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1. INTRODUCTION

TaE elastic behaviour of substances, which are already in a highly strained
state, is a subject of considerable importance, in its fundamental aspects
as well as in its application to important questions like the constitution and
stability of massive entities such as exist in the interior of the Earth. In a
paper entitled ‘Elasticity and Constitution of the Earth’s Interior,” Birch
(1952) has given a comprehensive account of this problem. Matter in the
interior of the Earth is subjected to large stresses, resulting in an accumu-
lation of great amounts of strain energy. It is known that periodical
releases of the strain energy, thus accumulated, manifest themselves as earth-
quakes in various regions, although the exact causes thereof and the detailed
meckanism of these energy releases, are still matters open for further study.
It is also known that shear waves are not sustainable in the interior of the
Earth below a depth of about 3,000 km., while up to that depth from the
surface, compressional as well as shear waves are present. An explanation
of these remarkable phenomena would necessarily involve a knowledge of
the elastic behaviour of matter at the depths in question. Thus, the first
step in this direction would be the evaluation of the elastic constants of
substances, which are already under great strains, in terms of known

parameters.

When considering such large strains, one has to have recourse to the
finite or non-linear theory of elasticity, an exact development of which in
matrix form has been given by Murnaghan (1951). When the strain com-
ponents are large, the stress at a point is no longer a linear function of the
strain components at that point, but includes quadratic terms as well, and
the strain energy function ¢ has to be extended to include at least the cubic
powers of the strain components. The coefficients of the quadratic terms
have been called ‘the Second Order Elastic Constants’ and of the cubic
terms, ‘the Third Order Elastic Constants’. Birch (1947, 1952), Fumi
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(1951), Hearmon (1953) and Bhagavantam (1949, 1957) have dealt with this
problem and have derived the independent third order conmstants for the
various crystal classes. In the present work, a reference to these investiga-
tions will become necessary as the strain energy includes second as well as
third order elastic constants.

In studying the elastic response of a substance which is initially subjected
to a finite strain, additional strains can always be visualized as infinitesimal
in character, since the case of a finite strain superposed over another finite
strain can be reanalyzed so as to correspond to an infinitesimal strain imposed
on a finite one. As this additional strain is infinitesimal, its effect in the
strain energy function will be limited to quadratic terms only, the coeffii-
cients of which will be the elastic constants appropriate to the substance
in the prestressed state. We shall designate these as the ‘effective elastic
constants’. They completely specify the elastic response of a substance in
a state of finite strain, when additional infinitesimal strains are superposed
thereon. These effective constants will depend on the second and third
order elastic constants of a stress-free state and also upon the state of initial

siress.

Expressions for such effective elastic constants can be derived by noting
that the elastic energy of the infinitesimal deformation must be equal, after
multiplication by a suitable magnification factor and allowing for the work
done by the external forces, to the difference in the total energy of the
system when subjected, firstly to the finite strain, and secondly to the finite
plus infinitesimal strain considered as a single composite state of strain.
The magnification factor arises because the strain emergy always refers to
a unit initial volume and this volume is different according as whether we
choose our initial state as the stress-free state or as a state of finite initial
stress. It will be observed from the details given in the following that this
method of evaluating the elastic constants from the use of the energy dif-
ference, adopted in the present paper, is much simpler than the method of
evaluating them from the Stress Matrix—a procedure adopted by some
earlier workers (Birch, 1947; Hughes and Kelly, 1953). There is a discre-
pancy between the values obtained by us in this paper and by Birch (1947)
and a discussion of the same is also given.

It has to be mentioned here that Green and Zerna (1954) have con-
sidered the question of superposition of an infinitesimal deformation over
a triaxial finite strain for an isotropic substance but their treatment does
not explicitly bring in the third order elastic constants. - We have explicitly
considered these constants and studied in detail the case of cubic symmetry
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because such a case would pertain closely to substances which actually occur
in nature. In the present paper we have also included, in a tentative and
general way, the indications which the energy function would give regard-
ing the anomalous behaviour of matter subjected to high pressures. Detailed
discussions of this aspect involve the Theory of Dynamical Elasticity, a topic
which we propose dealing with in a subsequent paper.

