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I. Introduction

A semigroup is said to have an invariant mean if there exists a positive
linear functional of norm one on the space of all bounded real-valued functions
on the semigroup which is invariant under left and right translation operators.
It is known that every abelian semigroup has an invariant mean. It is the
object of this paper to prove that an abelian semigroup has a unique in-
variant mean if and only if the semigroup has a finite ideal in it.
We first consider finitely generated abelian semigroups and prove the equiv-

alence of the following three conditions-
(1) The semigroup has a unique invariant mean.
(2) The semigroup has a finite ideal in it.
(3) Every homomorphism of the semigroup into the integers is trivial.

Using this theorem we give a proof of our main result.

II. Definitions and notation

Let 2; be a semigroup, and let m(2:) be the space of bounded real-valued
functions x on 2; with x sup Ix(z) ]. For each z in 2: we define the
left translation operator l carrying m(2;) into itself by (lx) (r)=
for each x in m(2;) and r in 2. Similarly we define the right translation oper-
ator r by (r x) (r) x(r). An element in m(2;)* is called a mean if

II 1 (e), where e is the function which is identically one. An
element in m(2;)* is called left-[right-]invariant if l* [r* ] for all.
a in 2;. We say that is invariant if l* r for all in 2;. A semi-
group is called amenable if there exists an invariant mean. It is known that a
solvable semigroup is amenable [4].

Let 11(2;) be the space of all real-valued functions on 2; such that
I() is finite. An element of 11(2:) is called a finite mean if

(i) (a) >= 0 for all a in 2;, (ii) {a:(a) > 0}. is a finite subset of 2;, and (iii)
(a) 1. We can regard 11(2;) as a subspace of m(2;)*, but to be more

precise we define the mapping Q from 1(2;) into m(2;)* by

(Q) (x) (a)x(a), x era(2:), e 1(2;).

The mapping Q preserves all the structure of 1(2;). If and are elements
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of l(Z), we define their product o0 by

Equipped with this multiplication 1(2) becomes a Banach algebra [5].
For in we define in l() by

fl if r=
if r .

We can then easily see that the mapping is an isomorphism of the semi-
group Z into the multiplicative semigroup of l(Z), so that can be considered
as a subsemigroup of the multiplicative semigroup of l(Z). We will not
cause any confusion if we just write for .
A net of means x is said to converge weakly* (strongly) o left [right] invari-

ance if for any in , (lx x) *[(rx x)] converges weakly* (strongly)
to zero. We say that a net of means x converges weakly* (srongly) o in-
variance if it converges weakly* (strongly) to left and right invariance. A
net of finite means x is said to converge to invariance if the net Qx converges
to invariance. It is known that a net of finite means converges weakly*
[strongly] to invariance if for each in Z

w-limx (x ) 0 w-limx (x x)

It was recently proved by Day [5] that the following three conditions are equiv-
alent for a semigroup:

(i) There is an invariant mean in re(Z)*,
(ii) There exists a net of finite means converging weakly to invarianee,
(iii) There exists a net of finite means converging strongly to invarianee.

Ill. Abelin 9roups

In this section we shall prove that an abelian group G has a unique invari-
ant mean if and only if G is finite. This result has already been proved by
Day [5]. Actually we shall prove a little more than what is contained in
this statement.

LEMMA 0. If an abelian semigroup has a finite ideal in it, then has a
unique invariant mean.

Proof. Since 2 has a finite ideal in it, we can find a finite minimal ideal A
in 2. For each x in m(2) we let

(x) [,a x(a)]/N(A),

where N(A) denotes the number of elements in A. It cn easily be checked
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that is a mean. Suppose now that r is any element of 2. Then rA is an
ideal in 2 and being contained in A must be equal to A. Thus:

(1, x) [o, x(ra)]/N(A) [p,. x(p)]/N(A) (x).
This shows that is an invariant mean. Let be any invariant mean. Let
z be a point in m(2) such that z vanishes on A. If a e A, then (l, z) (r)
z(ar) 0 since areA. Consequently l,z 0 and so ,(z)=. (l,z)=
(0) 0. Next let e* in m(2) be defined by

e*(a) ={ if
if

Then e e* vanishes on A, and so (e e*) 0. Thus (e*) (e) 1.
If a is the function which takes the value 1 at a and zero elsewhere, then by
invariance of , () () for a and r in A. But e* ,,a a, and there-
fore ,, () (e*) 1. Thus for each a in A, ,() 1IN(A). Now
let x be any point in m(2:). We can write

+ z,

where z vanishes on A. Consequently

+
[,, x(a)]/N(A)

This shows that v , and thus our assertion is proved.
We will now state some general results which will be used in later sections.

