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Abstract

Motivation: The major signal in coding regions of genomic
sequences is a three-base periodicity. Our aim is to use
Fourier techniques to analyse this periodicity, and thereby to
develop a tool to recognize coding regions in genomic DNA.
Result: The three-base periodicity in the nucleotide arrange-
ment is evidenced as a sharp peak at frequency f — 1/3 in the
Fourier (or power) spectrum. From extensive spectral
analysis of DNA sequences of total length over 5.5 million
base pairs from a wide variety or organisms (including the
human genome), and by separately examining coding and
non-coding sequences, we find that the relative height of the
peak at f = 1/3 in the Fourier spectrum is a good dis-
criminator of coding potential. This feature is utilized by us to
detect probable coding regions in DNA sequences, by
examining the local signal-to-noise ratio of the peak within
a sliding window. While the overall accuracy is comparable
to that of other techniques currently in use, the measure that
is presently proposed is independent of training sets or
existing database information, and can thus find general
application.

Availability: A computer program GeneScan which locates
coding open reading frames and exonic regions in genomic
sequences has been developed, and is available on request.
Contact: E-mail: rama@jnuniv.emet.in.

Introduction

The gene identification problem (Fickett, 1996), namely the
identification of protein-coding genes in DNA sequences
through computational means, is of great current importance.
The worldwide initiative on genome sequencing has necessi-
tated the development of new approaches to assess rapidly the
potential of a given nucleotide sequence in a functional con-
text. Genome projects have given rise to an exponentially
growing amount of genetic information, much of which is
novel: even in a simple eukaryote like Saccharomyces
cerevisiae, less than half the number of potential gene
sequences were known prior to the recently completed Yeast
Genome Project.
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A number of methods have been proposed for gene
detection, based on distinctive features of protein-coding
sequences. These have recently been comprehensively
reviewed (Fickett and Tung, 1992; Fickett, 1996). The
different methods are based on a variety of contrasting
characteristics of protein-coding DNA sequences and DNA
sequences that do not encode proteins. These methods
employ, for example, differences in the patterns of codon
usage (Staden and McLachlan, 1982) or oligonucleotide
frequencies (Shulman etal., 1981, Fickett, 1982; Borodovsky
et al., 1986, 1994), or train neural nets (Lapedes et al., 1990;
Uberbacher and Mural, 1991; Farber et al., 1992; Xu et al.,
1994; Snyder and Stormo, 1995) to recognize the distinctive
features of the two sets. Other techniques use linguistic
methods (Dong and Searls, 1994; Mantegna et al., 1994) and
correlation functions (Li, 1992; Peng et al., 1993; Ossadnik
et al., 1994; Buldyrev et al., 1995). At the same time,
comprehensive evaluations of the various methods suggest
that they cannot be expected to work equally well for all
genes (Burset and Guigo, 1996), and constant refinement is
needed to evolve better methodologies. There is also a need
(Fickett, 1996) for new methods of gene prediction which
utilize features of gene structure that have not so far been
incorporated in programs already available.

In this paper, we investigate a Fourier technique based on a
distinctive feature of protein-coding regions of DNA
sequences, namely the existence of short-range correlations
in the nucleotide arrangement. The most prominent of these is
a 1/3 periodicity, which has been shown to be present in
coding sequences (Fickett, 1982). The signature of this (and
indeed any other) periodicity can be seen most directly
through the Fourier analysis (Tsonis et al., 1991; Voss, 1992)
as a spectral peak. In the present work, we analyse genomic
sequences from different organisms, and verify that such
periodicity is universal for protein-coding sequences and is
absent in genomic sequences which do not code for proteins.
The quantitative measure that we focus on is the relative
strength of this periodicity, which we then use in order to
develop a simple technique to predict genes (with and without
introns) in unknown genomic sequences of any organism.
The present method, like other Fourier-based methods, offers
some advantages, namely that it is quite easy to apply and
requires no prior knowledge of the sequence to be analysed.

