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Abstract. The size-dependence of different local reactivity descriptors of dimer A2 and AB type of sys-
tems is discussed. We derive analytic results of these descriptors calculated using finite difference  
approximation. In particular, we studied Fukui functions, relative electrophilicity and relative nucleo-
philicity, local softness and local philicity. The results are explained using the example of the dimer of 
BH3NH3. 
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1. Introduction 

Understanding molecular interactions has been a 
great challenge from both experimental and theo-
retical points of view.1 Many theoretical models 
based on molecular orbital density, charge on atoms, 
bond order etc., have been extensively used in corre-
lating the reactivity of the systems.2 In particular, 
density-based descriptors are known to play key role 
in determining the stability and reactivity of chemi-
cal species. There have been recent studies on the 
qualitative and quantitative description of these con-
cepts and use of these in the selectivity of reactions 
in catalysis, adsorption and molecular recognition. 
 Global reactivity descriptors (GRD), like softness, 
hardness and chemical potential along with concept 
of hard soft acid base (HSAB) principle are widely 
used in describing the reactivity and the stability of 
chemical systems.3–5 On the other hand, local reac-
tivity descriptors (LRD), e.g. Fukui function (FF), 
local softness6–12 etc. have been studied extensively 
in recent years for characterizing the reactivity and 
site-selectivity in chemical reactions. These descriptors 
have been used qualitatively to characterize reacti-
vity of a molecule in chemical reaction. Reactivity 
to specific agents, e.g. electrophilic, nucleophilic or 
radical can be described qualitatively using the above 
descriptors.6,13–17 
 To describe these reactivity descriptors for atoms 
in a molecule, condensed definitions of electrophi-
licity, nucleophilicity etc. have also been proposed 

using electronic population of an atom.10,18 These 
condensed local descriptors have also been used to 
study the site-selectivity in a chemical reaction.6,14,15 
Among different population analysis19,20, Pal et al20 have 
shown that the Hirshfeld analysis provides intui-
tively correct non-negative values of FF. Recently, 
relative electrophilicity and relative nucleophilicity, 
which are ratios of electrophilic to nucleophilic FF 
and vice-versa respectively, have been identified as 
more reliable criteria for intra-molecular reactivity.16 
More recently, Parr and co-workers have defined a 
new concept of global philicity21 from which Chatta-
raj and co-workers have defined local philicity  
indices,22 which have been the subjects of recent 
study. 
 The objective of the paper is to study the size de-
pendence of LRD. In particular we study the exten-
sivity or intensivity of these descriptors by having 
examples of non-interacting dimer. We have used 
the example of dimer of BH3NH3 which has been ex-
tensively studied by many groups owing to formation 
of unusual “dihydrogen bond”.23 The general case of 
separability of the descriptors has also been discussed 
for non-interacting fragments of different types (e.g. 
A–B). Recently, we have discussed the behavior of 
the reactivity descriptors during complexation of BH3 
and NH3 using ab-initio calculation.24 
 The paper has been organized as follows. In §2 
we present a brief theoretical background defining 
the local descriptors and how these have been used 
in the study of reactivity and selectivity. In §3 we 
discuss separabilty of different LRDs. Section 4 pre-
sents the methodology and computational details, 
while §5 deals with results and discussion. 
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2. Theoretical background 

According to the Hohenberg–Kohn (HK) theorem, 
the ground state energy of an atom or molecule is 
written as a function of electron density (ρ).25 
 

  [ ] ( ) ( ) d [ ],HKE r v r r Fρ ρ ρ= +∫  (1) 

with 

 HK[ ] [ ] [ ],eeF T Vρ ρ ρ= +  (2) 

 
where v(r) is external potential and FHK is universal 
Hohenberg–Kohn functional comprising the electro-
nic kinetic energy functional, T[ρ] and the electron–
electron interaction functional, V[ρ]. 
 The first and second partial derivatives of E[ρ] 
with respect to the number of electrons N under the 
constant external potential v(r) are defined as the 
chemical potential (µ) and the global hardness (η) of 
the system respectively.3c,5,26,27 The global softness 
(S) is the half inverse of the hardness. The global 
descriptor of hardness has been known as an indica-
tor of overall stability of the system.3b,28 It is custo-
mary to use a finite difference approximation for the 
computation of µ and η4 
 