2. FiNiTE DEFORMATION THEORY

We now proceed to give the formalism of the finite deformation theory
to the extent required for our problem. By a deformation, we mean that
the internal constituent points in a body have undergone displacements with
respect to each other, so that their relative distances have altered. To specify
such an alteration in the distance between a point P and every other pointQ,
R, S, etc., in its neighbourhood, we first note that the general expression for
an infinitesimal length appears as a quadratic (ds®= dx*- dy® -+ dz?.
If therefore ds, is the length PQ before deformation and ds the same length
after deformation, half the alteration in the square of the length, (ds* — ds,?)/2
is taken as a measure of the state of strain of the distance PQ in question.
By assigning general positional co-ordinates to Q, the alteration in length
not only of PQ but of every other length PR, PS, etc., in the neighbourhood
of P is obtained, so that the state of strain around P is completely specified
by the quadratic form (ds®— ds?)/2. To derive an expression for this
quantity, we note that, if as a result of the deformation, a point with initial
co-ordinates (a, b, ¢) referred to any convenient space fixed Cartesian co-
ordinate system moves over to a final position (x, y, z) referred, for con-
venience to the original frame, we can introduce a displacement vector with
components (u, v, w) given by x=a+4u, y=b+v,z=c+w, where
u, v, w are functions of the initial positional co-ordinates (@, b, ¢). If the
point P, with co-ordinates (a, b, ¢) moves over, as a result of deformation
to P’ with co-ordinates (x,y,z) = (a+u, b+ v, ¢+ w), the point Q in
the infinitesimal neighbourhood of P with co-ordinates say (a + da, b + db,
¢ 4+ dc) will move over to the position (x + dx, y+ dy, z+ dz) where
dx, dy, dz are given by the relations

duU

Sz'dc

dx=(1+g—g)da+%—z-db—l—
dv VN - v
dy=b_d-da+(1+5-5)db+b_c_-dc

!

dz=~b—a-da+gg'db+(1+§g)dc- )
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The nine derivatives du/da, etc., completely specify the most general dis-
placements, including rotations of the element as a whole, in which the
relative distances of points within the element are not altered. There is
therefore no room for play of the elastic forces within the element, and one
could then remove the effect of rotations by the removal of the antisymmetric
part in the equations by employing the usual methods. This will leave only
6 independent combinations of the displacement derivatives to be con-
sidered in the elastic deformation. If we take it that the rotations are zero,
this will immediately require that du/db = dv/da, etc., so that the matrix
of the transformation is symmetric as it stands with six independent compo-
nents. In the linear or infinitesimal theory of elasticity, the strain com-
ponents are identified with these six independent displacement derivatives
dufoa, /b, ete. In the finite or non-linear theory of elasticity, however,
we work out (ds®— ds,®)/2 using relation (1) and noting that ds? = dx2
+ dy® 4 dz® = square of length PQ after deformation and dsy?® = da?®
+ db® + dc? = square of length PQ before deformation. This quadratic
form therefore appears as

ds? — dsg? = n.da? db2 2
3 uda + 2adb® + naade? + 2myadadb + 2n,,dbdc

+ 2ngdeda | )

where

du , 1 [ pouN2 LEAN LAY ‘
7711-55+2‘[3&) +(55)+ b_ci)] ®)
with similar equations for 7y, and 73, and |
_ . _1pnv  ou Ledu du  w dw  w  w
m=m=y(GEtn) G Bre o+ -2 @
with similar equations for 7., 74, etc.
The n’s are thus coefficients in a certain quadratic form expressing the
change in the squared length and they constitute the 9 entities of a 3, 3)

matrix styled as the strain matrix. In view of the symmetry of this matrix,
the 9 components reduce to 6 and a convenient representation of the strain

matrix is
" Ne s
n = yr M2 N4 . ' %)
M5 Na N3
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It is evident from (3) and (4) that when the squares and products of the dis-

placement derivatives du/da, etc., are neglected, the strain matrix of the

finite theory becomes identical with the infinitesimal matrix. In view of
the respective definitions, one can also say that in the infinitesimal theory,

it is of no consequence whether the displacement derivatives are calculated
at the initial or final positions of a point and the initial and final positions

are thus interchangeable. In the finite theory, however, the distinction

between the initial and final states has to be maintained.

The displacement of a point from an initial position (a, b, ¢) to the final
position (x, y, z), as given in equation (1), is most conveniently represented
by the transformation x = Ja, (x = X, y, ), (¢ = a, b, ¢) and J, the Jacobian
of the transformation is given from (1) by

IRV VR x
da Y bY: da b de

_ 1) w dw | | oy oy 6
da 1+ b ¢ d2a b e |- ©)
R b 2z
da b ¢ 2a b e

Denoting by J* the transpose of this matrix, it is evident that if we form
the product matrix J*J, subtract unity from each of the 3-diagonal elements
and halve the result, we get the matrix of coefficients of the quadratic form
(2) and this is the strain matrix (5). Murnaghan (1951) has employed this
form as the definition of the strain matrix in the following way.