The origin of the period-3 signal in protein-coding
sequences derives from the triplet nature of the codon. This
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Table 1. Summary

Group

Fungus
Fungus
Insect virus
Protozoa
Bacteria
Bacteria
Nematode
Mammal
Various
Various

of genomic sequences studied

Species

S.cerevisiae III
S.cerevtsiae VIII
A. californ ica
E.histolvtica1"
A.vinelandtt
H.influenzae
C.elegans
Humane

Globins1

Actins8

G + C

38.6
38.2
40.7
34 2
62.4
38.2
35 6
51.2
49.6
36.8

ORFsd

216
267
154
26
6

1727
-
-

15

Genesb

54
140
51
26
6

933
146
24
15
15

ORFs with

198
255
137
26
6

1667
-
_

15

Genes with

51
139
49
26
6

927
146
24
15
15

"Total number of ORFs as reported in the literature.
ORFs positively identified as coding for proteins through homology, detection of the corresponding c-DNA

cThe G + C content quoted is the average over genes only. Data from Sehgal et al. (1994) as well as GenBank. The G + C content is the average over the
sequences analysed.
H.K.Das, private communication

eThe human sequences used in this study are those used by Uberbacher and Mural (1991) for GRAIL.
fThe GenBank locus names of the sequences studied are: ACAACTI, CELACI, DROACT2A, BOVACTI, BOVACT2, BOVACT2, RABACMAI,
RABACMA2, CHKACACA. QULACASK, SLMACT15. SLMACT21, SOYACT1G, MUSACACM, MUSACASA, HUMACBPA1. The G + C content quoted
is the average over all the actins from different species.
8The GenBank accession numbers of sequences studied are: JOO 153. JOO 182, J00413, J03082. KO 1714, K03256. M17601, M17602, M17909. M61740, V00491,
VOO5I3, XOO371. X00372, X00373, X03248 and X04862. The G + C content quoted is an average over all the globin sequences from different species.

fact alone is, however, insufficient to explain why coding
regions exclusively have the signal, while non-coding regions
overwhelmingly do not, and the reasons for this distinction lie
in the unequal usage of codons (codon bias) in coding regions
(Tsonis et al., 1991), as well as in the biased usage of
nucleotide triples in genomic DNA (the triplet bias). The
latter bias comes in part from the unequal usage of the amino
acids in naturally occurring proteins, and is universally
present. The former bias arises from the unequal usage of the
codons corresponding to a given amino acid, and is specific to
a given organism. In order to explore the role of the two types

of compositional bias in generating the period-3 signal, we
have performed a variety of numerical experiments. Our
results indicate that while codon bias does play a role, it is,
however, not the primary reason for the periodicity.

Algorithm

The Fourier analysis described below has been performed on
nucleotide sequences, of total length over 5.5 Mbases. These
sequences (listed in Table I) include the complete sequences
of yeast (S. cerevisiae) chromosomes III (Oliver et al., 1992)
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Fig. 1. Typical Founer spectra for (a) a coding stretch of DNA and (b) a non-coding stretch from S.cerevtsiae chromosome III.
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and VIII (Johnson et al., 1994); the genome of Autographa
californica nuclear polyhedrosis virus (Ac-NPV) (Ayres et al.,
1994); 2.2 Mb of contiguous sequences of Caenorhabditis
elegans chromosome III (Wilson et al., 1994); several cDNA
and plasmid sequences of a protozoan parasite Entamoeba
histolytica (Sehgal et al., 1994; as well as GenBank); the
genome of Haemophilus influenzae (Fleischmann et al.,
1995); a few genes from the bacterium Azotobacter vinelandii
(H.K.Das, private communication), and human genomic
sequences (Bilofsky and Burks, 1988).