 ( ) / 2,I Aµ = − +  (3) 
 
 1

2 ( ).I Aη = −  (4) 

 
The site-selectivity of a chemical system, cannot, 
however, be studied using the global descriptors of 
reactivity. For this, appropriate local descriptors need 
be defined. An appropriate definition of local soft-
ness s(r) is given by7 
 
 ( ) ( )( ) ( ( ) / ) ( / ) (( ) ,v r v rs r r N N f r Sρ µ= ∂ ∂ ∂ ∂ =  (5) 

 
such that 
 

 ( )d( ) ,s r r S=∫  (6) 

 
where, f (r) is defined as the Fukui function.7 It can 
be interpreted (cf. the use of Maxwell’s relation in 
this scheme) either as the change of electron density 
ρ(r) at each point r when the total number of electrons 
is changed or as the sensitivity of chemical potential 
of a system to an external perturbation at a particular 
point r. 

 ( )( ) ( ( ) / ) ( / ( )) .v r Nf r r N v rρ µ= ∂ ∂ = ∂ ∂  (7) 

 
The latter point of view, by far the most prominent 
in the literature, faces the N-discontinuity problem 
of atoms and molecules,29,30 leading to the introduc-
tion7a of both right- and left-hand-side derivatives, to 
be considered at a given number of electrons, N = N0: 
 

 
( )

( ) ( ( ) / ) ,
v r

f r r Nρ+ += ∂ ∂  (8) 

 
for a nucleophilic attack provoking an electron in-
crease in the system, and 
 

 ( )( ) ( ( ) / ) ,v rf r r Nρ− −= ∂ ∂  (9) 

 
for an electrophilic attack provoking an electron de-
crease in the system. 
 The finite difference method, using the electron 
densities of N0, N0 + 1, N0–1, defines 
 

 
0 01( ) ( ) ( ),N Nf r r rρ ρ+

+≈ −  (10) 

and 

 
0 0 1( ) ( ) ( ).N Nf r r rρ ρ−

−≈ −  (11) 

 
A third function describing radical attack, f 0(r), is 
then obtained as the arithmetic average of f +(r) and 
f (r), 
 

 
0 0

0
1 1( ) ( ( ) ( )) / 2.N Nf r r rρ ρ+ −≈ −  (12) 

 
Atom-condensed Fukui functions were first intro-
duced by Yang et al10, based on the idea of electro-
nic population over atomic regions, similar to pro-
cedure followed in population analysis technique.18 
Combined with finite difference approximation, this 
yields working equations of the type, 
 

 
0 0, 1 , ,A A N A Nf q q+

+= −  

 

 
0 0, , 1,A A N A Nf q q−

−= −  

 

 
0 0

0
, 1 , 1( ) / 2,A A N A Nf q q+ −= −  (13) 

 
where, qA,N denotes the electronic population of 
atom A of a system with N-electrons. Using (5) and 



Separability of local reactivity descriptors 

 

499

(13), various condensed local softnesses of an atom 
can be defined.  

 , , , 0,a a
A As f S a= ∀ = + −  (14) 

where +, – and 0 indicate electrophilicity, nucleophi-
licity and tendency for radical attack respectively. 
 Several other reactivity descriptors have been 
proposed. ‘Relative electrophilicity’ (RE) and ‘relative 
nucleophilicity’ (RN) defined as ( f +/f –) and ( f –/f +) 
respectively have been used successfully by Roy et 
al16 for describing intra-molecular reactivity. At-
tempts to use these for inter-molecular reactivity 
have also been made in recent years. Parr et al21 
proposed a global philicity (W) as µ2/2η. Using this, 
Chattaraj et al22 proposed the existence of local 
philicity index w(r) as Wf (r) such that w(r) inte-
grates to global W. The condensed philicity A

aw  in 
the definition is given by 
 

 A A , , , 0.a aw Wf a= ∀ = + −  (15) 

3. Local reactivity descriptors in  
non-interacting regime 

First, we discuss the separation of FF, which is the 
most important quantity in all other local reactivity 
descriptors. In this paper, we focus on the special 
case of a dimer A2 which dissociates into two identi-
cal fragments A. The electron density ρA2(r) at point 
r can be written as  
 