7 =3 (*] — Ey). ' ™

In (7), E; is the unit matrix of dimension 3. We also note here that
the subtraction of E, indicates that the original length is being subtracted
from the new or altered length between two points, which means that in
our treatment, we are excluding all such displacements which keep the relative
distance between every two points within an element unaltered. Rotations
are displacements of this type, and in the finite theory, the removal is effected
from the product matrix J*J and not from J itself as in the infinitesimal
theory. J thus need not be a symmetric matrix, nor is it rendered so,
in the finite theory. A simple shear given by

x=a+nh, y=>5, z=c,

is an example of an unsymmetrical J. However the strain matrix formed
from the same by the formula 5 = 1 (J*J— Ej) is symmetric. When
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formulating the most general displacement, we must therefore take J with 9
independent components (and not reduce to 6 by removal of the anti-
symmetric part), so long as finite deformations are concerned. We shall
have occasion to refer to this question again at a subsequent stage in this

paper.

3. STRAIN ENERGY EXPRESSION IN THE FINITE THEORY,
WITH AND WITHOUT AN INITIAL STRESS

The strain energy ¢, measured per unit volume of the initial state, would
be a function of the 6 strain components 7;...7q and can therefore be
expanded as a power series in the 7’s.

¢=¢°+¢1+¢2,+¢3+ ------ 8

The constant ¢, has no significance for us, as we are interested only in the
derivatives of ¢. The first order term ¢, will be a linear function of the

n’s of the form
¢y = ey + Coma + Camg + 204my + 2¢5m5 + 2¢476- )

In the infinitesimal theory of elasticity, the 6 components of stress T,, T, ...
T, corresponding to the 6 independent elements in the (3, 3) symmetric stress
matrix T, are obtained as the derivatives of ¢ with respect to the corres-

ponding strain component

2¢
" S (10
Like the strain tensor, we use here the notation Ty; = Ty, Toy = Ty, Ty = Ty,
Tos = Tys =Ty, Ty =Tz ="Ts Tyo =Ty = Te In the finite theory, the
stresses are given, as shown by Murnaghan, as the elements in the matrix
derived from the formula

T=FzJ

Y.
b’ an

Here py is the density of a volume element after deformation while pg is its
density before the deformation. If V; and Vg be the corresponding volumes
per unit mass of the substance, we have the relations

Pr_ Vo _ 1 |
pe Vg Determinant]’ (12)
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To apply formula (11), we have to first write out the energy as a function
of all the 9 strain components sk, i.e., disregarding the symmetry relation
Nik = Nki- Same procedure has to be adopted when applying (10) and
(9) as well. From this the energy derivative matrix d$/onj; has to be
obtained and the product matrix of J, 3¢/d) and J* be formed. This has to
be finally multiplied by pp/pg = (1/det.J). Such calculations are in
general laborious.

Whether the stress formula is regarded as based on (10) or (11), it is
easy to see, on differentiating ¢, that the first order coefficients ¢;, ¢z --- Cs
must be equal to the initial stress components T,% T, ... T whenever
such stresses are present. When we consider the superposition of strains
8ny, 87y .. Smg over finite strains m,% n,° .. ne° caused by stresses T,0, T,
-+ TY%, the general form of ¢; will be

¢y = T1%n; + T8, + T30, + 2T %0, + 2T %m5 + 2T ;%84.

When the initial stress is a uniform hydrostatic pressure P, which is the case
under consideration in the present paper,

¢ = —P 31y + 875 + 375) (14)

—P being used for the stress, since P is generally kept positive. This first
order term in the energy will not occur whenever the energy is measured
from an initial state of zero stress.

The second order energy ¢,, being a quadratic form in the %’s, contains
as coefficients the usual second order elastic constants, which correspond
with the generalized Hooke’s Law, while the third order term ¢; contains
the third order elastic constants as already mentioned, these coming into
play when the strains are large. Following Birch (1947) and Hearmon
(1953), we can write the full energy expression for a substance of cubic
symmetry, when the strains are all measured from the state of zero strain,
i.e., a stress-free state, as

¢ = o + ¢3

— %_1 (2 + 1.2 + 773?) + €12 (9112 -+ 7213 + Mg71)

+ 2¢40 (n4® + 75° + ne%) + Cix (m® + 7* + 75%)

+ Cuaa {172 (1 + 72) + 1273 (m2 + 78) + 7371 (15 + 7]1)}

+ Cragmimans + Caseansne + Craa (mm4® + 1275 + M3767)

+ Cuss {11 (152 + 167 + 2 (% + 067 + 15 (1% + 95D} (15




8 S. BHAGAVANTAM AND E. V. CHELAM

This contains 3 second order constants and 6 third order constants.

