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Abstract. DNA topoisomerases have been evolved to solve the topological problems of DNA 
during replication, transcription, recombination and segregation. Discovery of several new 
enzymes and their characterization has necessitated this compilation. This analysis shows the 
distinct evolutionary relatedness of type II DNA topoisomerases. A striking feature is the 
absence of a contiguous stretch of about 160 amino acids in one of the subunits of prokaryotic 
type II enzymes, which might have important implications to their structure and function. 
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1. Introduction 
 
DNA topoisomerases catalyse topological interconversions: supercoiling-relaxation, 
catenation-decatenation and knotting-unknotting of DNA. These topological events 
occur during important cellular processes such as replication, transcription, recom-
bination and chromosome segregation. Thus, the enzymes are essential for the cell 
survival, and hence are ubiquitous. The topoisomerases are classified into two distinct 
subclasses based on the mechanistics of the reaction (Wang 1985; Maxwell and Gellert 
1986). The type I topoisomerases break one strand of DNA and pass the other stand 
through the nick created and change the linking number in steps of one. On the other 
hand, type II enzymes cleave both stands of DNA and pass the duplex through the 
‘DNA gate’ resulting in the change of linking number in steps of two. All known 
topoisomerases form a transient covalent intermediate with DNA through a phos-
photyrosine linkage and reseal after strand passage. Both prokaryotes and eukaryotes 
have been shown to possess multiple topoisomerases, possibly evolved to provide 
division of labour and in certain cases as backup strategies to take care of important 
cellular functions. The bacterium, Escherichia coli contains two type II topoisomerases
bes ides two type I enzymes; the yeast, Saccharomyces cerevisiae has two type I activities
(Wallis et al 1989), and in humans, two isozymes of topoisomerase II have been 
reported (Jenkins et al 1992). Amongst all type II topoisomerases, only DNA gyrase 
has the ability to introduce negative supercoils into DNA in an ATP driven reaction 
(Gellert et al 1976). The heteromeric enzyme has been the subject of extensive study 
(Reece and Maxwell 1991). The second bacterial type II enzyme, topoisomerase IV, has 
strong decatenation and weak relaxation activities. Both the bacterial type II 
topoisomerases have a similar architecture and also, share considerable sequence 
similarity. 
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In this compilation, we have focused our attention on type II topoisomerases. This is 
due to the wealth of information available on these enzymes, their indispensability and 
the degree of conservation amongst the genes from variety of organisms. On the other 
hand, type I topoisomerases are less conserved and only few genes are characterized. 
Since an elaborate discussion of sequence conservation of topoisomerases has earlier 
been presented (Caron and Wang 1993), we have emphasized on the evolutionary 
relationship. 
 
 
2. Sequence alignment and generation of evolutionary trees 
 
The topoisomerase II genes have been characterized from several bacteria, yeast, 
protozoans and higher animals. Table 1 summarizes the source and the length of the 
derived polypeptides. The polypeptide sequences were aligned by MACAW ver 2.0.3 
using BLOSSUM62 (Schuler et al 1991; Lawrence et al 1993). This software allows 
manual editing of the alignment. Also, the GyrB and GyrA polypeptide sequences were 
fused manually and aligned with eukaryotic type II topoisomerase using Multalin 
(Corpet 1988). The multiply aligned sequences were subjected to PHYLIP analysis 
(Felsenstein 1989). The distance matrix was generated by PROTDIST of PHYLIP 
employing Kimura-2 parameter. The output was then analysed by NEIGHBOR 
applying Neighbor-joining method. The UPGMA method was used for NEIGHBOR 
analysis of gyrase and eukaryotic topoisomerase II alignment. The unrooted trees were 
generated using DRAWGRAM and DRAWTREE. 
 
 
3. Results and discussion 
 
This compilation and alignment of type II topoisomerases is an attempt to compile 
complete sequences, identify subclasses and determine the extent of phylogenetic 
relationships. Sequence information on DNA gyrase and eukaryotic type II 
topoisomerase genes has been accumulating in the databank. These reports show 
conservation of amino acid sequence in gyrase and also its partial homology with 
eukaryotic type II topoisomerases. Hence, we have presented the alignment of all 
deduced polypeptide sequences of type II topoisomerases in figures 1 and 2. In order to 
avoid errors in alignment and phylogeny analyses, we have omitted partial sequences. 
The alignment of A subunits of gyrase and topoisomerase IV, given in figure 1A, shows 
the high sequence conservation predominantly in the amino terminal region. The DNA 
breakage-reunion site of subunit A has the sequence AAMRYTE common to all the 
members. The residue Tyr-122 of E. coli GyrA, present in this sequence gets covalently 
attached to DNA through phospodiester bond. On the other hand, the C-terminal 
region does not show such extensive conservation. The dot matrix analysis, however, 
showed repeated sequences within this region in all GyrA sequences (Madhusudan and 
Nagaraja 1995). The C-terminal 33 kDa domain of E. coli GyrA has been shown to bind 
DNA (Reece and Maxwell 1991). 