A sequence of N nucleotides may be formally viewed as a
symbol string, {xpj = \,2,...,N), where x, is one of the four
symbols A, T, G and C, and denotes the occurrence of that
particular nucleotide in position j . In order to define the
Fourier spectrum for a genomic sequence, we adopt the
following procedure. One can define a binary indicator
function or projection operator (Voss, 1992; see Figure 1 of
this paper for a graphical illustration of the use of the
projection operator) Ua which selects the elements of the
sequence that are equal to the symbol a, namely Ua(xj) = 1 if
Xj is a and 0 otherwise. Using the operators UA, UT, Uc and
Uc successively on a DNA sequence yields four binary
sequences, as illustrated below:

Sequence G G A T A T C A C T T T A G A G
Apply UA 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0
Apply UT 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0
Apply Uc 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1
Apply Uc 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

Thus, any DNA sequence can be converted to four binary
sequences, which can then be Fourier analysed in the normal
manner, to examine correlations between the symbols. The
total Fourier spectrum of the DNA sequence is (Silverman
and Linsker, 1986; Li etai, 1994) the sum of these individual
spectra, namely:

S(f) s
No

(1)

where the discrete frequency/ = k/N, with k = 1,2, Nil.
Sa(f) is the partial spectrum corresponding to the symbol
a = A, T, G or C. The average of the total spectrum, S. can be
calculated (see, for example, Chechetkin and Turygin, 1995)
from the frequency of occurrence, pa of each symbol (a =
A,T,G,C) as:

s - 1
Nil

'S(*W) = i (2)

For protein-coding sequences from a variety of organisms,
the Fourier spectrum [equation (1)] reveals the characteristic
periodicity of three as a distinct peak at frequency/ = 1/3 (a
typical pattern is shown in Figure la). No such 'peak' above
the noise level is apparent for non-protein coding sequences

such as rRNA, intergenic spacers and introns, which have a
flat Fourier spectrum devoid of any peiodicity (see Figure 1 b).
In order to contrast the two types of spectra, we focus on the
signal-to-noise ratio of the peak a t / = 1/3, namely:

= S(\/3)/S (3)

Our survey of a large number of coding and non-coding
sequences from a variety of organisms is summarized in
Table I, which gives details of the systems studied, and Figure
2, which shows cumulative distributions of the signal-to-
noise ratio for coding and non-coding sequences. The solid
curve in Figure 2 shows the fraction of coding sequences with
P less than the abscissa, and the dashed curve shows the
fraction of non-coding sequences with P greater than the
abscissa. The two distributions can be clearly seen to have
only a small area of overlap: this suggests, as is made explicit
below, that a coding measure can be devised from this
observation.

We use the value P — 4 as a discriminator between coding
and non-coding sequences. From the data presented in Table I
and Figure 2, it is evident that the bulk of coding sequences
(~95%) from all organisms tested so far satisfy this criterion.
Similarly, almost 90% of the non-coding regions have P < 4;
these sequences were taken from the intergenic regions of the
several organisms used in this study, including S.cerevisiae
chromosomes III and VIII, baculovirus (A.californica),
H.influenzae, E.histolytica (a total of >1.0Mbase). The bars
in Figure 2 indicate the variation in values of A1 from organism
to organism; there appears to be no particular systematics,
since the signal-to-noise ratio depends strongly on the length
of the sequence.

One set of counterexamples that we have seen to the above
are coding sequences with P < 4. The few such cases are
instructive: for instance, the Mata proteins alone in
S.cerevisiae chromosome III do not show any peak. Whether
this fact is related to unusual amino acid organization of these
proteins is currently being investigated. The other set, namely
non-coding sequences with P > 4, are slightly more common,
but these can often be easily recognized as non-coding from
the existence of several other periodic features (the whole
spectrum appears more grassy, in contrast to coding
sequences where the / = 1/3 peak is invariably the only
prominent spectral feature). From our analysis so far, the non-
coding sequences with P > 4 do not appear to belong to any
specific sequence category.