For the proofs see [5].

LEMMA 1. Let be any semigroup, and let {} be a net of means w*-con-
vergent to left invariance. Then evy w*-cluster point of the net {tt,,} is a left-
invariant mean [5, p. 520].

LEMMt 2. If {/,} is a net of means on m(Z) which is not w*-convergent
but is w*-convergent to left invariance, then there is more than one left-invariant
mean [5, p. 531].

THEOREM 1. Let be a left-amenable semigroup, and let f be a homomorphism
of onto another semigroup ’. Let F be the mapping defined from m(’) into
re(E) by

(Fx’)

Then F* carries the set of left-invariant means on m(Z) onto the set of left-in-
variant means on m(Z) [5, p. 531].

Using Corollary 1 on page 534 of [5] we obtain the following result"

THEOREM 2. If G is a left-amenable group and H is a subgroup of G such
that the diameter of the set of left-invariant means on M(H) is two, then the diam-
eter of the set of left-invariant means on m(G) is also two.
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THEOREM 3. If a left-amenable group G has either a subgroup or a factor
group with more than one left-invariant mean, then G has more than one left-
invariant mean [5, p. 534].

LEMM. 3. Let H be an infinite group which can be expressed as the union of
an ascending sequence of finite subgroups. Then H is amenable, and the diam-
eter of the se of invariant means is two.

Proof. Let H [J:-I H ,where H. is an ascending sequence of finite
subgroups of H. Let N(H,) denote the number of elements in H.. We
can clearly assume, without any loss of generality, that N(H,) >= 10" N(H,_).
Define x in re(H) by

1 if h e H2n+l Hx(h) -1 if heH2- H.-1,

and define finite means in II(H) by

fI/N(H,) if h H,,,(h) \o if h H
Then the net {’n _-> 1} converges strongly to invariance, for as soon as
heH, h-.= 0 h-,. Moreover,

(Q,) (x) (h)z(h) [,. ,(h)]/N(H,).
Now ,, x(h) is positive if n is odd and is negative if n is even. Also

N(H) 2N(H,_).
Thus

1 2.10 -_< la,-. x(h)I/N(H) <- 1,

and consequently

lim sup (Q) (x) 1, lim inf, (Q) (x) -1.

So we can get two invariant means and such that (x) i and (x) 1.
Since x 1, our assertion about the diameter follows.

TEOEM 4. An abelian group G has a unique invariant mean if and only
if G is finite. If G is infinite, then the diameter of the set of invariant means is
wo.

Proof. If the group G is finite, then it follows from Lemma 0 of this sec-
tion that G has a unique invariant mean. If G is infinite, then there are two
possibilities"

Case 1. There exists an element of infinite order in G. Then G contains
an infinite cyclic group A. It follows from Theorem 6 that the diameter of
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the set of invariant means on re(A) is two. It now follows from Theorem 2
of this section that the diameter of the set of invariant means on re(G) is
two. It should be noticed that the proof of Theorem 6 does not depend on
what we are trying to prove here. We could give a simpler proof for that
theorem if we were concerned only with the infinite cyclic group A.

Case 2. Every element of G is of finite order. In this case we can get in
G an expanding sequence of finite groups H. Letting H [JH we see
from Lemma 3 that the diameter of the set of invariant means on m(H) is
two. Theorem 2 now gives us our required result.

IV. Finitely generated abelian semigroups and minimal ideals

In this section we shall prove that a finitely generated abelian semigroup 2:
has a unique invariant mean if and only if 2; has a finite ideal in it. Moreover
it will be proved that any one of these conditions is equivalent to the third
condition that there are no nontrivial homomorphisms of 2: into the additive
semigroup of integers. This result will be used later on to prove the main
theorem.

:LEMMA 1. Let 2; be an abelian semigroup having a minimal ideal A. Then
2: has a unique invariant mean if and only if A is finite. If A is infinite, then
the diameter of the set of invariant means on m(2:) is two.

