Srivastava 2007).

1.3 Outline of the paper

The focus of this Part 1 is on basic concepts and key results that form the foundation of
mechanism design theory. We organize the material in this part as follows.

• We start by introducing the notion of a social choice function in § 2, through several
examples: bilateral trade, auctions for selling a single indivisible item, and a combina-
torial auction. These examples are used throughout the rest of the paper for bringing out
important insights. In § 3, we introduce the concept of a mechanism and bring out the
difference between direct revelation mechanisms and indirect mechanisms. Section 4 is
devoted to the notion of implementation of a social choice function by a mechanism. We
introduce two key notions of implementation, namely dominant strategy implementation
and Bayesian implementation.

• Next, we describe, in § 5, the desirable properties of a social choice function, which
include ex-post efficiency, non-dictatorialness, dominant strategy incentive compatibility
and Bayesian–Nash incentive compatibility. We then state and prove a fundamental result
in mechanism design theory, the revelation theorem in § 6.

• Next we introduce, in § 7, a landmark result — the Gibbard–Satterthwaite impossibility
theorem, which says that under fairly general conditions, no social choice function can
satisfy the three properties — ex-post efficiency, non-dictatorial, and dominant strategy
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incentive compatibility simultaneously. This impossibility theorem is a special case of
the celebrated Arrow’s impossibility theorem, which we present in § 8.

• The Gibbard–Satterthwaite theorem, while ruling out implementability of certain desir-
able mechanisms, suggests two alternative routes to design useful mechanisms. The
first of these two routes is to restrict the utility functions to what is known as a quasi-
linear environment. We introduce the quasi-linear environment in § 9, where we show
that ex-post efficiency is equivalent to a combination of two properties, namely, alloca-
tive efficiency and budget balance. In § 10, we study the celebrated VCG (Vickrey–
Clarke–Groves) social choice functions (also known as VCG mechanisms), which are
non-dictatorial, dominant strategy incentive compatible, and allocatively efficient.

• We explore the second route suggested by the Gibbard–Satterthwaite impossibility the-
orem in § 11. Here we look for Bayesian incentive compatibility instead of dominant
strategy incentive compatibility. We show that a class of social choice functions, known
as dAGVA social choice functions are ex-post efficient, non-dictatorial, and Bayesian–
Nash incentive compatible. We then develop a characterization of Bayesian incentive
compatible social choice functions in linear environment.

• Finally, in § 12, we provide pointers to further literature on all aspects discussed in this
part.

In Part 2 of this tutorial (Garg et al 2008), we build upon the basic concepts and key results
discussed in Part 1 and look into deeper issues and results in mechanism design theory. The
topics that we cover in Part 2 include: (1) Revenue equivalence of auctions; (2) Individual
rationality; (3) Moulin mechanisms; (4) Optimal auctions; (5) Characterization of dominant
strategy incentive compatible (DSIC) mechanisms; (6) DSIC implementation of Bayesian
incentive compatible (BIC) rules; (7) Implementation in ex-post Nash equilibrium; (8) Mecha-
nisms with interdependent types; (9) Implementation of mechanisms; and (10) Other advanced
topics in mechanism design.

This tutorial assumes familiarity with basic game theory, in particular topics such as strate-
gic form games, Bayesian games, and notions such as dominant strategy equilibria, Nash
equilibria, and Bayesian–Nash equilibria. There are numerous texts available, for example,
the ones by Martin (2003) and Myerson (1997).

2. Social choice function

DEFINITION 2.1.

A social choice function (SCF) is a function f : � → X, which a social planner or policy
maker uses to assign a collective choice f (θ1, . . . , θn) to each possible profile of the agents’
types θ = (θ1, . . . , θn) ∈ �.

Figure 1 illustrates the idea behind social choice function. In what follows, we present a
few examples of the mechanism design problem and the social choice function that is being
used by the social planner. Most of these examples are taken from (Mas-Colell et al 1995).

2.1 Example: Allocation of a single unit of an indivisible private good

Consider a situation where there is a set N of n agents and one of them is owning one unit of
an indivisible good. The owner wants to trade this good with other agents by means of money.
The other agents are interested in trading with him. Let us assume that there is an outside
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Figure 1. The idea behind social choice function.

agent who plays the role of a broker and facilitates the trading activities among these agents.
Each of the n agents interact directly with the broker agent in a personal manner but they do
not interact among themselves. This broker agent can be viewed as a social planner. Here the
problem of the broker agent is to decide whom to allocate the good and how much money
to charge (or pay) from each agent. This can be viewed as a mechanism design problem and
the various building blocks of the underlying mechanism design structure can be given in
following manner.

2.1a Outcome set X: An outcome in this case may be represented by a vector x =
(y1, . . . , yn, t1, . . . , tn), where yi = 1 if the agent i receives the object, yi = 0 otherwise,
and ti is the monetary transfer received by the agent i. The set of feasible alternatives is
then

X =
{

(y1, . . . , yn, t1, . . . , tn)|yi ∈ {0, 1}, ti ∈ R ∀ i,

n∑
i=1

yi = 1,

n∑
i=1

ti ≤ 0

}
.

2.1b Type set �i: In this example, the type θi of an agent i can be viewed as his valuation
of the good. We can take the set of possible valuations for agent i to be �i = [

θi, θi

] ⊂ R,
where θi is the least valuation and θi is the highest valuation the agent may have for the
item.

2.1c Utility function ui(·): The utility function of agent i can be given by

ui(x, θi) = ui(y1, . . . , yn, t1, . . . , tn, θi)

= θiyi + ti .

2.1d Social choice function f (·): The general structure of the social choice function for
this case is

f (θ) = (y1(θ), . . . , yn(θ), t1(θ), . . . , tn(θ)) ∀ θ ∈ �.

Two special cases of this example have received a great deal of attention in the literature —
bilateral trading and auctions. In what follows, we discuss each of these two.
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2.2 Example: Bilateral trade

This is a special case of the previous example. In this setting, we have n = 2. Agent 1 is
interpreted as the initial owner of the good (the ‘seller’), and agent 2 is the potential purchaser
of the good (the ‘buyer’). A few facts are in order. Note that

(i) If θ1 < θ2 there are certain gains for both the agents from the trade regardless of θ1

and θ2.
(ii) If θ2 < θ1 then it is certain there are no gains for both the agents from the trade.

(iii) If θ2 < θ1 or θ1 < θ2 or both, then there may or may not be gains for the agents from
trade, depending on the realization of θ .

We will develop this example further in this paper as and when required.

2.3 Example: Single unit–single item auction

This is a special case of the example 2.1. For the purpose of illustration, we assume that there
are n + 1 agents instead of n agents. Note that there is no loss of generality in doing so. Let
agent 0 be the owner of the good with the rest of the n agents interested in buying the good. In
this case, the owner of the good is known as auctioneer and the rest of the agents are known
as bidders. The distinguishing feature of this example which makes it a special case of the
Example 2.1 is the following:

The type set of the seller is a singleton set, that is �0 = {θ0}, which is commonly known
to all the buyers.

If θ0 = 0 then it implies that the auctioneer has no value for the good and he just wants
to sell it off. We call such a scenario as single unit single item auction without reserve price.
For this example, the various building blocks of the underlying mechanism design structure
are the following.

X =
{
(y0, y1 . . . , yn, t0, t1, . . . , tn)|y0 = 0, t0 ≥ 0, yi ∈ {0, 1},

ti ≤ 0 ∀ i = 1, . . . , n,

n∑
i=0

yi = 1,

n∑
i=0

ti = 0

}

�0 = {θ0 = 0}

�i = [
θi, θi

] ⊂ R ∀ i = 1, . . . , n

u0(x, θ0) = u0(y0, y1 . . . , yn, t0, t1, . . . , tn, θ0) = t0

ui(x, θi) = ui(y0, y1 . . . , yn, t0, t1, . . . , tn, θi) = θiyi + ti ∀ i = 1, . . . , n

f (θ) = (y0(θ), . . . , yn(θ), t0(θ), . . . , tn(θ)) ∀ θ ∈ �.

2.4 Example: Single unit–single item auction with reserve price

This is the same example as the previous one except that now auctioneer has some positive
value for the good, that is, θ0 > 0. The auctioneer announces a reserve price r > 0, which
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need not be the same as θ0. All the other agents treat this reserve price as the valuation of
the auctioneer for the good. This scenario is known as single unit–single item auction with
reserve price. For this example, the various building blocks of the underlying mechanism
design structure are the following.

X =
{
(y0, y1 . . . , yn, t0, t1, . . . , tn)|y0 ∈ {0, 1}, t0 ≥ 0, yi ∈ {0, 1},

ti ≤ 0 ∀ i = 1, . . . , n,

n∑
i=0

yi = 1,

n∑
i=0

ti = 0

}

�0 = {θ0 > 0}

�i = [
θi, θi

] ⊂ R ∀ i = 1, . . . , n

u0(x, θ0) = θ0y0 + t0

ui(x, θi) = θiyi + ti ∀ i = 1, . . . , n

f (θ) = (y0(θ), . . . , yn(θ), t0(θ), . . . , tn(θ)).

2.5 Example: A combinatorial auction

This is a generalization of Example 2.3. Imagine a setting where an individual, say agent
0, is holding one unit of each of m different items (M = {1, 2, . . . , m}) and wants to sell
these items. Let there be n agents who are interested in buying all the items or a non-empty
subset (bundle) of the items. As before, the owner of the good is known as auctioneer and the
rest of the agents are known as bidders. The auctioneer has no value for these items and just
wants to sell them and this fact is a common knowledge among the bidders. Below are a few
distinguishing features of this example which make it a generalization of Example 2.3.

(i) The type set of the auctioneer is a singleton set, that is �0 = {θ0 = 0}. This means that
auctioneer has no value for any of the bundle A ⊂ M .

(ii) The auctioneer’s type θ0 (also known as seller’s valuation for the bundles) is commonly
known to all the bidders.

(iii) The type of a bidder i consists of his valuation for every bundle of the items. Obviously,
there are 2m − 1 possible bundles of the items, therefore, a type θi of a bidder i consists
of 2m − 1 numbers.

For this example, the various building blocks of the underlying mechanism design structure
are the following.

2.5a Outcome set X: An outcome in this is a vector x = (yi(A), t0, t1, . . . , tn)i=1,... ,n,A⊂M ,
where yi(A) = 1 if bidder i receives the bundle A ⊂ M , yi(A) = 0 otherwise. t0 is the
monetary transfer received by the auctioneer and ti is the monetary transfer received by
the bidder i. The feasibility conditions require that each bidder i must be allocated at most
one bundle, that is,

∑
A⊂M yi(A) ≤ 1. Also, each object j ∈ M must be allocated to at
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most one bidder, that is,
∑

A⊂M|j∈A

∑n
i=1 yi(A) ≤ 1. The set of feasible alternatives is

then

X =
{
(yi(A), t0, t1, . . . , tn)i∈N,A⊂M |yi(A) ∈ {0, 1} ∀ i ∈ N, A ⊂ M;

∑
A⊂M

yi(A) ≤ 1 ∀ i ∈ N;
∑

A⊂M|j∈A

n∑
i=1

yi(A) ≤ 1 ∀ j ∈ M;

t0 ≥ 0; ti ≤ 0 ∀ i ∈ N;
n∑

i=0

ti = 0

}
.

2.5b Type set �i: In this example, the type set of the auctioneer is a singleton set �0 =
{θ0 = 0}. However, the type θi of each of the bidders i is a tuple (θi(A))A⊂M , where θi(A) ∈[
Vi, Vi

] ⊂ R ∀ A ⊂ M represents the value of agent i for bundle A. Here we are assuming
that bidder i’s valuation for each bundle A lies in the interval

[
Vi, Vi

]
. Therefore, the set �i

can be defined in the following manner:

�i = {
(θi(A))A⊂M |θi(A) ∈ [

Vi, Vi

] ⊂ R ∀ A ⊂ M
} = [

Vi, Vi

](2m−1)
.