In order to utilize this measure to predict potential protein-
coding sequences, we first note that the spectral approach can
be applied even to fairly short gene sequences (even of the
order of a few hundred bases). A genomic sequence of
unknown functionality can be analysed for putative protein-
coding properties by the following procedure. An M
nucleotide sequence window of the complete sequence is
analysed according to equation (1), and the existence of a
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Fig. 2. Cumulative distributions of local peak-to-noise ratio at frequency/ = 1/3 for the sequences studied. The solid curve (right) is the fraction of coding
sequences with P less than the abscissa, while the dashed curve (left) is the fraction of non-coding sequences with P greater than the abscissa. Thus, almost 95%
of all coding sequences have P 5 4 , while nearly 90% of all non-coding sequences will have P £ 4. The indicated bars show the variation in the distribution
among the different organisms studied

peak at / = 1/3 can be used to identify whether this sub-
sequence forms part of a coding or non-coding region. For
each window, the local signal to noise ratio, PMU), is
computed according to equation (3) (j being the position of
the centre of the window of length M). Note that this involves
the calculation of a single spectral line, and not the total
spectrum.

By sliding this window along the sequence, we generate a
graph of PM(j) versusy which makes it possible essentially to
'read off the probable coding regions: these are those
portions of the sequence with PM > 4. To identify the exact
end points of the coding region, the sequence is scanned to a
distance of M nucleotides up- and downstream of the above
identified region so as to locate the initiation and termination
codons, respectively, in any of the six possible reading
frames. Having obtained these endpoints, we generate the
total spectrum [equation (1)] of the putative gene in order to
verify that the spectral feature of / = 1/3 is distinctive and
characteristic of a coding region. This double check is useful
in reducing the number of false positives.

The window length, M, and the discrimination value need
to be chosen in any implementation of the method. In our
study, we have taken the window length as M — 351 for the
analysis of genomic sequences of yeast and insect virus, since

there are very few intron-containing genes in these sequences,
and open reading frames (ORFs) of length less than 300 bp
are not frequently encountered. A window length in the range
of 250-400 gives similar results, although the number of
false negatives in the sequences studied was least for 351.
Windows of length less than 250 have increased noise and
somewhat poorer statistics, while those greater than 400 tend
to miss the ORFs due to numerous overlaps. For higher
organisms, where we expect introns, shorter windows
(M ~ 150) were used. As regards the discrimination value,
an alternate way of deciding the optimal value of P to use as a
discriminator would be to take the minimum in the sum of the
two curves in Figure 2. Our results indicate that using a value
of PM = 5 would not give drastically different results. Lower
values of the threshold increase the number of false
positives—we get more and more overlapping windows,
and subsequent ORF analysis tends to pick up all ORFs,
whether coding or not.

Implementation

In this section, the technique described above is applied to a
variety of genomic sequences from several different organisms.

The results of our analysis of yeast chromosomes III and
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ORFs
ORFs detected1

False positives detected
Specificity
Sensitivity

Genes reported
Genes detected
Sensitivity

216
187

0
1.0
0.87

54
44

0.81

267
226

0
1.0
0.85

140
123

0.88

Table II. Summary of results for S.cerevisiae chromosomes III and VIII, and
H.influenzue

Chromosome III Chromosome VIII H.influenzae

1727
1499

0
1.0
0.87

933
867
0.93

VIII, and the genome of H.influenzae are given in Table II.
We have used a scanning window of length M — 351. Of the
483 probable genes (ORFs) reported in S.cerevisiae chromo-
somes III and VIII (Oliver et al., 1992; Johnston etal., 1994),
our method locates 413 of these exactly. Of the 194 identified
genes (i.e. through homology search or detection of corres-
ponding c-DNA), the present method locates 167, giving a
sensitivity index (sensitivity = number detected/number
reported) of 0.86 at the gene level. By the procedure des-
cribed in the previous section, namely first identifying a
probable gene and then verifying that the Fourier spectrum is