Proof. First of all we observe that A is a group. In order to prove this,
all that we have to do is to show that for every a in A, aA A. But this is
clear because aA, being an ideal in 2: and being contained in A, must be equal
to A due to the minimal character of A.

If A is finite, then Lemma 0 of Section III says that 2; has a unique in-
variant mean t given by

(x) [EA x()]/N(A).
Suppose now that A is infinite. Corresponding to each invariant mean

0 on m(A) we define u in m(2;)* by

#(x) to(x A),

where x is in m(2:) and x lA is the restriction of x to A. It is clear that g

is a mean. We shall now show that g is actually invariant.
For each a e 2; and a e A, (ae).a a(ea) za, where e is the identity of

the group A. Now take x era(2:), a e 2:, and a cA. Then

(l x) (a) x(o-a) x(aea) (l x) (a),
and so

(lx) A l(x A).
Consequently

t(l x) to((l(x) A) to(b(x A to(x A) t(x).
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Thus for each invariant mean 0, the element t of m(2)* defined as above is
an invriant mean. It is also clear that " >= 0 0 II, and thus
our lemm follows quickly from Theorem 4 of Section III.
The proof of the following lemma is immediate.

LEMMA 2. Let 1 aj xj O, i in any index set I, be a system of linear
equations. Then we can find n indices in I, say 1, 2,..., n, such that
(xl x,) is a solution of a x O, i e I, if and only if (xl x)
is a solution of ’--1 aij x O, 1 _< i --< n.

It is clear that if the aj are all integers and there is some nontrivial solution,
then we can assume the solution (x, xn) to be integral, and we can fur-
ther assume that the greatest common divisor of xl, x is 1.

LEMMA 3. Every nonzero semigroup of integers has more than one invariant
mean.

Proof. In the proof we shall require the following lemma"

LEMMA 4. Let S be a set of positive integers such that if x and y are in S then
x y is in S. Suppose that the greatest common divisor of the elements of S is
d. Then S contains all multiples of d from some point onwards.

This lemma is proved on page 176 of [6].
We now come to the proof of Lemma 3. Let the semigroup be called A.

Since division by the greatest common divisor of the elements of A yields an
isomorphic semigroup, we may assume, without loss of generality, that the
greatest common divisor of the elements of A is 1. Let

A+= {xlxA,x > 0}, A- {xixA,x < 0}.

Suppose that neither A+ nor A- is empty. Let d be the greatest common
divisor of the elements of A+, and e the greatest common divisor of the ele-
ments of -A-. Then (d, e) 1. Using Lemma 4, we see that there is an
integer N such that if n and m are bigger than or equal to N then nd and -me
are in A. Clearly we can pick m and n such that md A, -ne A, md > ne,
and (md, ne)- 1. Then mdeA, rod-neeA, and (md, md-ne)- 1.
Since md and md ne are both positive, it follows from Lemma 4 that they
will generate a semigroup B which will contain all positive integers from
some point onwards. But B

_
A and so A contains all positive integers

from some point onwards. Similarly A contains all negative integers from
some point onwards. If n is large enough, then n, -n, n -[- 1, -n -1 are
all in A. Consequently 0, 1, and -1 are in A, and so A consists of all the
integers. In this case the existence of many invariant means is already known
or can easily be proved. If A- 0, we prove the existence of many invari-
ant means as follows. The case when A+ 0 is exactly similar.



4 INDR S. LUTHER

PickN >= 0suchthatn_ NneA. For eachn > N, delineafinite
mean . by

(k) f0 if k-< N or if k> n, keA
=l/(n-N) if N <k-< n.

If p e A and n is sufficiently large, then

, p q,, <- 2p(n N)-1,
and so the converge strongly to invariance. We will have finished the
proof of our lemma if we can find an x in m(A) such that (Qq.) (x) does not
converge. But this can be done easily if we let x take the values -{-1 and -1
alternately on bigger and bigger blocks of positive integers.

DEFINITION. Let 2: be an abelian semigroup generated by al,...,

We say that a[ a."" a1... a" is a relation if ai => 0, /i > 0, and
there is at least one i for which ai

LEMMA 5. Let be an abelian semigroup generated by a,
suppose that the a satisfy the relations

am, and

aOl _’}’On anl 7nn
0" a

where the determinant

Then contains a finite ideal.