2.5c Utility function ui(·): The utility function of the auctioneer and bidders can be given
by

u0 = t0

ui(x, θi) = ti +
∑
A⊂M

θi(A)yi(A) ∀ i ∈ N.

2.5d Social choice function f (·): The general structure of the social choice function for
this case is

f (θ) = ((yi(A, θ))i∈N,A⊂M, t0(θ), . . . , tn(θ)).

3. The mechanism design problem

All the above examples illustrate the concept of social choice function (SCF). However the
problem of mechanism design does not end just by choosing some SCF. The social plan-
ner needs to address another problem, namely the problem of information elicitation. Hav-
ing decided the SCF f (·), a trivial solution for the information elicitation problem seems
to be to request the agents to reveal their types θi and then use them directly to compute
the social outcome x = f (θ). However, given the fact that an outcome x yields a util-
ity of ui(x, θi) to agent i and agent i is a utility maximizing agent, the agents’ prefer-
ences over the set X depend on the realization of the type profile θ = (θ1, . . . , θn). For
any given realization θ , different agents may prefer different outcomes. Therefore, it is not
surprising if agent i reveals untruthful type, say θ̂i , to the social planner because doing
so may help him drive the social outcome towards a favourable choice, say x̂. This phe-
nomenon is known as the information revelation (or elicitation) problem and it is depicted
in figure 2. One way in which social planner can tackle this problem is the use of an
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Figure 2. Information elicitation problem.

appropriate mechanism. A formal description of the mechanism design problem is provided
below.

(i) There are n individuals (or agents), indexed by i = 1, 2, . . . , n, who must make a
collective choice from some set X, called the outcome set.

(ii) Prior to the choice, however, each agent i privately observes his preferences over X.
Formally, this is modelled by supposing that agent i observes a parameter, or signal θi

that determines his preferences. The parameter θi is referred to as agent i’s type. The set
of possible types of agent i is denoted by �i .

(iii) The agents’ types, denoted by θ = (θ1, . . . , θn) are drawn according to a probability
distribution function � ∈ ��, where � = �1 × · · · × �n, and �� is the set of all the
probability distribution functions over the set �. Let φ be the corresponding probability
density function.

(iv) Each agent i is rational and intelligent and this fact is modelled by assuming that the
agents always try to maximize a utility function ui : X × �i → R.

(v) The probability density φ(·), the type sets �1, . . . , �n, and the utility functions ui(·)
are assumed to be common knowledge among the agents. Note that the utility function
ui(·) of agent i depends on both the outcome x and the type θi . Even though, the type
θi is not common knowledge, by saying that ui(·) is common knowledge we mean that
for any given type θi , the social planner and every other agent can evaluate the utility
function of agent i.

In the above situation, the social planner faces two problems:

(i) Preference Aggregation Problem: The first problem that is faced by the social planner is
the following: ‘For a given type profile θ = (θ1, . . . , θn) of the agents, which outcome
x ∈ X should be chosen?’
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Figure 3. Abstract view of a mechanism.

(ii) Information Revelation (Elicitation) Problem: Assuming that the preference aggregation
problem has been solved, the other problem that is faced by the social planner is the
following: ‘How do we extract the true type θi of each agent i, which is the private
information of agent i?’

3.1 Mechanisms

DEFINITION 3.1.

A mechanism M = ((Si)i∈N, g(·)) is a collection of action sets (S1, . . . , Sn) and an outcome
function g: S → X, where S = S1 × · · · × Sn.

The set Si for each agent i describes the set of actions available to that agent. Based on his
actual type θi , each agent i will choose some action, say si ∈ Si . Once all the agents choose
their actions, the social planner uses this profile of the actions s = (s1, . . . , sn) to pick a
social outcome x = g(s). This phenomenon is depicted in figure 3. In view of the above
definition, the trivial scheme of asking the agents to reveal their types becomes a special case;
this special case is called a direct revelation mechanism (DRM).

DEFINITION 3.2.

Given a social choice function f : � → X, a mechanism D = ((�i)i∈N, f (·)) is known as a
direct revelation mechanism (DRM) corresponding to f (·).

• Given a social choice function f (·), note that a direct revelation mechanism is a special
case of a mechanism M = ((Si)i∈N, g(·)) with Si = �i ∀ i ∈ N and g = f .
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Figure 4. Abstract view of a direct revelation mechanism.

• Mechanisms that are not direct revelation mechanisms are typically referred to as indirect
mechanisms.

Figure 4 illustrates the idea behind direct revelation mechanism. In what follows, we present
a few examples of both direct revelation mechanism and indirect mechanism.

3.2 Example: Fair bilateral trade

Consider the previous bilateral trade example Example 2.2. Let us assume that the broker
agent invites the seller (agent 1) to report his type θ1 directly to him in a confidential manner.
θ1 is the minimum amount at which agent 1 is willing to sell the item. The broker agent also
invites the buyer (agent 2) to report his type θ2 directly to him in a confidential manner. θ2 is the
maximum amount that agent 2 is willing to pay for the item. Let us assume that seller reports
his type to be θ̂1 which may be different from actual type θ1 and buyer reports his type to be
θ̂2 which also may be different from actual type θ2. Now the broker agent uses these reported
types θ̂1 and θ̂2 in order to decide an outcome in the following manner. If θ̂1 < θ̂2 then the

broker assigns the good to agent 2. The broker charges an amount equal to θ̂1+θ̂2
2 from agent

2 and pays the same amount to the agent 1. However, if θ̂2 < θ̂1 then no trade takes place.
In this example, the mechanism that is being used by the broker agent is a direct reve-

lation mechanism D = (�1, �2, f (·)), where the social choice function f (·) is given by
f (θ) = (y1(θ), y2(θ), t1(θ), t2(θ)), where θ = (θ1, θ2). The functions yi(·) are known as
winner determination rules and the functions ti(·) are known as payment rules. The winner
determination and payment rules are given as follows.

y2(θ) =
{

1 : θ1 < θ2

0 : otherwise
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y1(θ) = 1 − y2(θ)

t1(θ) = y1(θ)

(
θ1 + θ2

2

)

t2(θ) = −t1(θ).

3.3 Example: First-price sealed bid auction

Consider the Example 2.3 of single unit–single item auction without reserve price. Let us
assume that the auctioneer himself is a social planner and he invites each bidder i to bid an
amount bi ≥ 0 directly to him in a confidential manner. The bid bi means that bidder i is
ready to pay an amount bi if he receives the good. The agent i decides bid bi based on his
actual type θi . The bids are opened by the auctioneer and the bidder with the highest bid gets
the good and pays to the auctioneer an amount equal to his bid. The other bidders pay nothing.
If there are several highest bids, we suppose that the lowest numbered of these bids gets the
good. We could also break the tie by randomly selecting one of the highest bidders.

In this example, the mechanism that is being used by the auctioneer is an indirect mechanism
M = ((Si)i∈N, g(·)), where Si ⊂ R

+ is the set of bids that bidder i can submit to the
auctioneer and g(·) is the outcome rule given by g(b) = (y1(b), . . . , yn(b), t1(b), . . . , tn(b)),
where b = (b1, . . . , bn). The functions yi(·) are known as winner determination rules and the
functions ti(·) are known as payment rules. If we define b(k) to be the kth highest element in
(b1, . . . , bn) and (b−i )

(k) to be the kth highest element in (b1, . . . , bi−1, bi+1, . . . , bn), then
winner determination and payment rule can be written in following manner.

yi(b) =
{

1 : if bi = b(1)

0 : otherwise

ti(b) = −biyi(b).

A few remarks are in order with regard to this example.

• While writing the above winner determination and payment rule, we have assumed that
any two bidders bidding the same bid value is a zero probability event.

• If Si = �i = [
θi, θi

] ∀ i ∈ N then this indirect mechanism becomes a direct revelation
mechanism.

3.4 Example: Second-price sealed bid (Vickrey) auction

The setting is the same as the first-price auction. The only difference here is in terms of
the allocation and payment rules invoked by the auctioneer. In the second-price sealed bid
auction, the bidder with the highest bid gets the good and pays to the auctioneer an amount
equal to the second highest bid. The winner determination and payment rules for this auction
can be given as follows.

yi(b) =
{

1 : if bi = b(1)

0 : otherwise

ti(b) = −(b−i )
(1)yi(b).

This auction is also called as Vickrey auction, after the Nobel prize winning work of Vickrey
(1961).
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3.5 Example: Generalized Vickrey Auction (GVA)

Once again, consider the example 2.5 of single unit-multi item auction without reserve price.
Let us assume that auctioneer himself is a social planner and he invites each bidder i to
report bid bi directly to him in a confidential manner. In this example, the bid structure is as
follows:

bi = (bi(A))A⊂M ; bi(A) ≥ 0 ∀ A ⊂ M.

The bids are opened by the auctioneer and the bidders are allocated to the bundles in such a
way that sum of the valuations of all the allocated bundles are maximized. Each bidder pays
to the auctioneer an amount equal to his marginal contribution to the trade.

In this example, the mechanism that is being used by the auctioneer is an indi-
rect mechanism M = ((Si)i∈N, g(·)), where Si ⊂ (

R
+)2m−1

is the set of bids that
bidder i can submit to the auctioneer and g(·) is the outcome rule given by g(b) =
((y∗

i (A, b))i∈N,A⊂M, t1(b), . . . , tn(b)), where b = (b1, . . . , bn). The functions y∗
i (·, ·) are

known as winner determination rules and the functions ti(·) are known as payment rules.
The winner determination rule y∗

i (·, ·) for this auction is basically solution of the following
optimization problem.

Maximize

n∑
i=1

∑
A⊂M

bi(A)yi(A, b)

subject to

(i)
∑

A⊂M yi(A, b) ≤ 1 ∀ i ∈ N

(ii)
∑

A⊂M|j∈A

∑n
i=1 yi(A, b) ≤ 1 ∀ j ∈ M

(iii) yi(A, b) ∈ {0, 1} ∀ i ∈ N, A ⊂ M .

The payment rule ti(·) for this auction is given by the following relation

ti(b) =
∑
j 	=i

vj (k
∗(b), bj ) −

∑
j 	=i

vj (k
∗
−i (b−i ), bj ),

where vj (k
∗(b), bj ) = ∑

A⊂M bj (A)y∗
j (A, b) is total value of the bundle which is allocated to

the bidder j . The quantity vj (k
∗
−i (b−i ), bj ) = ∑

A⊂M bj (A)y∗
j (A, b−i ) is the total value of the

bundle that will be allocated to the bidder j 	= i if the bidder i were not present into the system.
It is easy to verify that if set M consists of just one item then above winner determination
and payment rule will precisely be the same as winner determination and payment rule of the
Vickrey auction, therefore, the name Generalized Vickrey Auction.

3.6 Bayesian game induced by a mechanism

In view of the definition of the indirect mechanism and direct revelation mechanism, we can
say that a social planner can either use an indirect mechanism M or a direct mechanism
D to elicit the information about the agents’ preferences in an indirect or a direct manner,
respectively. As we assumed earlier, all the agents are rational and intelligent. Therefore, after
knowing about the mechanism M = ((Si)i∈N, g(·)) chosen by the social planner, each agent
i starts doing an analysis regarding which action si will result in his most favourable outcome
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and comes up with a strategy si : �i → Si to take the action. This phenomenon leads to a
game among the agents. A mechanism M = ((Si)i∈N, g(·)) combined with possible types
of the agents (�1, . . . , �n), probability density φ(·), and utility functions (u1(·), . . . , un(·))
defines a Bayesian game of incomplete information that gets induced among the agents when
the social planner invokes this mechanism as a means to solve the information elicitation
problem. The induced Bayesian game �b is given in the following manner:

�b = (N, (Si)i∈N, (�i)i∈N, φ(·), (ui)i∈N) ,

where ui : S × � → R is the utility function of agent i and is defined in following manner

ui(s, θ) = ui(g(s), θi),

where S = X
i∈N

Si , and � = X
i∈N

�i .