The general method followed in writing the third power terms is to expand

s and write it as X Cpgripngne where p, g, r take any values 1 to 6 subject
to the condition p <g <.

When we consider the case of superposition of an infinitesimal deforma-
tion o7 over an initial state of finite strain 7 corresponding to an initial
hydrostatic pressure P, the energy for the 87 deformation should be written,
to be consistent with the above formulation, as

# =8 (5n) = — P (3m + 81y + 815) + 2 (39,2 + 59,2 4 89,2 4
2

bis (87718’72 + 37728"73 + 8’738’71) + 2b44 (8"742 + 8’752 =+ 87]62)' (1 6)

The higher powers are neglected as the deformation 8y is treated as infinite-
simal. The 8y are measured from the 7 state and the energy is per unit
volume of this » state. '

4. EVALUATION OF THE STRAIN ENERGY FOR MATERIAL UNDER
HYDROSTATIC PRESSURE

We now proceed to evaluate the Strain Energy function defined in (16)
in terms of the constants ¢11, Cyy, etc., of %the stress-free state, defined in
(15). For this purpose, we first carry out the finite hydrostatic deformation
of the medium by which a point (a, b, ¢) is moved over to a point (x,, yq
Z9) given by xo=(l+1ma, yo= (1 -+n)b, Zg= (1 + 1) ¢ where

_u_w
1= T 5%
giving the magnitude of the compression as a change of length per unit
initial length. The corresponding Jacobian is

I+ 0 0
Jo= 0 A 0 . . 17)
0 0 I+ 9

From the Murnaghan formulz for strain and stress (7 and 11), we get
the strain and stress matrices respectively as

7 4+ 32 0 0
0 7 + 122 0 (18)
0 0 7+ 1?2
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R
73
/I—M 0 0
o
My - (19)
0 T 0
28
om3
\ 0 0 T

Substitution of the strain matrix values (18) in the energy expression
(15) gives us the energy due to the hydrostatic pressure alone. To obtain
the energy for the initial strain plus the infinitesimal strain, we formulate
the corresponding J. If as a result of this additional strain the point (x,,
Yo, Z,) moves over to (x, y, z), the most general relationship between them
will be given by

x = (1 + 81 xo + 8¢¥a + 852,
Y = 8gxy + (1 + 82) yo + 842,

z = 85%g + 84¥0 + (1 + 83) zo. (20)
'fhe transformation x,—x being thus given by the Jacobian
I + 3, 8¢ 85
J5 = 8¢ I+ 8, 84 : (21)
5 8, 1+ 8,

In formulating J5 in this form with 6 components, we have assumed that
the rotations are removed beforehand. Special cases such as that of a
simple shear, superposed over a finite strain, would require the considera-
tion of an unsymmetrical J. We will not, however, consider such a case
here for the sake of simplicity.

Now substituting the values of x, = (I 4+ 7)a, etc., we finally get the
transformation from the initial position a, b, ¢ to the final position x, y, z as
= Ja
where
J=0+77T (22)
Forming 4 (J*J — E;), we obtain the strain matrix for this entire deformation
7 -+ 8y, as
R + g% q*87¢ g%
q%81s R+ g%, q2dn, (23)
g*ns -~ q*ny R+ g%,
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where R = 7 + 5?%/2 = Initial strain, g =147
Oy =8 + 3 (8,2 + 852 + 8%  Ony =04+ F (8,84 + 8;5, + §58)
8ms = 65 + 3 (8,2 + 8,2+ 8¢9 0n5 = 85 + % (8,05 + 8385 + 8,8
Bng = 83 + 3(8:% + 8,2+ &) me = 8 + £ (8,85 + 8,8 + 8,5
(24)

It should be noted here that we are maintaining the distinction between
the 6 matrix (21) which specifies the displacement, and the &, matrix which
is the strain matrix corresponding to the Js transformation. Further, while
we have taken our additional deformation as infinitesimal, we are still
keeping the square terms §,% etc., in the expression for 84. This is neces-
sary because the energy of the infinitesimal deformation ¢’ will ultimately
have terms up to squares and products of the displacement derivatives §,,
8y, etc. If ¢" contained only quadratic terms in the 8%, it would have been
wholly unnecessary to keep any square of the § in the expression for 8.
However, when an initial stress is present, ¢’ contains linear terms in the
dn which give rise to terms of the second degree in the 8’s as is evident from
(24). Hence we note the important point that, when an initial stress is
present, even an infinitesimal strain thereon will have to be treated as a
finite one only, no approximation being justifiable in the value for the strain
element. After the emergy expression is formed using the correct value
of the strain component, terms higher than the second powers of the dis-
placement derivatives could be neglected, to justify its classification as an
infinitesimal deformation.