7o’" o,, 1

Proof. Let a a asv". Clearly we can assume that D > 0, for
if D 0 we just interchange any two rows. Let r. denote the cofactor of
,i# in D. Let A be a sufficiently large positive integer so that all the expo-
nents in the following calculation are positive. This is possible, as will be
clear on looking at the calculation. Let i be any fixed integer between 1
and n. Then

(n-l-l) A (n+l)A-, r H
DIt follows that if Z were a group, a would be 1 for each i and so the group Z

would be finite. This fact we will need a little later in this proof. Since
(n+l) A (n+l)A D

a a a for each i, it follows that
(nW1)A (n+l) A D D

ff ff ffl fin.

Thus we hsve a relation of the form

ql qn

wherea < ,1 =< i =< n. Now



THE INVARIANT MEAN ON AN ABELIAN SEMIGROUP 5

Continuing this process we obtain

IXi o’x+:’-x"’ IT, for any >= 1.

Clearly we can take X so large that (X + 1)i- ai > 2a, and thus we
might as well assume from the beginning that we have a relation of the form

II, ’= II,/,’, 2, < , for 1 __< __< n.

a- then we can easily see that eIf we let e =II, * e. We remark that
in trying to prove that e e we need the fact that 2i < . We now let
X k0(B i), 1 -< i -< n, where/co is chosen so large that , > /h. Let

z’= {II,*, , >

2V is clearly an ideal, and using the fact that e e e e for
any N, we can easily see that e e 2V. Next suppose that vi

_
Ai, and sup-

pose further that k is chosen so large that k(i i) > v + X. Then

’-’ II,*,’II, "’-’ II,*,’+’-’- II,/,’ II,*,vi Hiel1, if, o,

and
k(i--ai) H qie ek Hi ,i

k(-:ai)--These calculations show that e acts as an identity on 2V and that II,
is the inverse in 2/of II with respect to e. Thus 2V is a group. Now

{II,(e,,)’. vi > 0},
so that Z’ is generated by ea, ea. Since

O’7

it ollows on multiplication by e that

() () (W ().

Consequently is finite. Thus we have found a finite ideal in .
We are now in a position to prove the main result of ths section.

following three conditions on are equivalent"
(a) has a unique invariant mean,
(b) has a finite ideal in it,
(c) If h is a homomorphism of Z into the integers, then h(r) 0 for all r

inZ.

Proof. The implication (b) (a) holds for any abelian semigroup.
To prove (a) (c) we will prove that if (c) does not hold, then (a) does

not hold. So let h be a nontriviM homomorphism of 2 into the integers.
The image A of Z under h is a nonzero subsemigroup of the integers, and con-
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sequently there are many invariant means on re(A).
Theorem 1 of Section III that there are many invariant means on m(2).
We will complete the proof by showing that (c) (b). Let

{TI 0"n T

be all the relations in

It now follows from

Suppose that this system admits a nontrivial solution. Then since this
system is equivalent to a finite system, we may assume that the solution
(Xl, x) is integral and that the greatest common divisor of the x. is
one. Clearly . x. will give a nontrivial homomorphism of 2 into the in-
tegers. Thus if (c) holds, then the above system of linear equations cannot
have any nontrivial solution. It follows from Lemma 2 of this section that
there exist indices i 1, 2, n such that the system

"--1 (aj- o’)x 0, 1 <_- i <= n

Clearly the matrix

has no nontrivial solution. We have thus obtained relations

such that the matrix (a- f) is nonsingular. Let

"/0j- maxl_<i_<n ij, 1 =< j <= n.

Multiplying the above relations by z01-1 as we get new relations

Ol II, "’’, /0n ’ln1
L3oi 3’i, ’o

is nonsingular. An application of Lemma 5 of this section now yields the
existence of a finite ideal in 2. This concludes the proof of our theorem.

It should be noticed that the implications (b) (a) (c) hold even when
2 is not finitely generated. However (c) does not imply (a) or (b) if 2: is not
finitely generated. An example is afforded by taking 2 to be the additive
group of rational numbers. Here every homomorphism of 2 into the integers
is trivial, and yet 2 possesses many invariant means, and 2 has no finite ideal
in it.