Knowing the fact that choosing any mechanism M = ((Si)i∈N, g(·)) will induce the game
among the agents, and the agents will respond to it in a way suggested by the corresponding
equilibrium strategy of the game, the social planner now worries about whether or not the
outcome of the game matches with the outcome of the social choice function f (θ) (if all
the agents had revealed their true types when asked directly). This notion is captured in the
definition that follows.

4. Implementing a social choice function

DEFINITION 4.1.

We say that the mechanism M = ((Si)i∈N, g(·)) implements the social choice function f (·)
if there is a pure strategy equilibrium s∗(·) = (

s∗
1 (·), . . . , s∗

n(·)
)

of the Bayesian game �b

induced by M such that g
(
s∗

1 (θ1), . . . , s∗
n(θn)

) = f (θ1, . . . , θn) ∀ (θ1, . . . , θn) ∈ �.

The figure 5 explains the idea behind what we mean by mechanism implementing a social
choice function. Depending on the underlying equilibrium concept, two ways of implementing
an SCF f (·) are standard in the literature.

4.1 Implementing a social choice function in dominant strategy equilibrium

First, we define the notion of a weakly dominant strategy equilibrium of the Bayesian game
�b.

DEFINITION 4.2 (Weakly dominant strategy equilibrium).

A pure strategy profile sd(·) = (
sd

1 (·), . . . , sd
n (·)) of the game �b induced by the mechanism

M , is said to be a weakly dominant strategy equilibrium if it satisfies the following condition.

ui(g(sd
i (θi), s−i (θ−i )), θi) ≥ ui(g(s

′
i (θi), s−i (θ−i )), θi)

∀i ∈ N, ∀θi ∈ �i, ∀θ−i ∈ �−i , ∀s
′
i (·) ∈ Si, ∀s−i (·) ∈ S−i , (1)

where Si is the set of pure strategies of the agent i in the induced Bayesian game �b, and S−i

is the set of pure strategy profiles of all the agents except agent i.
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Figure 5. Mechanism M = ((Si)i∈N, g(·)) implements the social choice function f (·).

DEFINITION 4.3. We say that the mechanism M = ((Si)i∈N, g(·)) implements the social
choice function f (·) in dominant strategy equilibrium if there is a weakly dominant strategy
equilibrium sd(·) = (

sd
1 (·), . . . , sd

n (·)) of the game �b induced by M such that

g
(
sd

1 (θ1), . . . , sd
n (θn)

) = f (θ1, . . . , θn) ∀ (θ1, . . . , θn) ∈ �.

4.2 Implementing a social choice function in Bayesian–Nash equilibrium

DEFINITION 4.4.

We say that the mechanism M = ((Si)i∈N, g(·)) implements the social choice function
f (·) in Bayesian–Nash equilibrium if there is a pure strategy Bayesian–Nash equilibrium
s∗(·) = (

s∗
1 (·), . . . , s∗

n(·)
)

of the game �b induced by M such that

g
(
s∗

1 (θ1), . . . , s∗
n(θn)

) = f (θ1, . . . , θn) ∀ (θ1, . . . , θn) ∈ �.

Following is the definition of Bayesian–Nash equilibrium of the Bayesian game �b.

DEFINITION 4.5 (Bayesian–Nash equilibrium).

A pure strategy profile s∗(·) = (
s∗

1 (·), . . . , s∗
n(·)

)
of the game �b induced by the mechanism

M , is a Bayesian–Nash equilibrium if it satisfies the following condition.

Eθ−i
[ui(g(s∗

i (θi), s
∗
−i (θ−i )), θi)|θi] ≥ Eθ−i

[ui(g(s
′
i (θi), s

∗
−i (θ−i )), θi)|θi]

∀i ∈ N, ∀θi ∈ �i, ∀s
′
i (·) ∈ Si. (2)
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Following is a proposition that establishes the relationship between two equilibrium concepts
defined above. The proof is straightforward.

PROPOSITION 4.1.

A weakly dominant strategy equilibrium sd(·) = (
sd

1 (·), . . . , sd
n (·)) of the Bayesian game �b

induced by M , is always a pure strategy Bayesian–Nash equilibrium of the same Bayesian
game �b.

COROLLARY 4.1.

If the mechanism M = ((Si)i∈N, g(·)) implements the social choice function f (·) in dominant
strategy equilibrium, then it also implements f (·) in Bayesian–Nash equilibrium.

In what follows, we offer a few caveats to these definitions of implementing a social choice
function.

(i) The game �b induced by the mechanism M may have more than one equilibrium, but the
above definition requires only that one of them induces outcomes in accordance with the
SCF f (·). Implicitly, then, the above definition assumes that, if multiple equilibria exist,
the agents will play the equilibrium that the mechanism designer (social planner) wants.

(ii) Another implicit assumption of the above definition is that the game induced by the
mechanism is a simultaneous move game, that is all the agents, after learning their types,
choose their actions simultaneously. However, it is quite possible that the mechanism
forces some agent(s) to lead the game, taking the action first followed by the actions of
the remaining agents. In such a case, the game induced by the mechanism becomes a
Stackelberg game (Garg & Narahari 2005, Baar & Olsder 1999).

5. Properties of a social choice function

We have seen that a mechanism provides a solution to both the problem of information
elicitation and the problem of preferences aggregation if it can implement the desired social
choice function f (·). It is obvious that some SCFs are implementable and some are not.
Before we look into the question of characterizing the space of implementable social choice
functions, it is important to know which social choice function ideally a social planner would
prefer to be implemented. In this section, we highlight a few properties of an SCF which
ideally a social planner would wish the SCF to have.

Note that the fundamental characteristic of a social planner is that he is neutral to all the
agents. Therefore, it is obvious for the social planner to be concerned about whether the
outcome f (θ1, . . . , θn) is socially fair or not. For this, a social planner would always like to
use an SCF f (·) which satisfies as many desirable properties from the perspective of fairness
as possible. A few important properties, which ideally a social planner would want an SCF
f (·) to satisfy, are the following.

5.1 Ex-post efficiency

DEFINITION 5.1.

The SCFf :� → X is said to be ex-post efficient (or Paretian) if for any profile of agents’ types
θ = (θ1, . . . , θn), and any pair of alternatives x, y ∈ X, such that ui(x, θi) ≥ ui(y, θi) ∀ i

and ui(x, θi) > ui(y, θi) for some i, we have y 	= f (θ1, . . . , θn).
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An alternative definition of ex-post efficiency can be given in the following manner.

DEFINITION 5.2.

The SCF f : � → X is said to be ex-post efficient if for no profile of agents’ types θ =
(θ1, . . . , θn) does there exist an x ∈ X such that ui(x, θi) ≥ ui(f (θ), θi) ∀ i and ui(x, θi) >

ui(f (θ), θi) for some i.

5.2 Non-dictatorial SCF

We define this through a dictatorial SCF.

DEFINITION 5.3.

The SCF f : � → X is said to be dictatorial if for every profile of agents’ type θ =
(θ1, . . . , θn), we have f (θ1, . . . , θn) ∈ {x ∈ X|ud(x, θd) ≥ ud(y, θd) ∀y ∈ X}, where d is a
particular agent known as dictator.

An SCF f : � → X is said to be non-dictatorial if it is not dictatorial.

5.3 Incentive compatibility (IC)

DEFINITION 5.4.

The SCF f (·) is said to be incentive compatible (or truthfully implementable) if the
direct revelation mechanism D = ((�i)i∈N, f (·)) has a pure strategy equilibrium
s∗(·) = (s∗

1 (·), . . . , s∗
n(·)) in which s∗

i (θi) = θi, ∀θi ∈ �i, ∀i ∈ N .

That is, truth telling by each agent constitutes an equilibrium of the game induced by D . It is
easy to verify that if an SCF f (·) is incentive compatible then the direct revelation mechanism
D = ((�i)i∈N, f (·)) can implement it. That is, directly asking the agents to report their types
and plugging this information in f (·) to get the social outcome will solve both the problem
of information elicitation and the problem of preferences aggregation.

The notion of incentive compatibility, which is central to mechanism design theory, was
first introduced by Hurwicz (1972). Based on the type of equilibrium concept used, two types
of incentive compatibility are given below.

5.4 Dominant strategy incentive compatibility (DSIC)

DEFINITION 5.5.

The SCF f (·) is said to be dominant strategy incentive compatible (or truthfully imple-
mentable in dominant strategies)1 if the direct revelation mechanism D = ((�i)i∈N, f (·))
has a dominant strategy equilibrium sd(·) = (sd

1 (·), . . . , sd
n (·)) in which sd

i (θi) = θi, ∀θi ∈
�i, ∀i ∈ N .

That is, truth telling by each agent constitutes a dominant strategy equilibrium of the game
induced by D . Following is a necessary and sufficient condition for an SCF f (·) to be dominant
strategy incentive compatible:

ui(f (θi, θ−i ), θi) ≥ ui(f (θ̂i , θ−i ), θi), ∀i ∈ N, ∀θi ∈ �i, ∀θ−i ∈ �−i , ∀θ̂i ∈ �i.

(3)

The above condition says that if the SCF f (·) is DSIC, then, irrespective of what the other
agents are doing, it is always in the best interest of agent i to report his true type θi .

1Strategy-proof, cheat-proof, straightforward are the alternative phrases used for this property.
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5.5 Bayesian incentive compatibility (BIC)

DEFINITION 5.6.

The SCF f (·) is said to be Bayesian incentive compatible (or truthfully implementable in
Bayesian–Nash equilibrium) if the direct revelation mechanism D = ((�i)i∈N, f (·)) has
a Bayesian–Nash equilibrium s∗(·) = (s∗

1 (·), . . . , s∗
n(·)) in which s∗

i (θi) = θi, ∀θi ∈ �i,

∀i ∈ N .

That is, truth telling by each agent constitutes a Bayesian–Nash equilibrium of the game
induced by D . Following is a necessary and sufficient condition for an SCF f (·) to be Bayesian
incentive compatible:

Eθ−i
[ui(f (θi, θ−i ), θi)|θi]

≥ Eθ−i
[ui(f (θ̂i , θ−i ), θi)|θi], ∀i ∈ N, ∀θi ∈ �i, ∀θ̂i ∈ �i. (4)

The following proposition illustrates the relationship between these two notions of incentive
compatibility of a social choice function. The proof of this proposition is quite straightforward.

PROPOSITION 5.1.

If a social choice function f (·) is dominant strategy incentive compatible then it is also
Bayesian incentive compatible.

6. The revelation principle

This is one of the most fundamental results in the theory of mechanism design. This principle
basically illustrates the relationship between an indirect mechanism M and a direct revelation
mechanism D for any SCF f (·). This result enables us to restrict our inquiry about truthful
implementation of an SCF to the class of direct revelation mechanisms only.

6.1 The revelation principle for dominant strategy equilibrium

PROPOSITION 6.1.

Suppose that there exists a mechanism M = (S1, . . . , Sn, g(·)) that implements the social
choice function f (·) in dominant strategy equilibrium. Then f (·) is truthfully implementable
in dominant strategy equilibrium (dominant strategy incentive compatible).

Proof. If M = (S1, . . . , Sn, g(·)) implements f (·) in dominant strategy, then there exists a
profile of strategies sd(·) = (

sd
1 (·), . . . , sd

n (·)) such that

g
(
sd

1 (θ1), . . . , sd
n (θn)

) = f (θ1, . . . , θn) ∀ (θ1, . . . , θn) ∈ � (5)

and

ui(g(sd
i (θi), s−i (θ−i )), θi) ≥ ui(g(s

′
i (θi), s−i (θ−i )), θi)

∀i ∈ N, ∀θi ∈ �i, ∀θ−i ∈ �−i , ∀s
′
i (·) ∈ Si, ∀s−i (·) ∈ S−i . (6)
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Condition (6) implies, in particular, that

ui(g(sd
i (θi), s

d
−i (θ−i )), θi) ≥ ui(g(sd

i (θ̂i), s
d
−i (θ−i )), θi)

∀i ∈ N, ∀θi ∈ �i, ∀θ̂i ∈ �i, ∀θ−i ∈ �−i . (7)

Conditions (5) and (7) together implies that

ui(f (θi, θ−i ), θi) ≥ ui(f (θ̂i , θ−i ), θi), ∀i ∈ N, ∀θi ∈ �i, ∀θ−i ∈ �−i , ∀θ̂i ∈ �i.