We can substitute the values of the strains from (23) to get the total
energy. An equivalent, but somewhat simpler method would be to note
that an increase of 8 from the “y’ state gives rise to an increase of 4dn =
(1 + 7)2 8y in all the elements of the strain matrix. Here 4y is the increase
in strain when the strain is measured with reference to the stress-free state,
while &7 is measured from the state of finite strain 7. As the energy expres-
sion (15) refers to the initial stress-free conditions, any increase of the
energy due to an increment of 47 in the strain, can be most simply got
from the Taylor formula,

B ) 1 22
bat =)= D1 an ] ST VS 4 4,

25)

neglecting higher powers of the 4v. This is the energy of the infinitesimal
deformation when referred to a unit volume of the stress-free state. We

3
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multiply it by 1/DetJ, to refer it to a unit volume of the ‘o’ state [see
cquation (12) in this connection], i.e., by a factor (1 - n)™®. According to
the energy method explained earlier, we equate this quantity to ¢’ to get

(1 + )2 [{R (cy + 2¢15) + R*(3Cy1y + 6Cuaz + Cran)}
X (1 + n)? (89, + Sz -+ On)
+ % {cu + R(6Cyyy -+ 4Cy)} (1 + 0)* (8112 + 8mp® 4 8132)
+ {c12+R.Cro3+R.4Cy35} (141)* (8118m5+ 8998n3+4- 89387;)
+ 4 {dcgy+R (2C144+4C155)} (1+1)* (3948752 5963 ].

, b
= ¢ = — P (1, + Oy + Om3) + ‘21“1 (8m® + 8ny® + 812)

+ b1z (81975 + 8gdn5 + d758n)
+ 2b44 (314 + On5° + dngd). (26)
Equating the coefficient of &z, on either side, we immediately get

9 2
— P = (c13 + 2¢1) 1 + "7 / T (n + i + /2)? (BCi1 + 6Cpys + Crps)

which, on development in powers of % and retaining up to 7%, becomes

— P =9 (i + 2¢10) + 1 (3C111 -+ 6Cyyp 'l‘ Cras — '2" - 6'12) 27

In the same manner by equating coefficients of 8n,%, 67,87, and 87,2 we get
byy = ¢ + 7 (e + 6Cyyy + 4Cy30) + 72 (9Ci1y + 6Cyy,) (28)

b = €i0 + 71 (s + 4Cuns + Cud) + 72(6Cs + 3Ci ) (29)
C
b= cu+1 (544 + %ﬂ + C155) + 7? (Z‘ Cras + % C155) . (30)

5. FErrecTivE ELASTIC ENERGY AND EFFECTIVE ELASTIC CONSTANTS

So far our task has been to derive an expression for the additional strain
energy due to an infinitesimal deformation in powers of the strain components
&n, each of which however involved not only terms linear in the §,, §,, etc.,
but quadratic terms in them as well. For further discussion on the elastic
behaviour of the substance from the “y’ state, it will be necessary to express
this energy in terms of 3 --- 8¢. Substituting from (24) in (16) and retain-
ing terms up to the second power of &’s only, we get
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H = — P+ 8+ 89 + F (b — P) B2+ 82 + 859

+ b12 (8,185 + 6305 + 838,) + (2044 — P) (842 + 852 + 842).
(€29

The expression ¢’ refers to the total deformation energy which should
be rendered available from external sources in order that the deformation
n to 1 -+ 39 could be effected on a unit volume element in the 5 state. It
has to be remembered however that an external force, namely the hydrostatic
stress, is already present and there is the potential energy associated with
this force. When displacements resulting in deformations 8, §,, §, takc
place, an amount of energy AW = — P (8, - 8§, + §,) is released from this
external potential energy. In other words the work done by the existing
external force in this displacement which is AW can go in, as increase in
internal energy, i.e., the strain energy, and thus meet the part of the total
requirement 4. Hence the extra energy, that should be made available in
order that the deformation 7 to » + 8 may take place, is given by de = ¢’
— 4AW. ¢, which is the effective elastic energy, represents the energy asso-
ciated with an infinitesimal deformation which takes place from a state of
finite strain, just as the usual elastic energy ¢ refers to a similar deformation
of a state with zero initial strain. ¢, is thus obtained from ¢’ by the removal

of the linear terms —P (8; + 8, + 8;). We have
be=¢' — AW = ¢' + P (5 + 8 + &) = T (5,2 + 5,2 + 5,2)