V. A certain class of abelian semigroups

We will adopt the following notation for this section and also for the two
following sections: Letters like i and 0 will denote finite subsets of the abelian
semigroup 2. For each ti, 2: will denote the semigroup generated by the set
i in 2:. If 2; has a finite minimal ideal in it, it will be denoted by A. The

Let us consider the linear equations, (, ,), o,
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identity of the group A will be denoted by e. If 2 does not have any
finite ideal in it, then by Theorem 5 we can find a nontrivial homomorphism
of 2; into the integers I. We will call this homomorphism h, and I will be
the image of 2 under h. We will further assume that the greatest common
divisor of the set h() is one. In case this homomorphism h exists, we
will denote by H the linear mapping from m(I) into m(2;) defined by

(H x) () x(h ) for

We say 1 > if 1 ti Under this order the set of all finite subsets of
is a directed set.
The object of this section is to prove the following theorem.

THEOREM 6. Let 2; be an abelian semigroup. Suppose that for a cofinal
system of finite sets 8, does not have any finite ideal in it. Then the diameter

of the set of invariant means on m(2;) is two.

We will divide the proof of this theorem into several parts.

DEFINITION. We say that x in m(2;) is almost convergent if all invariant
means on m(2) assume the same value at x. If z and r are in 2;, then we say
that >= r if there exists an element p of 2; such that a p. Under this
order 2 becomes a directed set.

IEMMA 1. Let 2; be an abelian semigroup. For each x in m(2;) we define
p(x) infl..... lim sup (l/n) =<i<=n X(ffi if),

where the inf is taken over all finite sequences of elements of 2;. Then x is almost
convergent if and only if p(x) -p(-x); hence 2; has a unique inariant mean

if and only if p(x) -p(-x) for all x. In case that is so, p is the unique in-
variant mean. Moreover if we can find an element x of norm one in m(2;) such
that p() p(-x) 1, then the diameter of the set of invariant means is two.

Proof. It can easily be seen that p is a positive homogeneous subadditive
functional and-p(-x) <= p(x).
We shall first prove that if is any invariant mean and x is any point in

m(2;), then

p(- x) <= t(x) <= p(x).

Take any sequence al,’", a of elements of 2. Since is a mean,
t(Y) =< sup y(z) for any y in m(2;). Take any r in 2;. Then

t(Y) (l y) _-< sup (l y) (a) sup y(ra) sup_>_ y(a).

Taking y (l/n)1 l x, we see that

(x) -<_ sups>=, (l/n) in__--I X(O’i 0").

I am grateful to the referee for the simplification of the original proof.
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This being true for any r in 2 and any sequence (rl,

we conclude that (x) =< p(x) for all x in m(21).
(r of elements of 21,

Consequently

--p(--x) <- --t(--x) t(x) <- p(x), x in m(21).

From this it immediately follows that if p(x) -p(-x) for some x in
then this x is almost convergent. Also it shows that if p(x) -p(-x)
for all x in m(21), then p is the unique invariant mean on m(2;). This proves
one part of our lemma. To prove the other part we proceed as follows: By
an application of the Hahn-Banach extension theorem we can construct a
linear functional which is below p at each x. It can easily be seen that
is u mean. To prove that is invariant we do the following calculation:

p(x 1,, x) inL...., lira sup (l/n) ’_1 [x((r (r) x(p(r

=< lim sup (l/n)1 [x(p(r) x(p’+(r)] <- 211 x
This being true for all n, p(x lp x) <- O. Similarly p(l, x x) <= 0, and
consequently (x l x) 0, which shows that t is invariant. Thus any
under p is an invariant mean. If we look at the proof of the Hahn-Banach
theorem we find that the value of at x can be taken to be any number be-
tween -p(-x) and p(x). Thus if x is almost convergent, -p(-x) must be
equal to p(x). Moreover, if for some x0 of norm one, -p(-xo) -1 and
p(xo) 1, then we can find two extensions t and such that x 1 and

0x --1. Since ]lxll 1, it follows that I]-ll 2, so that the
diameter of the set of invariant means is two.