But this is precisely condition (3), the condition for f (·) to be truthfully implementable in
dominant strategies. Q.E.D.

The idea behind the revelation principle can be understood with the help of figure 6. The
set IDSE consists of all the social choice functions that are implementable by some indirect
mechanism M in dominant strategy equilibrium. The set DSIC consists of all the social
choice functions that are truthfully implementable by some direct mechanism D in dominant
strategy equilibrium. Recall that a direct mechanism D can also be viewed as an indirect
mechanism. Therefore, it is obvious that we must have

DSIC ⊂ IDSE. (8)

In view of relation 8, we can say that the revelation principle for dominant strategy equilibrium
basically says that IDSE ⊂ DSIC, which further implies that IDSE = DSIC.

Thus, the revelation principle for dominant strategy equilibrium says that an SCF f (·)
is implementable by an indirect mechanism M = (S1, . . . , Sn, g(·)) in dominant strategy
equilibrium if it is truthfully implementable by the mechanism D = ((�i)i∈N, f (·)) in
dominant strategy equilibrium.

6.2 The revelation principle for Bayesian–Nash equilibrium

PROPOSITION 6.2.

Suppose that there exists a mechanism M = (S1, . . . , Sn, g(·)) that implements the social
choice function f (·) in Bayesian–Nash equilibrium. Then f (·) is truthfully implementable in
Bayesian–Nash equilibrium (Bayesian incentive compatible).

Figure 6. Revelation principle for dom-
inant strategy equilibrium.
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Proof. If M = (S1, . . . , Sn, g(·)) implements f (·) in Bayesian–Nash equilibrium, then there
exists a profile of strategies s∗(·) = (

s∗
1 (·), . . . , s∗

n(·)
)

such that

g
(
s∗

1 (θ1), . . . , s∗
n(θn)

) = f (θ1, . . . , θn) ∀ (θ1, . . . , θn) ∈ � (9)

and

Eθ−i

[
ui(g(s∗

i (θi), s
∗
−i (θ−i )), θi)|θi

] ≥ Eθ−i

[
ui(g(s

′
i (θi), s

∗
−i (θ−i )), θi)|θi

]

∀i ∈ N, ∀θi ∈ �i, ∀s
′
i (·) ∈ Si. (10)

Condition (10) implies, in particular, that

Eθ−i

[
ui(g(s∗

i (θi), s
∗
−i (θ−i )), θi)|θi

] ≥ Eθ−i

[
ui(g(s∗

i (θ̂i), s
∗
−i (θ−i )), θi)|θi

]

∀i ∈ N, ∀θi ∈ �i, ∀θ̂i ∈ �i. (11)

Conditions (9) and (11) together implies that

Eθ−i

[
ui (f (θi, θ−i ) , θi) |θi

]
≥ Eθ−i

[
ui(f (θ̂i , θ−i ), θi)|θi

]
, ∀i ∈ N, ∀θi ∈ �i, ∀θ̂i ∈ �i.

But this is precisely condition (4), the condition for f (·) to be truthfully implementable in
Bayesian–Nash equilibrium. Q.E.D.

In a way similar to the revelation principle for dominant strategy equilibrium, the revelation
principle for Bayesian–Nash equilibrium can be explained with the help of figure 7. Following
a similar line of arguments, we can get the following relation for this case also:

BIC ⊂ IBNE. (12)

In view of relation (12), we can say that the revelation principle for Bayesian–Nash equilibrium
basically says that IBNE ⊂ BIC, which further implies that IBNE = BIC.

Figure 7. Revelation principle for
Bayesian–Nash equilibrium.
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Thus, the revelation principle for Bayesian–Nash equilibrium says that an SCF f (·) is
implementable by an indirect mechanism M = (S1, . . . , Sn, g(·)) in Bayesian–Nash equi-
librium if it is truthfully implementable by the mechanism D = ((�i)i∈N, f (·)) in Bayesian–
Nash equilibrium.

In view of the above revelation principle, from now onwards, we will be just focusing on
direct revelation mechanisms without loss of any generality.

7. The Gibbard–Satterthwaite impossibility theorem

Ideally, a social planner would prefer to implement a social choice function f (·) which is ex-
post efficient, non-dictatorial, and dominant strategy incentive compatible. Now the question
is: Does there exist any such social choice function? The answer is no.

The Gibbard–Satterthwaite impossibility theorem shows that for a very general class of
problems there is no hope of implementing any satisfactory social choice function in dominant
strategies. This is an important landmark result which has shaped the course of research
on incentives and implementation to a great extent and it was discovered independently by
Gibbard (1973) and Satterthwaite (1975). To understand the precise statement of this theorem,
we need to build up a few concepts.

7.1 Utility function and preference relation

We have already seen that a given preference of an agent i, over the outcome set X, can also
be described by means of a utility function ui : X → R which assigns a numerical value to
each element in X. A utility function ui always induces a unique preference relation � i on
X which can be described in following manner

x � i y ⇔ ui(x) ≥ ui(y).

The following proposition establishes the relationship between these two ways of expressing
the preferences of an agent i over the set X - preference relation and utility function. The above
preference relation is often called a rational preference relation and it is formally defined as
follows.

DEFINITION 7.1 (Rational preference relation).

We say that a relation � i on the set X is called a rational preference relation if it possesses
the following three properties:

(i) Reflexivity: ∀ x ∈ X, we have x � i x.
(ii) Completeness: ∀ x, y ∈ X, we have that x � i y or y � i x (or both).

(iii) Transitivity: ∀ x, y, z ∈ X, if x � i y and y � i z, then x � i z.

PROPOSITION 7.1.

(i) If a preference relation � i over X can be induced by some utility function ui(·), then it
will be a rational preference relation.

(ii) For every preference relation � i∈ R , there need not exist a utility function which will
induce it. However, it is true when the set X is finite.
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(iii) For a given preference relation � i∈ R, if there exists a utility function which induces it,
then this need not be the unique one. Indeed, if the utility function ui(·) induces � i , then
v(x) = f (u(x)) is another utility function which will also induce � i , where f : R → R

is a strictly increasing function.

DEFINITION 7.2 (Strict-total preference relation).

We say that a rational preference relation � i is strict-total if it possesses the antisymmetry
property, in addition to the reflexivity, completeness, and transitivity. By antisymmetry, we
mean that, for any x, y ∈ X such that x 	= y, we have either x � i y or y � i x , but not both.

The set of all the rational preference relations and strict-total preference relations over the set
X are denoted by R and S , respectively. It is easy to see that S ⊂ R. The strict-total order
relation is also known as linear order relation because it satisfies the properties of the usual
‘greater than or equal to’ relationship on the real line.

7.2 Set of ordinal preference relations

In the mechanism design problem, for agent i, the preference over the set X is described in
the form of a utility function ui : X × �i → R. That is, for every possible type θi ∈ �i

of agent i, we can define a utility function ui(·, θi) over the set X. Let this utility function
induce a rational preference relation � i (θi) over X. The set Ri = {� i : � i=� i (θi) for
some θi ∈ �i} is known as the set of ordinal preference relations for agent i. It is easy to see
that Ri ⊂ R ∀ i = 1, . . . , n.

Now we can state the Gibbard–Satterthwaite impossibility theorem.

Theorem 7.1 (Gibbard–Satterthwaite Impossibility Theorem). Suppose that

(i) The outcome set X is finite and contains at least three elements
(ii) Ri = S ∀ i = 1, . . . , n

(iii) f (�) = X, that is, the image of SCF f (·) is the set X.

Then the social choice function f (·) is truthfully implementable in dominant strategies if it
is dictatorial.

Here is a brief outline of the proof of the theorem. For a detailed proof, refer to Proposition
23·C·3 of Mas-Colell et al (1995). To prove the necessity, we assume that the social choice
function f (·) is dictatorial and it is shown that f (·) is DSIC. This is fairly straightforward.
The proof of the sufficiency part of the theorem proceeds in three stages. We start with the
assumption that f (·) is DSIC and in stage 1, we prove that f (·) satisfies a monotonicity
property. Next, in stage 2, it is shown that f (·) is ex-post efficient. Finally, in stage 3, it is
shown that monotonicity and ex-post efficiency together imply that f (·) is dictatorial.

The Gibbard–Satterthwaite impossibility theorem gives a disappointing piece of news and
the question facing a social planner is what kind of SCF to look for in the face of this
impossibility result. There are two possible routes that one may take:

(i) The first route is to focus on some restricted environment where at least one of the three
requirements of the Gibbard–Satterthwaite impossibility theorem is not fulfilled. Quasi-
linear environment is one such environment where the second condition of this theorem
is not satisfied and in fact all the social choice functions in such environments are non-
dictatorial.
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(ii) The other route is to weaken the implementation concept and look for an SCF which is
ex-post efficient, non-dictatorial, and Bayesian incentive compatible.

The Gibbard–Satterthwaite impossibility theorem happens to be a special case of the cele-
brated Arrow’s impossibility theorem in welfare economics. We now provide a discussion of
this famous result in the next section before returning to discuss the above two routes for cir-
cumventing the difficulties arising out of the Gibbard–Satterthwaite theorem and the Arrow’s
impossibility theorem.

8. Arrow’s impossibility theorem

Suppose a person has to select one of three fruits, A, B, or C to purchase. The agent prefers
to have A over B, prefers B to C. The agent can now decide which fruit he would purchase,
consistent with his preferences. Suppose there are two friends who wish to purchase one fruit
out of these three. They may have different preferences, so they have to take a collective
decision which is suitable for both of them. The decision is not straightforward anymore.
A social welfare function is useful for describing the collective (or social) preference in such
scenarios.

A social planner seeks to implement a desirable system wide solution. To have a socially
desirable outcome, the social planner has to aggregate the preferences of every indi-
vidual, over the outcome set X. A function, which the social planner uses to aggregate
individual preference into a social preference is referred to as social welfare function,
formally.

DEFINITION 8.1 (Social welfare function).

A social welfare function is a function W : Rn → R that aggregates the preference profile
(�1, �2, . . . , �n) ∈ Rn of individual preferences into a public or social preference
� ∈; R.

Note the difference between a social welfare function and social choice function. Social
welfare function aggregates the individual preferences into public preference where as SCF
aggregates the public preferences into public choice, that is, selects outcome from X. The
Arrow’s theorem is a celebrated result in welfare economics which essentially says that a
social welfare function that is required to satisfy two desirable properties, namely unanimity
and independence of irrelevant alternatives (IIA) will necessarily belong to a restricted class
of functions called dictatorial social welfare functions. We first define unanimity (also called
Paretian), IIA, and dictatorship.

DEFINITION 8.2 (Unanimity).

A social welfare function W is said to satisfy unanimity (or Paretian) if for every �∈ S,
W(�, . . . , �) = �.

Unanimity means that if all agents have identical preferences then the social preference is the
same as the preference of each agent. As a simple example, in the case of the fruits situation
described above, if both the agents prefer A to B and B to C, then the social preference also
will prefer A to B and B to C.
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DEFINITION 8.3 (Independence of irrelevant alternatives).

A social welfare function W : A → R defined on the domain A ⊆ Rn, is said to sat-
isfy independence of irrelevant alternatives conditions if the social preference between
any two alternatives depends only on the profile of individual preferences over the same
alternatives. Formally, for any pair, x, y ∈ X and for any pair of preference profiles
(�1, �2, . . . , �n), (�′

1, �′
2, . . . , �′

n), if we denote �= W(�1, �2, . . . , �n) and �′=
W(�′

1, �′
2, . . . , �′

n), then

x �i y ⇔ x �′
i y ∀ i ∈ N implies x � y ⇔ x �′ y.