Table IIIA. Summary of results for human and C.elegans genomic sequences

YCR85w YCR87w
J r

YCR86w

YCR88w

266

2500

Fig. 3. Window analysis of the local signal-to-noise ratio. PM(J) for (a) a
portion of the 315 000 nucleotide chromosome III of Scerevisiae from
location 260000 to 265 000. The identified ORFs, from Oliver et al. (1992),
are indicated at the top of the figure. The length of the window was 351 bases
andy varies in steps of three. The baseline is set at P/u(j) — 4- (b) Window
analysis for the /3 globin of goat, of length 2278 bp—the exons correspond to
nucleotides 471-562, 689-911 and 1754-1882; the second intron (911-
1754) is much longer than the first intron (562-689). These are indicated at
the top of the figure. We used a window of length 150 bases and the baseline
is also set at PM(J) = 4.

C.elegans Human

Genes reported
Genes detected

Exons reported
Exons detected
Exons > 100 bp reported
Exons > lOObp detected

146
146

982
837
844
764

24
24

141
119
93
86

Table IIIB. Summary of results for exon detection in ALLSEQ (Burset and
Guigo, 1996)

Sensitivity Specificity Approximate Missing exons Wrong exons
correlation

0.66 0.60 0.53 0.31 0.35

indeed confirmatory, the number of false positives is
drastically reduced; in this instance, the number is actually
zero and thus the specificity [specificity = number detected/
(number detected + false positives)] is exactly 1.00. A few
genes, for example the mating type, do not show this
periodicity, and thus will not be identifiable through our
analysis. Similar observations hold for the analysis of the
H.influenzae genome.

Our method has been applied to genes that contain introns
as follows. We first applied our technique to the 2.2 Mbase
C.elegans and several human genomic sequences, as well as
globin sequences. In this analysis, we shortened the window
size to M = 150, and this sets the limit on the shortest exonic
regions that can be predicted with confidence to ~ 100 bp. A
representative analysis using goat /3 globin is shown in Figure
3b. The three exonic regions and the intermediate introns can
be clearly distinguished, and precise boundaries of the exons
can be demarcated by using the canonical splice acceptor and
donor sites.

A summary of our results is given in Table IIIA. All 24
genes reported to be present in the human sequences and all
146 of those in C.elegans could be correctly identified (i.e. at
least one exon in each of the genes was identified). Within the
genes, we identified 119 out of 141 exons in human
sequences, and 837 out of 982 exons in C.elegans. However,
when exons shorter than lOObp were excluded from the
analysis, 86 out of 93 such exons could be identified in the
former set and 764 out of 844 in the latter, signifying a
sensitivity of over 0.9. Our data are comparable to predictions
of other methods (Uberbacher and Mural, 1991; Snyder and
Stormo, 1995) that locate exonic regions in genomic
sequences.

A more stringent test of gene structure prediction is
possible, and to evaluate the efficiency of our method vis-a-
vis established methods currently in use, we have applied our
technique to the set of sequences (ALLSEQ) recently
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Fig. 4. The persistence of the spectral signature of myosin from E.hislolytica upon artificially altering the nucleotide sequence, (a) The Fourier transform of the
myosin DNA sequence, (b) The Fourier transform with the codon bias removed, by translating the sequence to the protein, and regenerating a nucleotide
sequence with the codons corresponding to a given amino acid used with equal probabilities, (c) The Fourier transform with the genetic code scrambled, namely
by translating the sequence to the protein and then assigning an arbitrary genetic code.

compiled by Burset and Guigo (1996), to benchmark a
number of different gene-structure prediction programs. We
chose a random subset of 75 sequences and obtained the
results shown in Table IIIB, which indicate that the
sensitivity, specificity and approximate correlation (Burset
and Guigo, 1996) of our method GeneScan is comparable to
(if somewhat poorer than) programs such as GeneParser2
(0.65, 0.78, 0.65), GenLang (0.70, 0.73, 0.65), GRAIL II
(0.70, 0.83, 0.74) and SORFIND (0.68, 0.83, 0.70). However,
this comparison may not be entirely appropriate since the

dataset ALLSEQ is designed for complete gene recognition
and our method is directed toward coding region recognition;
we feel that it will be possible to improve our algorithm
greatly with further refinements or by incorporation in more
sophisticated programs.