 2 1 2A A( ) A( )( ) ( ) ( ),R Rr r rρ ρ ρ= +  (16) 

 
where, A(R1) and A(R2) are monomers A at different 
positions R1 and R2  
 Let us assume that (N0 + 1) electronic state of A2 
at the geometry of A, i.e. vertical 2A−  fragments as  
 

 2 1 2A A( ) A( ),R R− −→ +  

therefore, 

 2 1 2

0 0 0

A A( ) A( )
1 1( ) ( ) ( ),R R

N N Nr r rρ ρ ρ+ += +  (17a) 

 
but since A(R1) and A(R2) are indistinguishable, there-
fore there exists another degenerate pathway for the 
fragmentation, 
 

 2 1 2A A( ) A( ) ,R R− −→ +  

therefore, 
 

 2 1 2

0 0 0

A A( ) A( )
1 1( ) ( ) ( ),R R

N N Nr r rρ ρ ρ+ += +  (17b) 

 
we can now write them as an average, 
 

 
2 1 2

1 0 00

1 2

0 0

A A( ) A( )1
12

A( ) A( )
1

( ) ([ ( ) ( )]

[ ( ) ( )]

N

R R
N N

R R
N N

r r r

r r

ρ ρ ρ

ρ ρ
+ +

+

= +

+ +
 

     
1 1

0 0

2 2

0 0

A( ) A( )1
12

A( ) A( )
1

([ ( ) ( )]

[ ( ) ( )]),

R R
N N

R R
N N

r r

r r

ρ ρ

ρ ρ

+

+

= +

+ +
 

(17c)
 

 
differentiating w.r.t. N, using the finite difference 
method, 
 

 2 2

2 0 0

A A
A 1( ) ( ) ( ),N Nf r r rρ ρ+

+≈ −   

    
1 1 2

0 0 0

2 1 2

0

A( ) A( ) A( )1
1 12

A( ) A( ) A( )

([ ( ) ( )] [ ( )

( )]) ( ( ) ( ))

R R R
N N N

R R R
N

r r r

r r r

ρ ρ ρ

ρ ρ ρ

+ += + +

+ − +
 

    
1 1

0 0

2 2

0 0

A( ) A( )1
12

A( ) A( )
1

([ ( ) ( )]

[ ( ) ( )])

R R
N N

R R
N N

r r

r r

ρ ρ

ρ ρ

+

+

= −

+ −
 

    
1 2

1
A( ) A( )2 ( ( ) ( )).R Rf r f r+ += +  (18) 

 
On similar lines, the following can be shown as 
 

 
2 1 2

1
A A( ) A( )2( ) ( ( ) ( )),R Rf r f r f r− − −= +  (19) 

and  

 
2 2 2

0 1
A A A2( ) ( ( ) ( ))f r f r f r+ −= +  

    
 

1 2

1 2

1 1
A( ) A( )2 2

1
A( ) A( )2

[ ( ( ) ( ))

( ( ) ( ))]

R R

R R

f r f r

f r f r

+ +

− −

= +

+ +
 

    
 

1 1

2 2

1 1
A( ) A( )2 2

1
A( ) A( )2

[ ( ( ) ( ))

( ( ) ( ))]

R R

R R

f r f r

f r f r

+ −

+ −

= +

+ +
 

    
 

1 2

0 01
A( ) A( )2 ( ( ) ( )).R Rf r f r= +  (20) 

 
From (18)–(20), it can be seen that the FF of the 
dimer at dissociation is nothing but the sum of the 
half of FF of the monomer. The results can be gen-
eralized to the non-interacting associations of n sys-
tems of A i.e; An. 
 It would be interesting to study the behavior of 
the condensed FF of the atoms for the non interact-
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ing dimer. From (18)–(20), the following can be 
written 
 

 

2 1 2

1 2

1
A A( ) A( )2

3 31
A( ) A( )2

3
A

( ) d( ) ( ( ) ( ))

( ( ) d ( ) d )

( ) d , , , 0.

a a a
R R

a a
R R

a

f r r f r f r

f r r f r r

f r r a

= +

= +

= ∀ = + −

∫ ∫
∫ ∫

∫

 

 (21a) 

 
The above integral can be written as the sum of atom-
condensed FFs. Since the system of A2 consists of 
two identical systems A, every atom i of monomer A 
is represented twice in identical manner, 
 

 2A ,A A ,A
1 1

2

, , 0 and 1, 2 .... .

i i

k k
a a

i i

f f

a i k
= =

=

∀ = + − =

∑ ∑  

(21b)

 

 
where k is the number of atoms in the monomer. 