This condition is quite a natural one. Independence of irrelevant alternatives means that the
social preference of two alternatives x, y should depend upon individual preferences over
x, y and not on other outcomes. This condition captures a certain consistency property, lack
of which may lead to strategic manipulation. The characteristic of independence of irrelevant
alternatives is also called pairwise independence.

DEFINITION 8.4 (Dictatorship).

A social welfare function W is said to be dictatorial or is called a dictatorship if there exists
a dictator. A player i ∈ N is called a dictator if

W(�1, . . . , �n) = �i ∀ �1, . . . , �n∈ R.

Theorem 8.1 (Arrow’s impossibility theorem). Suppose |X| ≥ 3 and that the domain of
admissible individual profiles denoted by A is either A = RnorS n. Then every social
welfare function W : A → R that is unanimous and satisfies independence of irrelevant
alternatives, is dictatorial.

We make a quick observation that the above theorem is a negative result for a social planner.
The implication of the theorem is quite devastating: there is no social welfare function in
unrestricted domain which simultaneously satisfies independence of irrelevant alternatives,
unanimity, and non-dictatorial properties.

There are many proofs of this theorem. Interested readers can refer to the Section 21·C/22·D
of the book by Mas-Colell et al (1995). An elegant proof is available in Nisan (2007). The
proof proceeds in two parts. Let W be a social welfare function that satisfies unanimity and
independence of irrelevant alternatives. Part 1 shows pairwise neutrality, by which we mean
that the same social ranking rule is taken within any pair of alternatives. Part 2 invokes pairwise
neutrality to show that there exists an agent id who is a dictator.

8.1 Example: The condorcet paradox

Suppose there are three agents who wish to buy one fruit out of three fruits, A, B, C,
so, X = {A, B, C}. Suppose that to decide social preference between any two alterna-
tives, we implement majority voting between those two alternatives. That is, if 2 out of
3 prefer to go for fruit A over fruit B, we will put A to be preferable to B as the social
decision. It can be verified that the majority voting function satisfies unanimity and IIA.
Assume that the preferences of the three agents are: (1) B �1 A �1 C; (2) A �2 C �2 B;
(3) C �3 B �3 A. Let �= W(�1, �2, �3), where W is the majority voting function. Now
note that B � A as B is preferred over A by 2 out of 3 agents. Similarly, A � C, C � B.
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But then we cannot decide any social ordering among these 3 alternatives at this preference
profile since that would imply B � A � C � B, which is contradiction.2

We could not implement this social welfare function because majority voting is not a
dictatorship. This exemplifies the Arrow’s theorem which says that a social welfare function
that satisfies unanimity and IIA is necessarily dictatorial.

Now, consider another social welfare function Z which is such that, if for any pair (a, b) ∈
X such that a 
1 b, Z prefers a over b. Clearly, this social welfare function satisfies unanimity
and IIA and this can be implemented. Here, agent 1 is a dictator and hence the function Z is
a dictatorial social welfare function.

8.2 Arrow’s theorem and the Gibbard–Satterthwaite theorem

The Gibbard–Satterthwaite theorem asserts the dictatorship of social choice functions
while Arrow’s theorem asserts the dictatorship of social welfare functions. The Gibbard–
Satterthwaite theorem is a special case of the Arrow’s theorem, as shown by the following
argument. Start with a non-dictatorial SCF such that f (�) = X, that is, the image of SCF
f (·) is the set X and |X| is at least 3. One can construct a social welfare function from this
social choice function and show that it is non-dictatorial, which immediately contradicts
Arrow’s theorem. A detailed proof of the Gibbard–Satterthwaite theorem as a special case of
Arrow’s theorem can be found in Nisan (2007).

9. Quasi-linear environments

This is a special and much studied class of environments where the Gibbard–Satterthwaite
theorem does not hold good. In this environment, an alternative x ∈ X is a vector of the form
x = (k, t1, . . . , tn), where k is an element of a set K , to be called as ‘project choice’. The
set K is a compact subset of a topological space. ti ∈ R is a monetary transfer to agent i. If
ti > 0 then agent i will receive the money and if ti < 0 then agent i will pay the money. We
assume that we are dealing with a closed system in which n agents have no outside source
of funding, i.e.

∑n
i=1 ti ≤ 0. This condition is known as weak budget balance condition. The

set of alternatives X is therefore

X =
{

(k, t1, . . . , tn): k ∈ K, ti ∈ R ∀ i = 1, . . . , n,
∑

i

ti ≤ 0

}
.

A social choice function in this quasi-linear environment takes the form f (θ) =
(k(θ), t1(θ), . . . , tn(θ)) where ∀ θ ∈ �, k(θ) ∈ K and

∑
i ti(θ) ≤ 0.3 For a direct revela-

tion mechanism D = ((�i)i∈N, f (·)) in this environment, the agent i’s utility function takes
the quasi-linear form

ui(x, θi) = ui(k, t1, . . . , tn, θi) = vi(k, θi) + mi + ti ,

2The reason for the above cyclic dependency is that the preferences do not satisfy the single
peakedness condition; for more details on the single peakedness condition, the reader may consult
Mas-Colell et al (1995).
3Note that here we are using symbol k for both as an element of the set K and as a function going
from � to K . It should be clear from the context as to which of these two we are referring to.
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where mi is agent i’s initial endowment of the money and the function vi(·) is known as agent
i’s valuation function. Recall condition 5 in the definition of mechanism design problem
given in § 3. This condition says that the utility function ui(·) is common knowledge. In the
context of a quasi-linear environment, this implies that for any given type θi of any agent i,
the social planner and every other agent j have a way to figure out the function vi(·, θi). In
many cases, the set �i of the direct revelation mechanism D = ((�i)i∈N, f (·)) is actually the
set of all feasible valuation functions vi : K → R of agent i. That is, each possible function
represents each possible type of agent i. Therefore, in such settings reporting a type is the
same as reporting a valuation function.

As far as examples of quasi-linear environment are concerned, all the previously discussed
examples, such as fair bilateral trade (Example 3.2), first price auction (Example 3.3), second-
price auction (Example 3.4), and generalized Vickrey auction (Example 3.5) are all natural
examples of the mechanism in quasi-linear environment.

In the quasi-linear environment, we can define two important properties of a social choice
function.

DEFINITION 9.1 (Allocative efficiency (AE).

We say that SCF f (·) = (k(·), t1(·), . . . , tn(·)) is allocatively efficient if for each θ ∈ �,
k(θ) satisfies the following condition4

k(θ) ∈ arg max
k ∈ K

n∑
i=1

vi(k, θi). (13)

Note that the above definition will make sense only when we ensure that for any given θ ,
the function

∑n
i=1 vi(·, θi): K → R attains a maximum over the set K . The simplest way to

do this is to put a restriction that the function vi(·, θi): K → R is an upper semi-continuous
function for each θi ∈ �i and for each i = 1, . . . , n.

DEFINITION 9.2 (Budget balance (BB)).

We say that SCF f (·) = (k(·), t1(·), . . . , tn(·)) is budget balanced if for each θ ∈ �,
t1(θ), . . . , tn(θ) satisfies the following condition5

n∑
i=1

ti(θ) = 0. (14)

The following lemma establishes an important relationship of these two properties of an SCF
with the ex-post efficiency of the SCF.

Lemma 9.1. A social choice function f (·) = (k(·), t1(·), . . . , tn(·)) is ex-post efficient in
quasi-linear environment if and only if it is allocatively efficient and budget balanced.

4We will keep using the symbol k∗(·) for a function k(·) that satisfies the Equation (13).
5Many authors prefer to call this property as strong budget balance and they refer the property
of having

∑n
i=1 ti (θ) ≤ 0 as weak budget balance. In this thesis, we will use the term budget

balance to refer to strong budget balance.
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Proof. Let us assume that f (·) = (k(·), t1(·), . . . , tn(·)) is allocatively efficient and budget
balanced. This implies that for any θ ∈ �, we have

n∑
i=1

ui(f (θ), θi) =
n∑

i=1

vi(k(θ), θi) +
n∑

i=1

ti(θ)

=
n∑

i=1

vi(k(θ), θi) + 0

≥
n∑

i=1

vi(k, θi) +
n∑

i=1

ti; ∀ x = (k, t1, . . . , tn)

=
n∑

i=1

ui(x, θi); ∀ (k, t1, . . . , tn) ∈ X.

That is, if the SCF is allocatively efficient and budget balanced then for any type profile θ of
the agent the outcome chosen by the social choice function will be such that it maximizes the
total utility derived by all the agents. This will automatically imply that the SCF is ex-post
efficient.

To prove the other part, we will first show that if f (·) is not allocatively efficient then it
cannot be ex-post efficient and next we will show that if f (·) is not budget balanced then it
cannot be ex-post efficient. These two facts together will imply that if f (·) is ex-post efficient
then it will have to be allocatively efficient and budget balanced, thus completing the proof
of the lemma.

To start with, let us assume that f (·) is not allocatively efficient. This means that ∃ θ ∈ �,
and k ∈ K such that

n∑
i=1

vi(k, θi) >

n∑
i=1

vi(k(θ), θi).

This implies that there exists at least one agent j for whom vj (k, θi) > vj (k(θ), θi). Now
consider the following alternative x

x = (
k, (ti = ti(θ) + vi(k(θ), θi) − vi(k, θi))i 	=j , tj = tj (θ)

)
.

It is easy to verify that ui(x, θi) = ui(f (θ), θi) ∀ i 	= j and uj (x, θi) > uj (f (θ), θi)

implying that f (·) is not ex-post efficient.
Next, we assume that f (·) is not budget balanced. This means that there exists at least one

agent j for whom tj (θ) < 0. Let us consider the following alternative x

x = (
k, (ti = ti(θ))i 	=j , tj = 0

)
.

It is easy to verify that for the above alternative x, we have ui(x, θi) = ui(f (θ), θi) ∀ i 	= j

and uj (x, θi) > uj (f (θ), θi) implying that f (·) is not ex-post efficient. Q.E.D.

The next lemma summarizes another fact about the social choice function in quasi-linear
environment.

Lemma 9.2. All social choice functions in quasi-linear environment are non-dictatorial.
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Proof. If possible assume that SCF f (·) is dictatorial. This means that for each θ ∈ �, we
have

ud(f (θ), θd) ≥ ud(x, θd) ∀ x ∈ X,

where d is a dictatorial agent. However, because of quasi-linear environment, we
have ud(f (θ), θd) = vd(k(θ), θd) + td(θ). Now consider the following alternative
x ∈ X:

x =
{

(k(θ), (ti = ti(θ))i 	=d, td = td(θ) − ∑n
i=1 ti(θ)) :

∑n
i=1 ti(θ) < 0

(k(θ), (ti = ti(θ))i 	=d,j , td = td(θ) + ε, tj = tj (θ) − ε) :
∑n

i=1 ti(θ) = 0,

where ε > 0 is any arbitrary number and j is any agent other than d . It is easy to verify that
for the above constructed x, we have ud(x, θd) > ud(f (θ), θd) contradicting the assumption
that f (·) is dictatorial. Q.E.D.

In view of Lemma 9.2, the social planner need not have to worry about the non-dictatorial
property of the social choice function in quasi-linear environments and he can simply look for
whether there exists any SCF which is both ex-post efficient and dominant strategy incentive
compatible. Further in the light of Lemma 9.1, we can say that the social planner can look
for an SCF which is allocatively efficient, budget balanced, and dominant strategy incentive
compatible. Once again, the question arises whether there exists any such social choice func-
tion which satisfies all these three properties — AE, BB, and DSIC. We explore the answer
to this question in what follows.

10. Groves mechanisms

The following theorem, due to Groves (1973) confirms that in quasi-linear environment, there
exist social choice functions which are both allocatively efficient and truthfully implementable
in dominant strategies (dominant strategy incentive compatible).

Theorem 10.1 (Groves’ theorem). Let the social choice function f (·) = (k∗(·), t1(·), . . . ,

tn(·)) be allocatively efficient. This function can be truthfully implemented in dominant strate-
gies if it satisfies the following payment structure (popularly known as Groves payment (incen-
tive) scheme):

ti(θ) =
[∑

j 	=i

vj (k
∗(θ), θj )

]
+ hi(θ−i ) ∀ i = 1, . . . , n (15)

where hi(·) is any arbitrary function of θ−i up to satisfying the feasibility condition
∑

i ti(θ) ≤
0 ∀ θ ∈ � .