+ €12 (8105 + 8,85 + 8381) 24408, + 5% -+ 8¢?) (32)
where

Cu=by—P=cy+ 1 (2c11 + 2¢15 + 6C,y; + 4Cy12)
+ 7?2 (12C111 + 12Cy5 + Cyps — 921‘1 — 012)

C'1o == by = c15 + 7 (c1y + 4Cy1z + Cras) + 7* (6C112 + g C123)

3 .
+7? (§ Cui + 3Cypp + gzlﬁ + gClM

3 c c
T3Cm =g —5) (33)
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The new constants ¢'y;, ¢'1s, ¢'44 Will be called the effective elastic constants.
While ¢, could have been directly derived by substitution of relations such
as Ony = 8; + 3 (8,2 + 85% + 8¢%), in the function ¢, the development of
an intermediate function ¢’ as has been done in this paper helps us to retain
dn as it is, till a convenient stage is reached, whereafter ¢, could be easily
deduced. This reduces the labour involved in a full substitution of 8y from
the beginning itself.

The 8, &, ... &g are the displacement derivatives. In the infinitesimal
theory, they are directly identified with the infinitesimal strain components
themselves. We can therefore get the stresses required for effecting the
§ deformation by the usual processes of differentiating the appropriate
strain energy function, which in this case is ¢.. We thus obtain for the
additional strains 1, #, ...ty the relations

1= €101 + €12 (85 + &5) (34)
with similar equations for 7, and #; and
t4 == 2014484 (35)

with similar equations for 75 and 75 (34) and (35) are indicative of the
linear relationships which connect the additional stresses with the additional
strains through the effective elastic constants ¢'y;, ¢'19, €44

6. DEerivaTiON OF EFFECTIVE ELASTIC CONSTANTS FROM
STRESS MATRIX METHOD

In the foregoing sections we have indicated the derivation of the effective
elastic energy and the effective constants from the energy method. It is
also possible to derive the same from the stress matrix and this method has
been adopted by some workers (Birch, 1947; Hughes and Kelly, 1953). The
method is not simpler, since in any case, the energy function has to be
evaluated as an essential step for the derivation of the stress from the Murna-
ghan formula T = (pg/pa) J (24/2m) J*. We form the appropriate matrices
for an (n + §) transformation, and after the product matrix of all the three
matrices J, 3¢/dn, J* is worked outand the same is multiplied by py/pg, we
retain only the constant and terms linear in the &’s. This gives the total
stress appropriate to an n -+ & deformation. From this, the extra stress
appropriate to the infinitesimal deformation has to be found out. A direct
subtraction like T,.5 — T, to obtain the extra stress is incorrect, since the
stress, being referred to the final state, has different reference conditions for
T,+s and T, (which is really the pressure P in our present case). In this
respect the position is more complicated than in the energy method. Whereas
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¢ (n + 8) — & (y) employed in our energy method is an allowed subtraction
as both refer to the common condition of a state of zero stress, \T,.; — T,
in the stress matrix method is not an allowed subtraction in view of the
difference in the reference frames. We have to refer T, 5 and T, to common
reference conditions and then deduct the effect of the pressure. Birch cal-
culated the total stress Ty, = T; and equated it to an expression — P + ¢'1;8;
+ ¢'15 (8, + 85), wherein he identified ¢'yy, ¢35, etc., with the effective elastic
constants. However, they would be so only if Ty; 4+ P (it has to appear
in this form as Ty is negative while P is kept positive) represents the extra
pressure. But as pointed out earlier, the removal of the pressure term in
this manner from Ty is not justified. Likewise he calculated Ty, and on
the basis that there is no initial shearing stress he identified Ty, with 2¢’ 4,5
Here again, he has not taken into account the fact that a pressure P in an
n state is equivalent to a stress tensor of a somewhat different type when
referred to the n + 6 state; the representation of the pressure in the 5 -+ &
state has in fact a component —P&; in the Tg = T,, term, and —P (1 — &,
— §,) in the Ty, term as will be shown in the next paragraph. So, as long
as the Murnaghan formule for stress, which refer everything to the final
state, are employed, the pressure should also be referred to those final con-
ditions, and to obtain the excess stress we have to subtract — P (1 — §, — §,)
from T,; and similarly subtract — P8; from Tj,. As the correction does
not involve §;, ¢’y is unaffected and it follows that ¢’;; as derived by us
should be identical with that obtained by Birch. As the 8, term in Ty, now
comes with an additional correction —P3,, the value of ¢’;, obtained by
Birch will have to be corrected by subtracting P. Likewise, ¢’,, obtained
by him should be corrected by the addition of P/2. We give below the
values obtained by Birch which were developed up to the first power of 7
along with our values up to the same power, although in the actual working
given by us earlier, we have developed up to 72