2A ,Ai

af and A ,Ai

af  denotes the atom condensed FF of 
atom Ai of dimer and monomer respectively. The 
following can be deduced from (21), 
 

 2A ,A A ,A / 2,

, ,0 and 1, 2 .... .
i i

a af f

a i k

=

∀ = + − =
 

(22)
 

 
It may be interesting to note that while the FF of 
non-interacting dimer at a point r is the sum of the 
half of FF of the monomer, the atom condensed FFs 
of the atoms of the non-interacting dimer would be 
half as that of the monomer. Similarly, for non-
interacting An, the condensed FF of ith atom in a 
system A is n times less than that of the atom k in 
isolated A itself. 
 

 A ,A A ,A / ,
i n i

a af f n=  

 , ,0 and 1, 2 .... .a i k∀ = + − =  (23) 
 
Let us analyse the behaviour of some other reacti-
vity descriptors. Since both electrophilic- and nucleo-
philic-condensed FF of an atom in a dimer are half 
that of the corresponding atom in a monomer, by 
definition, RE and RN of the atoms of the dimer are 
the same as those of the corresponding atoms of the 
monomer. From (22), RE and RN at isolated limit 
can be derived as 

 
2

A
A ,A A ,A

A

( / 2)
RE RE , 1, 2 ....

( / 2)
i

i i

i

f
i k

f

+

−= = ∀ =  

 
2

A
A ,A A ,A

A

( / 2)
RN RN , 1, 2 .... .

( / 2)
i

i i

i

f
i k

f

−

+= = ∀ =  (24) 

 
Contrary to atom-condensed FFs, it may be noted 
that the condensed RE and RN are size-intensive. 
Equations (22) and (23) result from the artifact of 
the summation of the condensed Fukui function be-
ing unity. However, the sum of the condensed RE 
and RN of all atoms in a system is not a fixed quan-
tity. Equation (24) implies that the sum of RE or RN 
for a non-interacting dimer is twice that of the sum 
for all atoms of the monomer. On similar lines, results 
can be generalized for non interacting An.  
 Earlier, Pal et al31 had shown that for homo-
diatomic molecules, hardness and chemical potential 
are the same as that of isolated atoms.31 It being 
similar here, we can write for total softness of the 
dimer of A,  
 
 

2 2A A A A, and ,S S µ µ= =  (25a) 

 
therefore, 
 
 

2A A .W W=  (25b) 

 
Using (14), (15), (22), (25a) and (25b) local softness 
and local philicity of dimer can be derived as 
 

 
2A ,A A ,A / 2, , , 0 and 1, 2 .... ,

i i

a as s a i k= ∀ = + − =  

 2

a
A ,A A ,A / 2,

, , 0 and 1, 2 .... .
i i

aw w

a i k

=

∀ = + − =
 

(26)
 

 
From the above relations, it can be seen that both local 
softness and local philicity of dimer behave similar 
to atom-condensed FFs of the dimer, i.e. all become 
half of the corresponding values of monomer for all 
three reactions, viz. electrophilic, nucleophilic and 
radical. On similar lines, local softness and local 
philicity of atoms of An can be shown as, 
 

 A ,A A / , , , 0 and 1, 2 .... ,
i n i

a as s n a i k= ∀ = + − =  

 

a
A ,A A / ,

, , 0 and 1, 2 .... .
i n i

aw w n

a i k

=

∀ = + − =
 

(27)
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If we consider the general case of a complex AB, 
consisting of two subsystems A and B, which disso-
ciates into fragments A and B, the electron density 
ρAB(r) at point r can be written as the sum of electron 
densities of A and B, 
 