Discussion

We now briefly address the question of the origin of the
spectral signature peak a t / = 1/3, which is obviously related

268

 by on A
ugust 19, 2010 

http://bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org


Gene prediction by Fourier analysis

to the triplet nature of the genetic code. Beyond this, however,
the reasons for the distinction between coding and non-coding
genomic sequences are less clear. From our present analysis
of coding sequences with widely differing base composition,
the periodicity appears not to be a consequence of codon bias.
In numerical experiments (see Figure 4) when this bias was
removed—by using all codons corresponding to a given
amino acid with equal frequency—we observed that the
resulting genomic sequences continued to show a sharp peak
at / = 1/3, although with changed P. The peak remained
prominent even when the nucleotide sequence was changed
completely by assigning arbitrary codons to a given amino
acid, or when the four-symbol sequence was mapped into a
two-symbol (purine-pyrimidine) sequence. These experi-
ments suggest that the periodicity may be a consequence of
the amino acid sequence in naturally occurring proteins
(Zhurkin, 1981) which manifests itself as a bias in the use of
certain triplets in the coding regions of genomic DNA.

The gene-detection methodology presented here, GeneScan,
while offering a level of predictive accuracy which is com-
parable to other methods currently in use, has some distinct
advantages over and above the ease in its implementation.
Being based on a universal property of coding sequences, it is
independent of a training set of genes from which priors can
be estimated. Unlike neural net-based methods (Uberbacher
and Mural, 1991; Snyder and Stormo, 1995), no a priori
knowledge of the nature and the character of the sequences
that constitute the gene in a specific organism is required.
Unlike methods based on correlation exponents (Ossadnik
et al., 1994), we can work with small genomic sequences
(some sequences in ALLSEQ are 450 bases or so in length).
In contrast to methods based on codon usage patterns
(Borodovsky et al., 1986), the method is relatively indepen-
dent of variations in base composition.

An important feature of our method is that it is robust with
respect to sequencing errors resulting in frameshift mutations.
We have performed several tests by introducing sequencing
errors of up to 1%, when the overall Fourier spectrum
changes very marginally. When the number of exons is large,
and there are particularly short exons, though, sequencing and
frameshift errors such as insertions and deletions can vitiate
the technique as well. Other limitations that should be pointed
out are that the boundaries of the exonic regions through
Fourier analysis alone (i.e. without searching for conjugate
splicing sites) could be fixed only approximately, to within 54
bases on average. Our method can profit by incorporating
other, complementary, techniques to locate the precise exon/
intron boundaries. Furthermore, the three-base periodicity
appears to be lacking in a small percentage of genes, e.g. the
genes of the mating-type locus of S.cerevisiae and amoe-
bapore of E.histolytica among others, which makes them
invisible to the spectral analysis. (Exploration of the reasons
for the lack of periodicity is currently under way. Preliminary

analysis shows that some of these genes have highly restricted
amino acid usage.) Given the fact that we do not yet know all
that goes into the making of a gene and how a typical gene
evolved and, further, that all genes may not necessarily obey
the same rules, it is inevitable that different gene-prediction
programs would have varying degrees of success. The
concurrent application of a combination of methods on a
given sequence should circumvent the limitations of indivi-
dual methods (Fickett, 1996).

It has often been emphasized [see, for example, Fickett
(1996)] that the gene sample available in current databases is
perhaps atypical, and this can affect the performance of gene-
finding algorithms. In this regard, an advantage of the method
proposed here is that it does not require a training set, which
makes it independent of new sequences being added to
databases. The measure exploited in this work is universal,
and should prove useful as new and unusual organisms are
studied and novel sequences become available for analysis.
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