This concludes the proof of our lemma.
We now come to the proof of our theorem. Without loss of generality

(as will be clear from the argument that follows) we may assume that no
21 has any finite ideal in it. Thus as explained before, we get for each 5, a
mapping

H"m(I) ---+ m(Y,)
defined by

(g,(x)) ((r) x(h (r), x e m(I,), (re 21

We divide the integers into two classes C1 and C as follows’

C {0} u U0 {n’10+1 -< [hi < 10+},
C Uo {n’10 _-<In} < 10’+1.

We define x0 in m(I) by
--1 if neCx(n) 1 if neck.,

Let y--H(xolI), so that y e m(2;) and y(a)= xo(h (r) for
Let x be an extension of y taking the value one outside 21. Thus we get a
net of elements x of m(2) all of norm one. Since m(2) is the conjugate space
of l(Z), we can get a w*-convergent subnet of the net {x:}. Again without
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loss of generality (as will be clear from the argument that follows), we may
assume that the net {x’} itself converges to u point x in the w*-topology of
m(2). In particular, lim x(a) x(a) for each a in 2. It is clear that
lim y(a) x(a) and that the only possible wlues of x(a) are -[-1 and -1.
We notice that when we speak of the limit of y(a) we consider only those
Z which contuin the element a. We let

{:x() --1}, {’x() 1}.

Then n 9 and u Z. Since y(a) converges to x(a), there
exists a finite set 5 such that 5 5 implies that y(a) x(a), that is,
xo(h ) x(a) for 5 5. This means that {h a" 5 } is in the same
class C or C2, that is, this set does not distribute itself over both classes.
Thus we see that

{a" There exists 5 such that ha a e C},
and

2 {a" There exists 5 such that 5 h e C}.

This is an important fact and we will use it quite strongly in the proof of the
following lemma which is needed for the proof of Theorem 6.

LEMMA 2. For any finite sequence , of elements of a any
element r of Z, there exist p and p’ in such that p , p’ r, p e a

p’ for l < i < n.

Proof. We will first prove that for any sequence a, a, of elements of
Z, there exist p and p’ such that ap e and ap’ for 1 i n. We
shall prove only the existence of the element p, the proof of the existence of
p’ being exuctly similar.

Clearly we can find a cofinal set A of finite sets such that, with a possible
change of names,

h(a,) hn() hn(=) for

Either ha(a) 0 for all sufficiently large 6 in A’ or for 6 in a eofinal A"
hn(a) 0. The cases h(a) 0 for all sufficiently large 6 in A’ and
hn(a) 0 for 6 in " are exactly similar and so we assume without any loss
of generality that hn(a) 0 for all 6 in A’. Multiplying the a by a we get

h(a) => h(a a) =>... => h(a, a,) => 0

for all 6 in A’. Since we are interested only in the multiples of the a, we may
assume that the a, a, are such that

h(a) => h(a) => => he(a,) => 0

for 6 in a cofinal set A’. If h(a) 0 for 6 in a cotinal set A’ A’, then
h(a) 0 for these 6, and thus the , a, already lie in . So we can
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suppose that he(0.1) > 0 for large enough in h’ or, without loss of generality,
for all in A’. We now let

0. 0.1 0"2 0.n

and

It is clear that a e (2 and

h() >= h() -> h() forinA’andl =< i =< n.

We now pick /c such that a
k-1 ( and a

k 1,e 2 < / < 10. Such a k
exists since a

1
e 1 We let p a, and we assert that this p has the re-

quired property. In the proof of this assertion which we shall give below,
ti always belongs to A and is sufficiently large. Since a

-1
e (2 and a e 1

therefore he(a-) C2 and he(a) e C. Thus

102 =< he(a-) < 10+1 10=+ < he(ak) < 102+2

where the ke are some nonnegative integers. We consider two cases.
Casel. k 2. In this case

he(a3) 3he(a) < 3.10+1 < 10"+.
Thus

10+1 _<_ he(as) =< he(a3) < 10+.
Case 2. k > 2. In this case

he(a+1) he(a) -t- he(a-) -< 2he(-) < 2.10+1 < 10+.
Thus

10k+l __< he(a) <_ he(aTM) < 102+.
From this we get

10+ __< h() _-< h( ) __< h(.TM) < 10’+.
Thus for a cofinal system of finite sets , he k(az)eClfor 1 _-< i =< n. This
combined with the fact that for sufficiently large , he (any element) lies in

(a 0.) e C1 for all sufficiently large .the same class C or C, proves that he
This shows that aze 1 for 1 =< i =< n.