The subunit B of bacterial type II topoisomerases shows identical patches of amino 
acids scattered through out the sequence. The N-terminal 43 kDa fragment of E. coli
GyrB is known to retain ATPase activity, a characteristic of all type II topoisomerases. 
The crystal structure of this domain complexed with ADPNP has revealed the direct 
interaction between the protein and the cofactor (Wigely et al 1991). These contact 
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Table 1. Polypeptide sequences of type II DNA topoisomerases. 
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points, Tyr-5, Asn-46, Asp-73, Lys-103, Tyr-109, Gln-335 and Lys-337 are positionally 
conserved in all the members, except Spiroplasma citri wherein Lys-337 is replaced 
by Asn. The two important residues, Glu-42 and His-38 (Jackson and Maxwell 
1994) implicated in ATPase activity of the subunit B of the E. coli enzyme are also
present in all the other B sequences examined. A very significant difference is the 
absence of a long stretch of amino acids (158–163 amino acids) in GyrB proteins 
of Gram positive bacteria and Mycoplasma (figure 2B). The same stretch of amino acids 
is also absent in ParE sequences (B subunits of topoisomerase IV) of both Gram 
negative bacteria and S. aureus. It should also be noted here that gyrase and 
topoisomerase IV differ not only in their supercoiling ability but also in their potency of 
decatenation. 

The subunits of bacterial type II topoisomerases were further analysed to under- 
stand the evolutionary relatedness. The unrooted trees are shown in figures 3 and 4. 
The ParC proteins share a branch with GyrA of higher bacteria (figure 3). The ParE 
proteins are located closer to GyrB polypeptides of Gram negative bacteria (figure 4) in 
spite of sharing a common character (the absence of a long stretch of amino acids) with 
Gram positive bacteria and Mycoplasma (figure 2B). The B subunit of bacterial type II 
topoisomerases shows a distinct feature. All the GyrB proteins of Mycoplasma and 
Gram positive bacteria form a monophyletic group while other GyrB polypeptides and 
ParE sequences diverge into another group (figure 3). In case of A subunits, no such 
clear separation could be observed (figure 3). 

The eukaryotic type II topoisomerases also show primary conservation to some 
extent. Although the sequences have diverged, functionally significant domains (like 
 
 

 
Figure 2A. 
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Figure 2. Schematic representation of multiple alignment derived from figure 1. The panels 
(A) (B) and (C) correspond to that of figure 1. The thick sequences correspond to blocks 
sharing significant similarity with the shaded regions representing the conserved sequence. 
The thin blocks represent the regions of the sequence not sharing statistically significant 
homology in the multiple alignment. 
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Figures 3 and 4. Evolutionary relationship among bacterial topoisomerase II subunits. 
Unrooted phylogenetic trees produced from the alignment of A subunits (3) in figure 1A and 
B subunits (4) in figure 1B, using DRAWTREE. 
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ATPase and DNA breakage-reunion regions) have retained the residues important for 
the activities. The crystal structure of 92 kDa domain of yeast DNA topoisomerase II at 
2·7 Å has been reported recently (Berger et al 1996). Whereas the N-terminal 409 amino 
acids constitute ATPase domain that shares homology with bacterial DNA gyrase subunit 
B ATPase region, this domain has been implicated in DNA cleavage and strand passage
reactions required for the topological interconversion (Berger and Wang 1996). This
 
 

 
 

Figure 5. Phylogenetic tree of type II topoisomerases. The bacterial type II topoisomerase 
subunits were fused prior to the alignment. The abbreviations correspond to those given in the 
table 1, with AB representing fused sequences. 
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domain contains GyrB and GyrA like sequences (Caron and Wang 1993). Also, this region 
shows high conservation among eukaryotic type II DNA topoisomerases (figures 1C and 2C). 
Beyond this region, the amino acid sequences of eukaryotic type II DNA topoisomerases 
display less conservation. The cluster analysis of all type II topoisomerases, presented in 
figure 5, shows the monophyletic separation of bacterial sequences from the distinct diphyletic 
groups of eukaryotic enzymes. 
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