For proof of the Groves theorem, refer to Proposition 23·C·4 of Mas-Colell et al (1995).
Following are a few interesting implications of the above theorem.

(i) Given the announcements θ−i of agents j 	= i, agent i’s transfer depends on his announced
type only through his announcement’s effect on the project choice k∗(θ).
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(ii) The change in the monetary transfer of agent i when his type changes from θi to θ̂i is
equal to the effect that the corresponding change in project choice has on total value of
the rest of the agents. That is,

ti(θi, θ−i ) − ti(θ̂i , θ−i ) =
∑
j 	=i

[
vj (k

∗(θi, θ−i ), θj ) − vj (k
∗(θ̂i , θ−i ), θj )

]
.

Another way of describing this is to say that the change in monetary transfer to agent i

reflects exactly the externality he is imposing on the other agents.

After the famous result of Groves, a direct revelation mechanism in which the implemented
SCF is allocatively efficient and satisfies the Groves payment scheme is called as Groves
Mechanism.

DEFINITION 10.1 (Groves mechanisms).

A direct revelation mechanism, D = ((�i)i∈N, f (·)) in which f (·) = (k(·), t1(·), . . . , tn(·))
satisfies (13) and (15) is known as Groves mechanism.6

In practice, Groves mechanisms are popularly known as Vickrey–Clarke–Groves (VCG)
mechanisms because Clarke mechanism is a special case of Groves mechanism and Vickrey
mechanism is a special case of Clarke mechanism. We will discuss this relationship later in
this paper.

Groves theorem provides a sufficiency condition under which an allocatively efficient (AE)
SCF will be DSIC. The following theorem due to Green and Laffont (1979) provides a set of
conditions under which the condition of Groves theorem also becomes a necessary condition
for an AE SCF to be DSIC. In this theorem, we let F denote the set of all possible functions
f : K → R.

Theorem 10.2 (First characterization theorem of Green–Laffont). Suppose that for each
agent i = 1, . . . , n {vi(·, θi): θi ∈ �i} = F ; that is, every possible valuation function from
K to R arises for some θi ∈ �i . Then any allocatively efficient (AE) social choice function
f (·) will be dominant strategy incentive compatible (DSIC) if and only if it satisfies the Groves
payment scheme given by (15).

Note that in the above theorem, every possible valuation function from K to R arises for
some θi ∈ �i . Therefore, in many cases, depending upon the structure of the compact set
K , it is quite possible that for some type profile θ = (θ1, . . . , θn), the maximum of the
function

∑n
i=1 vi(·, θi) over the set K may not exist. In such cases, the set of AE social

choice functions would be empty and the theorem will make no sense. One possible way to
get away with this difficulty is to assume that the set K is a finite set. Another solution is to
restrict the allowable valuation functions to the class of continuous functions. The following
characterization theorem of Green and Laffont (1979) fixes this problem by replacing the F
with Fc where Fc denotes the set of all possible continuous functions f : K → R.

Theorem 10.3 (Second characterization theorem of Green–Laffont). Suppose that for
each agent i = 1, . . . , n {vi(·, θi): θi ∈ �i} = Fc; that is, every possible continuous valua-
tion function from K to R arises for some θi ∈ �i . Then any allocatively efficient (AE) social

6We will sometimes abuse the terminology and simply refer to a SCF f (·) satisfying (13) and
(15) as Groves mechanism.



114 Dinesh Garg, Y Narahari and Sujit Gujar

choice function f (·) will be dominant strategy incentive compatible (DSIC) if and only if it
satisfies the Groves payment scheme given by (15).

10.1 Groves mechanisms and budget balance

Note that a Groves mechanism always satisfies the properties of AE and DSIC. Therefore, if
a Groves mechanism is budget balanced then it will solve the problem of the social planner
because it will then be ex-post efficient and dominant strategy incentive compatible. By
looking at the definition of the Groves mechanism, one can conclude that it is the functions
hi(·) that decide whether or not the Groves mechanism is budget balanced. The natural
question that arises now is whether there exists a way of defining functions hi(·) such that the
Groves mechanism is budget balanced. In what follows, we present one possibility and one
impossibility result in this regard.

10.2 Possibility and impossibility results for quasi-linear environments

Green and Laffont (1979) showed that in quasi-linear environment, if the set of possible
types for each agent is sufficiently rich then ex-post efficiency and DSIC cannot be achieved
together. The precise statement is given in the form of following theorem.

Theorem 10.4 (Green–Laffont impossibility theorem). Suppose that for each agent i =
1, . . . , n, {vi(·, θi): θi ∈ �i} = F ; that is, every possible valuation function from K to R

arises for some θi ∈ �i . Then there is no social choice function which is ex-post efficient and
DSIC.

Thus, the above theorem says that if the set of possible types for each agent is sufficiently
rich then there is no hope of finding a way to define the functions hi(·) in Groves payment
scheme so that we have

∑n
i=1 ti(θ) = 0. However, one special case in which a more positive

result does obtain is summarized in the form of following possibility result.

Theorem 10.5 (Possibility result for budget balance of Groves mechanisms). If there is
at least one agent whose preferences are known (i.e. his type set is a singleton set) then it is
possible to choose the functions hi(·) so that

∑n
i=1 ti(θ) = 0.

Proof. Let agent i be such that his preferences are known, that is �i = {θi}. In view of this
condition, it is easy to see that for an allocatively efficient social choice function f (·) =
(k∗(·), t1(·), . . . , tn(·)), the allocation k∗(·) depends only on the types of the agents other than
i. That is, the allocation k∗(·) is a mapping from �−i to K . Let us define the functions hj (·)
in the following manner.

hj (θ−j ) =
{

hj (θ−j ) : j 	= i

− ∑
r 	=i hr(θ−r ) − (n − 1)

∑n
r=1 vr(k

∗(θ), θr) : j = i.

It is easy to see that under the above definition of the functions hi(·), we will have ti(θ) =
− ∑

j 	=i tj (θ).

10.3 Clarke (pivotal) mechanisms: special case of Groves mechanisms

A special case of Groves mechanism was discovered independently by Clarke (1971) and is
known as Clarke, or pivotal mechanism. It is a special case of Groves mechanism in the sense
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of using a particular form for the function hi(·). In the Clarke mechanism, the function hi(·)
is given by the following relation:

hi(θ−i ) = −
∑
j 	=i

vj (k
∗
−i (θ−i ), θj ) ∀ θ−i ∈ �−i , ∀ i = 1, . . . , n, (16)

where k∗
−i (θ−i ) ∈ K−i is the choice of a project which is allocatively efficient if there were

only the n − 1 agents j 	= i. Formally, k∗
−i (θ−i ) must satisfy the following condition.∑

j 	=i

vj (k
∗
−i (θ−i ), θj ) ≥

∑
j 	=i

vj (k, θj ) ∀ k ∈ K−i , (17)

where the set K−i is the set of project choices available when agent i is absent. Substituting
the value of hi(·) from Equation (16) in Equation (15), we get the following expression for
agent i’s transfer in the Clarke mechanism

ti(θ) =
[∑

j 	=i

vj (k
∗(θ), θj )

]
−

[∑
j 	=i

vj (k
∗
−i (θ−i ), θj )

]
. (18)

10.4 Clarke mechanisms and weak budget balance

Recall from the definition of Groves mechanisms that, for weak budget balance, we
should choose the functions hi(θ−i ) in such a way that the weak budget balance condition∑n

i=1 ti(θ) ≤ 0 is satisfied. In this sense, the Clarke mechanism is a useful special-case
because it achieves weak budget balance under fairly general settings. In order to understand
these general sufficiency conditions, we define following quantities.

B∗(θ) =
{

k ∈ K|k ∈ arg max
k ∈ K

n∑
j=1

vj (k, θj )

}

B∗(θ−i ) =
{

k ∈ K−i |k ∈ arg max
k ∈ K−i

∑
j 	=i

vj (k, θj )

}
,

where B∗(θ) is the set of project choices that are allocatively efficient when all the agents are
present there in the system. Similarly, B∗(θ−i ) is the set of project choices that are allocatively
efficient if there were n − 1 agents j 	= i. It is obvious that k∗(θ) ∈ B∗(θ) and k∗

−i (θ−i ) ∈
B∗(θ−i ).

Using the above quantities, we define the following properties of a direct revelation mech-
anism in quasi-linear environment.

DEFINITION 10.2 (No single agent effect).

We say that mechanism M has no single agent effect if for each agent i, each θ ∈ �, and
each k∗(θ) ∈ B∗(θ), we have a k ∈ K−i such that∑

j 	=i

vj (k, θj ) ≥
∑
j 	=i

vj (k
∗(θ), θj ).

In view of the above properties, we have the following proposition that gives sufficiency
condition for Clarke mechanism to be weak budget balanced.
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PROPOSITION 10.1.

If the Clarke mechanism has no single agent effect, then transfer of each agent would be
non-positive, that is, ti(θi) ≤ 0 ∀ θ ∈ �; ∀ i = 1, . . . , n. In such a situation, the Clarke
mechanism would satisfy the weak budget balance property.

Proof. Note that by virtue of no single agent effect, for each agent i, each θ ∈ �, and each
k∗(θ) ∈ B∗(θ), ∃k ∈ K−i such that∑

j 	=i

vj (k, θj ) ≥
∑
j 	=i

vj (k
∗(θ), θj ).

However, by definition of k∗
−i (θ−i ), given by Equation (17), we have∑

j 	=i

vj (k
∗
−i (θ−i ), θj ) ≥

∑
j 	=i

vj (k, θj ) ∀ k ∈ K−i .

Combining the above two facts, we get∑
j 	=i

vj (k
∗
−i (θ−i ), θj ) ≥

∑
j 	=i

vj (k
∗(θ), θj )

⇒ 0 ≥ ti(θ)

⇒ 0 ≥
n∑

i=1

ti(θ).

Q.E.D.

Now we can make following assertions with respect to these definitions. In what follows is
an interesting corollary of the above proposition.

COROLLARY 10.1.

(i) ti(θ) = 0 if k∗(θ) ∈ B∗(θ−i ). That is, agent i’s monetary transfer is zero if his announce-
ment does not change the project decision relative to what would be allocatively efficient
for agents j 	= i in isolation.

(ii) ti(θ) < 0 if k∗(θ) 	∈ B∗(θ−i ). That is, agent i’s monetary transfer is negative if his
announcement changes the project decision relative to what would be allocatively efficient
for agents j 	= i in isolation. In such situation, the agent i is known to be ‘pivotal’ to the
efficient project choice and he pays a tax equal to his effect on the other agents.

The following picture summarizes the conclusions of this section by showing how the space
of social choice functions looks like in quasi-linear environment. In what follows we discuss
a few examples of direct revelation mechanisms in quasi-linear environment and study the
various properties of the underlying SCF.

10.5 Fair bilateral trade is BB + AE but not DSIC

Consider the fair bilateral trade Example 3.2 in which the good is always allocated to the
agent who values it the most. Therefore, the SCF is allocatively efficient. The SCF here is
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Figure 8. Space of social choice functions in quasi-linear environment.

also budget balanced, which is quite clear from the definition of SCF itself. However, it is
easy to see that this SCF is not dominant strategy incentive compatible. For example, let us
assume that θ1 = 50 and θ2 = 100. Then, it is easy to see that for any 50 < θ̂1 < 100

u1(f (θ̂1, θ2), θ1) > u1(f (θ1, θ2), θ1).

This violates the required condition of the dominant strategy incentive compatibility.