Values of Birch Values obtained by authors
'y = G+ (2013 +2015+H6C1; +4C110) ¢'1n = 13+ (2013+261546Cy3,+-4Cyy)
¢'12 = €12+ (Cras+4C110—C11—C12) ¢'1a = €19+ (Crg3+4Cy14-10)
C
Cad' = Caa + 7 (044 + €1 + 2642 1244 | Cu=cu+n (__1 + C1g + Cgq 4 288 C144
+ C155) . + C155)

— P =n(en + 269 : — P =9 (c11 + 2¢y5)
' (3
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The value of P when referred to the final 5 -+ 8§ conditions can also be
obtained by using the formula given by Murnaghan T2%dS® = TdST where
T*® is the stress in an initial frame with a surface area element given by 4S9,
T the stress in the final state with an element of area dS*. The relation
between dS* and dS% is

ds® = Pe (y¥)-1 gse, (37)
Px '
Hence we get
Te = Pa (I%)
Px '
or
T =z rayx, (38)

Pa

In our case, the » state is the initial state and the » + 8 state is the final state.

Hence
1+ 8 86 8
J=J% = 8¢ 14+ 8 8,
S5 3, 1+ 6,
and
Pz 1
Pa det. J°

Substituting these values, we find that the stress — P in the n state appears,
in the 7 -+ & state, as the stress given by the matrix

—'P (1""82‘—' 83) "'"PSG _P85
—"‘P85 ""'P84 ""P (1“'81—82)

Hence these matrix elements have to be subtracted from Tyy, Ty,, ctc., before
the correct extra stress is obtained.

Instead of referring P to the final o 4 8 state and removing its effect
from Ty, Tie €tc., one could also refer the total stresses Ty, Ty, etc., to
the » state and then remove P directly. This will not involve any modifica-
tion of the pressure, whereas the stresses, since they are referred to the
n state as the initial state, can be deduced from the simpler formula T¢ =
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J(34/om). Here T is what Murnaghan (1951) calls the modified stress
matrix. It can be verified that results identical with the above are obtainable
by such a procedure as well.

7. DISCUSSION OF RESULTS

Experimental data concerning the third order constants are VETy meagre.
Whatever is available [Hearmon (1953), Hughes and Kelly (1953)] suggests
that all these constants are negative and an order of magnitude larger than
the second order constants. In the discussion given by Hearmon (1953),
the data obtained by Lazarus (1949) concerning ¢’;;, in respect of the cubic
crystals KCl, NaCl, CuZn, up to hydrostatic pressures of 10,000 bars were
considered. Hearmon plotted the ratio ¢'ix/cik against v and obtained
a nearly straight line relationship. Using the values of the slopes of these
lines, he derived values for the 3 third order combinations Ca» Cp, Cqg given
by .

Ca == 6C111 + 4C112§ Cb = C123 + 4C112; Cd = %C144 -+ C155-
In NaCl, for example, C, was — 100, Cp was —14 and Cqg was — 11, in
units of 10 dynes per sq.cm. The corresponding values of the second
order elastic constants are roughly c¢;; = 4-9, C1p =12, ¢y =1-2. In
view of the method employed, Hearmon has cautioned that the accuracy
of these values is not likely to be high. However, the order of magnitude
of the third order constants suggested by these calculations seems to be
correct, and further work of Hughes and Kelly (1953) supports this view.

As the readings were taken in a portion of the (¢'ik/cik, 7) graph which
was nearly straight, it is clear that, in this region the 72 term in the formulse
(33) could be neglected. For the same reason, there would not be any
appreciable difference whether Birch’s expressions of the effective elastic
constants, or those derived by us from the energy expression method are
used. When, however, we use the values of the third order constants as
derived above for discussing the behaviour of the energy function for large
7, the 9? term, as also the effective elastic constants as derived by us from
the energy function will have to be used.