If we want our p to be bigger than or equal to any preassigned element ,
all that we have to do is to start with 0. , z instead of 0.1, 0.

and carry on the above argument.
This concludes the proof of Lemma 2.
Proof of Theorem 6. In view of Lemma 1, it will be enough to prove that

for the x we have constructed,
p(x) p(--x) 1.

We will just verify that p(x) 1, the other part being exactly similar.

lim sup (l/n) Ei----i x(0. 0.) inL sup_, (i/n)=" x(0.i 0.) inf 1 1.

Consequently p(x) 1.
This concludes the proof of our theorem.
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VI. Another class of abelian semigroups

The obiect of this section is to prove the following result.

THEOREM 7. Let be an abelian semigroup such that there exists a o such
that for all >- o has a finite minimal ideal A in it. Suppose that for each

>= o there is a " >= ’ such that if >- " then An A’ 0. Then the
diameter of the set of invariant means is two.

In the proof of this theorem we will require the following lemma.

LEMMA 1. If E is a directed system such that for any e in E there is e’ e
in E with e e, then there exist two disjoint cofinal subsets of E.

Proof. We will consider two cases.
Case 1. There is a finite cofinal subset of E. Then there is an e bigger

than or equM to all elements of that finite subset, hence e is cofinal in E.
But there is e’ > e with e’ e. Thus {e’} is another cofinal subset and
[e} n {e’} .
Case 2. No tinite subset of E is eofinal in E. In this ease we can easily

see that for e in E there exists a sequence e;} of distinct elements of E with
e e and e < e+. We now let I be the set of all triples (A, B, F), where
F is a subset of E, and A and B are maps from F into E satisfying the follow-
ing conditions"

(i) A(F) nB(F) =.
(ii) A(F) and B(F) are cofinal in each other.
(iii) A(F) and B(F) are cofinal in F.

The class ?I is not empty for if we take any sequence el < e < < e <
of distinct elements of E, then we can let F {ei’i}, Aei e.;, and

Bei e:_l. This (A, B, F) clearly belongs to the class ?1. We order I
by saying that (A, B, F) -< (A’, B’, F’) if and only if F -- F’ and A and B
are respectively the restrictions of A’ and B’ to F. By an application of
Zorn’s Lemma we can get a maximal element (A, B, F). We claim that
A(F) and B(F) are cofinal in E. First we notice that either both are cofinal
in E or neither is cofinal in E. This follows from the fact that A(F) and
B(F) are cofinal in each other. So suppose that A(F) and B(F) are not co-
final in E. Then there exists an element el of E such that no successor of el

is inA(F) uB(F). Thus we can pick a sequence el < e. < < en <
of distinct elements of E such that e A(F)u B(F). Also since A(F) and
B(F) are cofinal in F, it follows that en F. We now let

F*= Fu {e’i >- 1}

and define A* and B* on F* by

A’f= Af if feF and A*ei e:,

B’f= Bf if feF and B*e e_.
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Then (A*, B*, F*) and is bigger than and not equal to (A, B, F, contra-
dicting the maximality of (A, B, F). Thus A(F) and B(F) are cofinal in E,
and since (A, B, F) e 9.I, A(F) r B(F) 0. This concludes the proof of our
lemma.
We remind the reader that for each >- 0, 2; has a finite minimal ideal

A, and that e is the identity of this group A. We prove the following
lemma.

LEMMA 2. Let >- o, and suppose that e is an idempotent in such that
e >= e. Then there exists 0 >- such that e-- eo.

Proof. First we show that if 2; and 2; have respectively the finite mini-
mal ideals A and A (we do not assume that >= /0) in them, and if 21u
has the finite minimal ideal Alu, then A,_ AA.. For

(A,A),u,. AA2
and so A,A2 is an ideal in 2;,. and consequently contains the minimal ideal
AI. But clearly AA is a group whose identity is ee, and an ideal
in a group being the whole group, we conclude that A,A AI and
e,e eu. If we let 0 {e}, then this result is applicable, and so
eo e.e. But e >= e, and so there exists such that e e. Then
e e e.e e e e and so

e0 e$ e e,

This concludes the proof of our lemma.
Proof of Theorem 7. Let E {e’ >_-0}. Under the hypothesis of

Theorem 7 the condition on E stated in Lemma 1 is satisfied. So we can
divide E into two disjoint parts E0 and E which are both cofinal in E. De-
fine x in re(E) by

xO(e) ( 1 if eeE0
1 if e e E.