10.6 First-price sealed bid auction is AE but neither DSIC nor BB

Consider the Example 3.3 of first-price auction. Let us assume that Si = �i = [
θi, θi

] ∀ i ∈
N . Recall that N = {0, 1, . . . , n} and none of the type sets �0, �1, . . . , �n is a single-
ton. In such a case, the first-price auction becomes a direct revelation mechanism D =
((�i)i∈N, f (·)), where f (·) is an SCF which is same as outcome rule of the first-price auc-
tion. Note that under the SCF f (·), the good is always allocated to the bidder who values it the
most. Therefore, the SCF f (·) is allocatively efficient. It is an easy fact to note that the SCF
f (·) is not budget balanced, because the auctioneer is not considered as one of the agents.
Moreover, the SCF used here is not DSIC because truth telling is not a dominant strategy
for the bidders. In order to show this, let us assume that there are two bidders and for some
instance we have θ1 = 50 and θ2 = 100. Then, it is easy to see that for any 50 < θ̂2 < 100

u2(f (θ1, θ̂2), θ2) > u2(f (θ1, θ2), θ2).

This violates the required condition of the dominant strategy incentive compatibility.

Note: Theorem 10.5 asserts that BB can be achieved if there is at least one agent whose type
set is a singleton. We emphasize therefore that first price auction is not BB under condition
that none of the sets �0, �1, . . . , �n is a singleton.
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10.7 Second-price sealed bid (Vickrey) auction is AE + DSIC but not BB

Consider Example 3.4 of second-price (Vickrey) auction. Once again we assume that Si =
�i = [

θi, θi

] ∀ i ∈ N . In such a case, the second-price auction becomes a direct revelation
mechanism D = ((�i)i∈N, f (·)), where f (·) is an SCF which is same as outcome rule of the
second-price auction. We have already shown that Vickrey auction is a special case of GVA
in which the auctioneer is selling just single unit of a single item. Given that the Vickrey
auction a special case of the GVA, we can assert that the SCF f (·) used by the auctioneer in
Vickrey auction is AE + DSIC but not BB because the SCF used in GVA is also AE + DSIC
and not BB, which we are going to show next.

10.8 Generalized Vickrey auction is AE + DSIC but not BB

Consider Example 3.5 of generalized Vickrey auction. Let us assume that Si = �i =
[Vi, Vi](2

m−1) ∀ i ∈ N . In such a case, the GVA auction becomes a direct revelation mecha-
nism D = ((�i)i∈N, f (·)), where f (·) is an SCF which is same as outcome rule of the GVA
auction. It is easy to see that the under this SCF f (·), the bundles are allocated in such a way
that total value of all the agents gets maximized. This implies that the SCF in this example is
allocatively efficient. Also, note that the payment structure is the same as the Clarke mecha-
nism. Thus, the direct revelation mechanism used by the auctioneer in GVA is a Clarke mecha-
nism. Therefore, the SCF is automatically DSIC. However, note that SCF certainly not budget
balanced because we are not including the auctioneer into the system. If auctioneer is also part
of the system then by virtue of theorem 10.5, we can claim that the SCF would be BB also.

Table 1 summarizes the properties of the SCFs discussed in above examples. Figure 9
summarizes the relationship among various SCFs discussed in above examples.

11. Bayesian implementation

Recall that we mentioned two possible routes to get around the Gibbard–Satterthwaite
impossibility theorem. The first was to focus on restricted environments like quasi-linear
environment, and the second one was to weaken the implementation concept and look for an
SCF which is ex-post efficient, non-dictatorial, and Bayesian incentive compatible. In this
section, our objective is to explore the second route.

Throughout this section, we will once again be working within the quasi-linear envi-
ronment. As we saw earlier, the quasi-linear environments have a nice property that every
social choice function in these environments is non-dictatorial. Therefore, while working
within quasi-linear environment, we do not have to worry about non-dictatorial part of
the social choice function. We can just investigate whether there exists any SCF in quasi-
linear environment, which is both ex-post efficient and BIC, or equivalently which has three

Table 1. Properties of social choice functions in
quasi-linear environment.

SCF AE BB DSIC

Fair bilateral trade � � ×
First-price auction � × ×
Vickrey auction � × �
GVA � × �
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Figure 9. Space of BIC and DSIC social choice functions in quasi-linear environment.

properties — AE, BB, and BIC. Recall that in the previous section, we have already addressed
the question whether there exists any SCF in quasi-linear environment which is AE, BB,
and DSIC and we found that hardly any function satisfies all these three properties. On the
contrary, in this section, we will show that a wide range of SCF in quasi-linear environment
satisfy three properties — AE, BB, and BIC.

11.1 (AE + BB + BIC) is possible: expected externality mechanisms

The following theorem, due to d’Aspremont and Gérard-Varet (1979) and Arrow (1979)
confirms that in quasi-linear environment, there exist social choice functions which are
both ex-post efficient (allocatively efficient + budget balance) and truthfully implementable
in Bayesian–Nash equilibrium (Bayesian incentive compatible). We refer this theorem by
dAGVA theorem.

Theorem 11.1 (The dAGVA theorem). Let the social choice function f (·) = (k∗(·),
t1(·), . . . , tn(·)) be allocatively efficient and the agents’ types be statistically independent
of each other (i.e. the density φ(·) has the form φ1(·) × · · · × φn(·)). This function can be
truthfully implemented in Bayesian–Nash equilibrium if it satisfies the following payment
structure, popularly known as dAGVA payment (incentive) scheme.

ti(θ) = Eθ̃−i

[∑
j 	=i

vj (k
∗(θi, θ̃−i ), θ̃j )

]
+ hi(θ−i ) ∀ i = 1, . . . , n; ∀θ ∈ �,

(19)

where hi(·) is any arbitrary function of θ−i . Moreover, it is always possible to choose the
functions hi(·) such that

∑n
i=1 ti(θ) = 0.

Proof. Let the social choice function f (·) = (k∗(·), t1(·), . . . , tn(·)) be allocatively efficient,
i.e. it satisfies the condition (13), and also satisfies the dAGVA payment scheme (19). Consider

Eθ−i

[
ui(f (θi, θ−i ), θi)|θi

] = Eθ−i

[
vi(k

∗(θi, θ−i ), θi) + ti(θi, θ−i )|θi

]
.
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Since θi and θ−i are statistically independent, the expectation can be taken without condi-
tioning on θi . This will give us

Eθ−i

[
ui(f (θi, θ−i ), θi)|θi

]

= Eθ−i

[
vi(k

∗(θi, θ−i ), θi) + hi(θ−i ) + Eθ̃−i

[∑
j 	=i

vj (k
∗(θi, θ̃−i ), θ̃j )

]]

= Eθ−i

[
n∑

j=1

vj (k
∗(θi, θ−i ), θj )

]
+ Eθ−i

[hi(θ−i )].

Since k∗(·) satisfies the condition (13),

n∑
j=1

vj (k
∗(θi, θ−i ), θj ) ≥

n∑
j=1

vj (k
∗(θ̂i , θ−i ), θj ) ∀ θ̂i ∈ �i.

Thus, we get

Eθ−i

[
n∑

j=1

vj (k
∗(θi, θ−i ), θj )

]
+ Eθ−i

[hi(θ−i )]

≥ Eθ−i

[
n∑

j=1

vj (k
∗(θ̂i , θ−i ), θj )

]
+ Eθ−i

[hi(θ−i )] ∀ θ̂i ∈ �i.

Again by making use of statistical independence we can rewrite the above inequality in the
following form

Eθ−i

[
ui(f (θi, θ−i ), θi)|θi

] ≥ Eθ−i

[
ui(f (θ̂i , θ−i ), θi)|θi

]
∀ θ̂i ∈ �i.

This shows that when agents j 	= i announce their types truthfully, agent i finds the truth
telling is his optimal strategy, thus proving that the SCF is BIC. We now show that the
functions hi(·) can be chosen to guarantee

∑n
i=1 ti(θ) = 0. Let us define,

ξi(θi) = Eθ̃−i

[∑
j 	=i

vj (k
∗(θi, θ̃−i ), θ̃j )

]
∀ i = 1, . . . , n

hi(θ−i ) = −
(

1

n − 1

) ∑
j 	=i

ξj (θj ) ∀ i = 1, . . . , n.

In view of the above definitions, we can say that

ti(θ) = ξi(θi) −
(

1

n − 1

) ∑
j 	=i

ξj (θj )

⇒
n∑

i=1

ti(θ) =
n∑

i=1

ξi(θi) −
(

1

n − 1

) n∑
i=1

∑
j 	=i

ξj (θj )
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⇒
n∑

i=1

ti(θ) =
n∑

i=1

ξi(θi) −
(

1

n − 1

) n∑
i=1

(n − 1)ξj (θj )

⇒
n∑

i=1

ti(θ) = 0.

Q.E.D.

The budget balanced payment structure of the agents in the above mechanism can be given
a nice graph theoretic interpretation. Imagine a directed graph G = (V , A) where V is the
set of n + 1 vertices, numbered 0, 1, . . . , n, and A is the set of [n + n(n − 1)] directed arcs.
The vertices starting from 1 through n correspond to the n agents involved into the system
and the vertex number 0 corresponds to the social planner. The set A consists of two types
of the directed arcs:

(i) Arcs 0 → i ∀i = 1, . . . , n

(ii) Arcs i → j ∀i, j ∈ {1, 2, . . . , n} ; i 	= j .

Each of the arcs 0 → i carries a flow of ti(θ) and each of the arcs i → j carries a flow of ξi (θi )

n−1 .
Thus the total outflow from a node i ∈ {1, 2, . . . , n} is ξi(θi) and total inflow to the node i from
nodes j ∈ {1, 2, . . . , n} is −hi(θ−i ) = (

1
n−1

) ∑
j 	=i ξj (θj ). Thus for any node i, ti(θ)+hi(θ−i )

is the net outflow which it is receiving from node 0 in order to respect the flow conservation
constraint. Thus, if ti(·) is positive then the agent i receives the money from the social planner
and if it is negative, then the agent pays the money to the social planner. However, by looking
at flow conservation equation for node 0, we can say that total payment received by the planner
from the agents and total payment made by the planner to the agents will add up to zero.
In graph theoretic interpretation, the flow from node i to node j can be justified as follows.
Each agent i first evaluates the expected total valuation that would be generated together by
all his rival agents in his absence, which turns out to be ξi(θi). Now, agent i divides it equally
among the rival agents and pays to every rival agent an amount equivalent to this. The idea
can be better understood with the help of figure 10 which depicts the three agents case.

After the results of d’Aspremont and Gérard-Varet (1979) and Arrow (1979), a direct rev-
elation mechanism in which SCF is allocatively efficient and satisfies the dAGVA payment
scheme is called as dAGVA mechanism/expected externality mechanism/expected Groves
mechanism.

DEFINITION 11.1 (dAGVA/expected externality/expected Groves Mechanisms).

A direct revelation mechanism, D = ((�i)i∈N, f (·)) in which f (·) = (k(·), t1(·), . . . , tn(·))
satisfies (13) and (19) is known as dAGVA/expected externality/expected Groves Mecha-
nism.7

In view of the definition of dAGVA mechanisms, the figure 8 can be enriched by including
the space of dAGVA mechanisms. This is shown in figure 11.

7We will sometimes abuse the terminology and simply refer to a SCF f (·) satisfying (13) and
(19) as dAGVA/expected externality/expected Groves Mechanisms.
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Figure 10. Payment structure in budget bal-
ance expected externality mechanism.

11.2 BIC in linear environment

The linear environment is a special, but often-studied, subclass of quasi-linear environ-
ment. This environment is a restricted version of the quasi-linear environment in following
sense.

Figure 11. Space of social choice functions in quasi-linear environment.
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(i) Each agent i’s type lies in an interval �i = [θ i, θi] ⊂ R with θ i < θi

(ii) Agents’ types are statistically independent, that is, the density φ(·) has the form
φ1(·) × · · · × φn(·)

(iii) φi(θi) > 0 ∀ θi ∈ [θ i, θi] ∀ i = 1, . . . , n

(iv) Each agent i’s utility function takes the following form

ui(x, θi) = θivi(k) + mi + ti .