Thus, neglecting the second order constants in comparison with the
third order ones, we find from (33) that each of the effective elastic constants
can be represented as,

ik = cik + An + By? (40)
where A equals Cq, Cp or Cg respectively as defined earlier, and B is nearly
equal to 2A in case of ¢';; and 3/2 A in case of ¢';z and more than 3/2 A in
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case of ¢’y4. A is ordinarily negative and as  itself is negative for compres-
sion, the formula shows that the elastic constants should, as a rule, increase
with increasing compression, so long as 7 is not too large. Such an increase
is to be expected, since these elastic constants express the magnitude of
energy required for deforming a substance which is already in a compressed
state. As the compression increases, the energy required for compressing
further should naturally increase indicating increasing resistance of the
substance to further deformation. What is interesting, however, is that
the formule (33) and (40) indicate the possibility that the elastic constants
might increase up to a point only and then start decreasing. That this will
happen, other factors remaining unchanged, when 1 + 3y =0 or n =—0-3,
in the case of ¢;; and when n = — 0-25 in the case of ¢;; and less than
— 0-3 in the case of ¢’y, may be inferred by equating (dc';i/dy) to zero.
However 5 = — 0-25 to — 0-3 corresponds to a very large strain difficult
of realisation in practice. Since a decrease of the elastic constants with
increasing pressure is itself indicative of anomalous behaviour, we have to
conclude that matter should be expected to behave in an abnormal manner
when the magnitude of compression becomes as high as 0-25 to 0-3.

This of course is a purely qualitative conclusion, and the magnitude
might well be somewhat different when we develop ¢'i to include 3 terms
also. Other physical conditions such as the temperature are bound to play
an important part and these have not been considered.

8. EFFECTIVE ELASTIC ENERGY IN NORMAL CO-ORDINATES

We note that the function ¢, given by (32) is separable in the variables
34, 85 9 but not in §;, 8,, 83 because of cross-products. To ‘discuss the
behaviour of this function, it is necessary to make a ‘normal co-ordinate
transformation’ so that each variable could be treated independently. We
introduce new orthogonal variables given by

6, = ;‘}3 (8; + 8 + 83)

I
b, = \—/'?:(81 - 32)

Oy = -\—/1—6(81 + 8, — 25,). an
In terms of these, we rewrite (32) as

be = (c'y1 + 2¢'15) 0712 + (' — ') inz—j_f
OGS, @)

A2
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The system will therefore become unstable when any of the coefficients
€'y + 2¢2, ¢y — 32 O ¢'yy becomes negative. Of these, the first is only
hypothetical, because ¢’y; and ¢'y, being initially positive, the term ¢’;;, — C'1o
will, if at all, become negative long before ¢;," + 2¢;,’ does so and we may
safely exclude the first case. As regards the other two coefficients L'y
— ¢'1p) and ¢'y4, We notice that both are identical in the isotropic case.
For such a case, we may take the criterion that as soon as ¢’,, tends to assume
negative values, instability sets in. With the present meagre available data,
it is not possible to calculate the magnitude of the compression at which
this phenomenon sets in for any particular case like the interior of the earth,
However, the form of ¢y, especially in its expression as b,, — P/2 suggests
that with monotonously increasing pressure, the possibility of its becoming
negative at some stage of the compression cannot be ruled out. This is
especially so in substances in which ¢,, goes on decreasing with pressure
such as in the case of KCl even from the very beginning (Hearmon, 1953).
Even if ¢y, increases at first and decreases later due to the importance of
the 7* term, or decreases due to other causes such as the effect of tempera-
ture, a stage will be reached when ¢’y becomes negative. Tt is obvious
that the substance then becomes unstable under the action of shearing stresses
and this may be interpreted by saying that it can no longer sustain shear
waves.

A more detailed discussion of the instability problem, and the exten-
sion of the present work to include a finite initial stress of any type, will be
taken up in subscquent papers.

9. SUMMARY

In order to study the clastic behaviour of matter when subjected to
very large pressures, such as occur for example in the interior of the earth,
and to provide an explanation for phenomena like earthquakes, it is essen-
tial to be able to calculate the values of the elastic constants of a substance
under a state of large initial stress in terms of the elastic constants of a
natural or stress-free state. An attempt has been made in this paper to derive
expressions for these quantities for a substance of cubic symmetry on the
basis of non-linear theory of elasticity and including up to cubic powers
of the strain components in the strain energy function. A simple method
of deriving them directly from the energy function itself has been indicated
for any general case and the same has been applied to the case of hydro-
static copression. The notion of an effective elastic energy—the energy
require to effect an infinitesimal deformation over a state of finite strain—
has been introduced, the coefficients in this expression being the effective
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elastic constants. A separation of this effective energy function into normal
co-ordinates has been given for the particular case of cubic symmetry and
it has been pointed out, that when any of such coefficients in this normal

form becomes negative, elastic mstability will set in, with associated release
of energy.
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