Define x on m(2;) by

z(r) (e) if eAforsome
if Ua A.

We, of course, have o cheek ghag is eonsisengly defined. To see ghis, all
ghag we have go do is go prove gha if A n Ao , hen e e0. Bu gha

is easy, for suppose ha e A n Ao, and suppose ha he orders of A
and Ao are i and j respectively. hen e e" eo.
We now detine finige means in l() for each . We leg

I/N(A) if A() if a A.
Take any in Z, and pick 0 so that e . Then

9, a [.,(r)r] [.,, r]/N(A,)= [,**p]/N(A,)= .
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Thus e e 0 as soon as e 6, and so the net {e} converges strongly to
invariance.
We next claim that lim sup e(x) 1 and lim inf e(x) --1. Now

e(x) (z).x(z) x(e), and since x(e) is either +1 or -1, it is
clear that if lim sup e(x) and lim inf (x) are different, then the first has to be
1 and the second has to be 1. But if lim sup e(x) lim inf e(x), it would
mean that the net {x(e)’6 >- 60} converges. In order for this to be true
it is necessary that there exist 61 >= 60 such that the set e’6 >- 61} is con-
tained entirely in the same set E0 or El, say E0. But by Lemma 2,

{e’6 _>_ 61} {e’e >-

and so we see that e >= el implies that e e E0. But this contradicts the co-
finality of El. Therefore

lim sup (x) 1, lim inf e(x) 1.

It therefore follows that we can find two invariant means u and v such that
u(x) 1 and v(x) -1. This concludes the proof of Theorem 7.

VII. Proof of the main theorem

We are now in a position to prove the main result of our paper.

THEOREM 8. If is an abelian semigroup, then has a unique invariant
mean if and only if contains a finite ideal. In case has many invariant
means, the diameter of the set of invariant means is two.

Proof. If 2 contains a finite ideal, then we have already seen that 2 has a
unique invariant mean. Suppose now that 2 has a unique invariant mean.
By Theorem 6 there exists 60 such that 6 >__ 60 implies that 2 has a finite mini-
mal ideal A in it. Using Theorem 7, we obtain

There exists 6’ -> 60 such that for all 6" ->_ 6’, there exists 6 >= 6" such that
A n A, # 0.

Since 2; contains 2,, A n A, is an ideal in 2, and, being contained in A,,
must be equal to A,. Thus A, = A We now let

A’ {6"6 > 6’ and A A,}, A U, A
We claim that A is an ideal. To prove this, let a e A nd e 2. Then there
exists 6" e A’ such that a e Av,. Pick 6 e A’ such that 6 6" u {a}. Then
A, n A,, contains A,, and so is not empty. Consequently, since
we see that A, Av, and so a e A, Since e 6, therefore aa e A, A
This proves that A is an ideM in 2.
Next we claim that A is a group. To see this we observe that if 61 and

62 re in ZX’, then there exists 6 in A’ such that 6 = 61 u 62. Consequently
A, = A u A This shows immediately that A is a group.
The above two considerations show that A is a minimal ideal in x, and



44 INDAR S. LUTHAR

since 2 has a unique invariant mean, A must be finite by Lemma 1 of Section
IV.

If 2 has many invariant means, then the following situations are possible.
Case 1. For a cofinal system of finite sets , 2 has no finite ideal in it.

In this case Theorem 6 says that the diameter of the set of invariant means is
two.

Case 2. There exists t}0 such that >= 0 implies that 2 has a finite minimal
ideal A in it. In this case we have the following two situations possible"

(1) For each t _>_ 0 there exists " >- ’ such that >- " A n A,

(2) There exists ’ -> 0 such that for all ’ => ’ there exists => ’ such
that AnA, 9.

If (1) holds, then Theorem 7 says that the diameter of the set of invariant
means is two. If (2) holds, then as shown above, 2 has a minimal ideal A
in it, and since 2 has many invariant means, A must be infinite, and then the
assertion about the diameter follows from Lemma 1 of Section IV.

This concludes the proof of our theorem.
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