The linear environment has very interesting properties in terms of characterizing the BIC
social choice functions. Before we present Myerson’s characterization theorem for BIC
social choice functions in linear environment, we would like to define following quantities
with regard to any social choice function f (·) = (k(·), t1(·), . . . , tn(·)) in this environment.

• Let ti(θ̂i) = Eθ−i
[ti(θ̂i , θ−i )] be agent i’s expected transfer given that he announces his

type to be θ̂i and that all agents j 	= i truthfully reveal their types.
• Let vi(θ̂i) = Eθ−i

[vi(θ̂i , θ−i )] be agent i’s expected ‘benefits’ given that he announces
his type to be θ̂i and that all agents j 	= i truthfully reveal their types.

• Let Ui(θ̂i |θi) = Eθ−i
[ui(f (θ̂i , θ−i ), θi)|θi] be agent i’s expected utility when his type is

θi , he announces his type to be θ̂i , and that all agents j 	= i truthfully reveal their types.
It is easy to verify from previous two definitions that

Ui(θ̂i |θi) = θivi(θ̂i) + ti(θ̂i).

• Let Ui(θi) = Ui(θi |θi) be the agent i’s expected utility conditional on his type being θi

when he and all other agents report their true types. It is easy to verify that

Ui(θi) = θivi(θi) + ti(θi).

In view of the paraphernalia developed, we now present Myerson’s (1981) theorem for
characterizing the BIC social choice functions in this environment.

Theorem 11.2 (Myerson’s characterization theorem). In linear environment, a social
choice function f (·) = (k(·), t1(·), . . . , tn(·)) is BIC if and only if, for all i = 1, . . . , n,

(i) vi(·) is non-decreasing
(ii) Ui(θi) = Ui(θi) + ∫ θi

θi
vi(s)ds ∀ θi .

For proof of the above theorem, refer to Proposition 23·D·2 of Mas-Colell et al (1995). The
above theorem shows that to identify all BIC social choice functions in linear environment,
we can proceed as follows: First, identify which functions k(·) lead every agent i’s expected
benefit function vi(·) to be non-decreasing. Then, for each such function identify transfer
functions t1(·), . . . , tn(·) that satisfy the second condition of the above proposition. Substi-
tuting for Ui(·) in the second condition above, we get that expected transfer functions are
precisely those which satisfy, for i = 1, . . . , n,

ti(θi) = ti(θi) + θivi(θi) − θivi(θi) +
∫ θi

θi

vi(s)ds,
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for some constant ti(θi). Finally, choose any set of transfer functions t1(·), . . . , tn(·) such
that Eθ−i

[ti(θi, θ−i )] = ti(θi) for all θi . In general, there are many such functions, ti(·, ·); one,
for example, is simply ti(θi, θ−i ) = ti(θi).

In what follows we discuss a few examples where the environment is linear and analyse the
BIC property of the social choice function by means of Myerson’s characterization theorem.

11.3 Fair bilateral trade in linear environment

Once again consider the Example 3.2 of fair bilateral trade. Recall that each agent i’s type
lies in an interval �i = [θi, θi]. Let us impose the additional conditions on the environment
to make it linear. We assume that

(i) Agents’ types are statistically independent, that is, the density φ(·) has the form
φ1(·) × φ2(·)

(ii) Let each agent i draw his type from the set [θi, θi] by means of a uniform distribution,
that is φi(θi) = 1/(θi − θi) ∀ θi ∈ [θi, θi] ∀ i = 1, 2.

Note that the utility function of the agents in this example are given by

ui(f (θ), θi) = θiyi(θ) + ti(θ) ∀ i = 1, 2.

Thus, viewing yi(θ) = vi(k(θ)) will confirm that these utility functions also satisfy the fourth
condition required for linear environment. Now we can apply Myerson’s characterization
theorem to test the Bayesian incentive compatibility of the SCF involved here. It is easy to
see that v1(θ1) = y1(θ1) = 1 − �2(θ1) is not a non-decreasing function. Therefore, we can
claim that fair bilateral trade is not BIC.

11.4 First-price sealed bid auction in linear environment

Once again, consider the Example 3.3 of first-price sealed bid auction. Let us assume that
Si = �i = [θi, θi] ∀ i ∈ N . In such a case, the first-price auction becomes a direct rev-
elation mechanism D = ((�i)i∈N, f (·)), where f (·) is an SCF which is same as outcome
rule of the first-price auction. Let us impose the additional conditions on the environment to
make it linear. We assume that

(i) Bidders’ types are statistically independent, that is, the density φ(·) has the form
φ1(·) × · · · × φn(·)

(ii) Let each bidder draw his type from the set [θi, θi] by means of a uniform distribution,
that is φi(θi) = 1/(θi − θi) ∀ θi ∈ [θi, θi] ∀ i = 1, . . . , n.

Note that the utility function of the agents in this example are given by

ui(f (θ), θi) = θiyi(θ) + ti(θ) ∀ i = 1, . . . , n.

Thus, viewing yi(θ) = vi(k(θ)) will confirm that these utility functions also satisfy the fourth
condition required for linear environment. Now we can apply Myerson’s characterization
theorem to test the Bayesian incentive compatibility of the SCF involved here. It is easy to
see that for any bidder i, we have

vi(θi) = Eθ−i
[vi(θi, θ−i )]
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= Eθ−i
[yi(θi, θ−i )]

= 1·P (
(θ−i )(n−1) ≤ θi

) + 0.
(
1 − P

(
θi < (θ−i )(n−1)

))
= P

(
(θ−i )(n−1) ≤ θi

)
, (20)

where P
(
(θ−i )(n−1) ≤ θi

)
is the probability that the given type θi of the bidder i is the highest

among all the bidders’ types. This implies that in the presence of independence assumptions
made above, vi(θi) is a non-decreasing function.

We know that for first-price sealed bid auction, ti(θ) = −θiyi(θ). Therefore, we can claim
that for first-price sealed bid auction, we have

ti(θi) = −θivi(θi) ∀ θi ∈ �i.

The above values of vi(θi) and ti(θi) can be used to compute Ui(θi) in following manner.

Ui(θi) = θivi(θi) + ti(θi) = 0 ∀ θi ∈ [θi, θi]. (21)

The above equation can be used to test the second condition of the Myerson’s theorem, which
require

Ui(θi) = Ui(θi) +
∫ θi

θi

vi(s)ds.

In view of the Equations (20) and (21), it is easy to see that this second condition of Myer-
son’s characterization theorem is not being met by the SCF used in the first-price sealed bid
auction. Therefore, we can finally claim that first-price sealed bid auction is not BIC in linear
environment. Q.E.D.

11.5 Second-price sealed bid auction in linear environment

Once again consider the example 3.4 of second-price sealed bid auction. Let us assume that
Si = �i = [θi, θi] ∀ i ∈ N . In such a case, the second-price auction becomes a direct
revelation mechanism D = ((�i)i∈N, f (·)), where f (·) is an SCF which is same as outcome
rule of the second-price auction. We have already seen that this SCF f (·) is DSIC in quasi-
linear environment and linear environment is a special case of quasi-linear environment,
therefore, it is DSIC in the linear environment also. Moreover, we know that DSIC implies
BIC. Therefore, we can directly claim that SCF used in the Vickrey auction is BIC in linear
environment.

Table 2 summarizes the properties of the SCFs discussed in above examples in linear
environments.

Table 2. Properties of social choice functions in linear environment.

SCF AE BB DSIC BIC

Fair bilateral trade � � × ×
First-price auction � × × ×
Vickrey auction � × � �
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12. Conclusions

In the first part of this tutorial, we have seen important basic notions and key foundational
results in mechanism design. In the second part of this tutorial (Garg et al 2008), we will build
upon these concepts and results to discuss deeper issues and results in mechanism design
theory. The topics that we cover in Part 2 include: (1) Revenue equivalence of auctions;
(2) Individual rationality; (3) Moulin mechanisms; (4) Optimal auctions; (5) Characterization
of dominant strategy incentive compatible (DSIC) mechanisms; (6) DSIC implementation
of Bayesian incentive compatible (BIC) rules; (7) Implementation in ex-post Nash equilib-
rium; (8) Mechanisms with interdependent types; (9) Implementation of mechanisms; and
(10) Other advanced topics in mechanism design.

12.1 To probe further

For a more detailed treatment of mechanism design, the readers are requested to refer to text-
books, such as the ones by Mas-Colell et al (1995), Green and Laffont (1979), and Laffont
(1988). There is an excellent recent survey article by Nisan (2007). There are many other schol-
arly survey papers on mechanism design — for example by Myerson (1989) and by Jackson
(2001, 2003). The Nobel Prize website has a highly readable technical summary of mecha-
nism design theory (The Nobel Foundation 2007). The recent edited volume on Algorithmic
Game Theory by Nisan et al (2007) also has valuable articles related to mechanism design.

The current paper is not to be treated as a survey on auctions in general. There are popular
books (for example, by Milgrom (2004) and Krishna (2002)) and surveys on auctions (for
example, (McAfee & McMillan 1987, Milgrom 1989, Paul Klemperer 2004, Wolfstetter 1996,
Jayant & Parkes 2005)) which deal with auctions in a comprehensive way.

The current paper is also not to be treated as a survey on combinatorial auctions (currently
an active area of research). Exclusive surveys on combinatorial auctions include the articles
by de Vries and Vohra (2003, 2005), Pekec and Rothkopf (2003), and Narahari & Dayama
(2005). Cramton (2005) has brought out a comprehensive edited volume containing expository
and survey articles on varied aspects of combinatorial auctions.

For a more comprehensive treatment of mechanism design and its applications in network
economics, the readers are referred to the forthcoming monograph by Narahari et al (2008).

We thank Professor Vivek Borkar, Editor, Sadhana, for encouraging us to write this paper.
Our grateful thanks to three anonymous referees for their insightful comments and helpful
suggestions. The second author would like to acknowledge the support he has received from
the Homi Bhabha Fellowships Council, Mumbai and from the Office of Naval Research,
Washington, DC.

Notation

n Number of agents
N Set of agents: {1, 2, . . . , n}
�i Type set of agent i

� Set of all type profiles = (�1 × · · · × �n)

�−i Set of all profiles of types of agents other than
i = (�1 × · · · × �i−1 × �i+1 × · · · × �n)
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θi Actual type of agent i, θi ∈ �i

θ A profile of actual types = (θ1, . . . , θn) ∈ �

θ−i A profile of actual types of agents other than
i = (θ1, . . . , θi−1, θi+1, . . . , θn) ∈ �−i

θ̂i Reported type of agent i, θ̂i ∈ �i

θ̂ A profile of reported types = (θ̂1, . . . , θ̂n) ∈ �

θ̂−i A profile of reported types of agents other than
i = (θ̂1, . . . , θ̂i−1, θ̂i+1, . . . , θ̂n) ∈ �−i

�i(·) A cumulative distribution function (CDF) on �i

φi(·) A probability density (or mass) function (PDF) on �i

�(·) A cumulative distribution function on �

φ(·) A probability density (or mass) function on �

X Outcome set
x A particular outcome, x ∈ X

ui(·) Utility function of agent i

f (·) A social choice function
F Set of social choice functions
W(·) A social welfare function
M An indirect mechanism
D A direct revelation mechanism
g(·) Outcome rule of an indirect mechanism
Si Set of actions available to agent i in an indirect mechanism
S Set of all action profiles = S1 × · · · × Sn

S−i Set of all profiles of actions of agents other than agent i

bi A bid of agent i; bi ∈ Si

b A profile of bids = (b1, . . . , bn) ∈ S

b−i A profile of bids by agents other than i = (b1, . . . , bi−1, bi+1, . . . , bn)

b(k) kth highest element in (b1, . . . , bn)

(b−i )
(k) kth highest element in (b1, . . . , bi−1, bi+1, . . . , bn)

si(·) A strategy of agent i

s(·) A profile of strategies = (s1(·), . . . , sn(·))
K A Set of project choices
k A particular project choice, k ∈ K

ti Monetary transfer to agent i

vi(·) Valuation function of agent i

Ui(·) Expected utility function of agent i

Xf Set of feasible outcomes
R Set of real numbers
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