 AB A B( ) ( ) ( ),r r rρ ρ ρ= +  (28) 

 
where ρA(r) is the density at r due to atom A. Simi-
larly, ρB(r) is the electron density at point r due to 
atom B.  
 Let us assume that the (N0 + 1) electronic state of 
AB at the geometry of AB, i.e. vertical (AB)– frag-
ments as follows, 
 

 (AB) A B.− −→ +  

Therefore 

 
0 0 0

AB A B
1 1( ) ( ) ( ).N N Nr r rρ ρ ρ+ += +   (29) 

 
Using finite difference method of differentiation 
with respect to N at the non-interacting limit, we ob-
tain,  
 

 
0 0

AB AB
AB 1( ) ( ) ( )N Nf r r rρ ρ+

+≈ −  

    
0 0 0 0

A B A B
1( ( ) ( )) ( ( ) ( ))N N N Nr r r rρ ρ ρ ρ+= + − +  

    
0 0

A A
1( ) ( )N Nr rρ ρ+= −  

    A ( ).f r+=  (30) 

 
Assuming the vertical (N0–1) electronic state of AB, 
i.e. (AB)+ fragments as follows, 
 
 (AB)+ → A + B+, 

 
0 0 0

AB A B
1 1( ) ( ) ( ).N N Nr r rρ ρ ρ− −= +  (31) 

 
Again, using a finite difference method of differen-
tiation, we obtain at the non-interacting limit, 

 
0 0

AB AB
AB 1( ) ( ) ( )N Nf r r rρ ρ−

−≈ −  

    
0 0 0 0

A B A B
1( ( ) ( )) ( ( ) ( ))N N N Nr r r rρ ρ ρ ρ −= + − +  

    
0 0

B B
1( ) ( )N Nr rρ ρ −= −  

    B ( ).f r−=  (32) 

The third function describing radical attack, 0
AB ( ),f r  

which is the arithmetic average of AB ( )f r+  and AB ( ),f r−  
is then obtained at the non-interacting limit as 

 0
AB A B( ) ( ( ) ( )) / 2.f r f r f r+ −= +  (33) 

 
From (30) and (32), it can be seen that as the complex 
dissociates, the FF of the complex reduces to the FF 
of the individual fragment depending on whose 
cation or anion is more stable. Electrophilic FF of 
the complex at dissociation is the electrophilic FF of 
the fragment whose anion is more stable, while the 
nucleophilic FF at dissociation is the nucleophilic 
FF of the fragment whose cation is more stable. 
 From (30) and (32), the following can be seen: 
 

 A ,AB B ,AB A
1 1 1

,
k k k

k k k

a b a

k k k

f f f+ + +

= = =

+ =∑ ∑ ∑  (34a) 

 

 A ,AB B ,AB B
1 1 1

.
k k k

k k k

a b a

k k k

f f f− − −

= = =

+ =∑ ∑ ∑  (35b) 

 
where Ak and Bk are the kth atoms of fragment A and 
fragment B respectively, and ak and bk are the total 
number of atoms in fragments A and B respectively. 
 One can thus write for condensed FF,  
 

 
A ,AB A

B ,AB

,

0,

k k

k

f f

f

+ +

+

=

=
 

 A ,AB 0,
k

f − =  

 B ,AB B .
k k

f f− −=  (36) 

 
 

 
 

Figure 1. Structure of BH3NH3 dimer. 
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Figure 2. Variation of local reactivity descriptors with BN′ distance (a)–(b) H B       

bonded, (c)–(d) HB    
free, (e) boron.  

 f +,  f –,  f 0,  s+,  s–,  s0,  w+ (#), w– (#), w0,  RE(*),  
RN(*) (#scaled up by factor of 10; *scaled down by factor of 40; points in the shaded region correspond to the half 
value of monomers except for RE and RN where it corresponds to the full value). 
 
 
Hence, as the complex dissociates, the condensed 
electrophilic FF of the atoms of the fragment for 
which the anion is formed, goes towards the conden-
sed electrophilic FF of isolated fragment, while for 
other atoms it goes towards zero. The condensed nu-
cleophilic FF of the atoms of the fragment for which 
cation is formed, goes towards the condensed nu-

cleophilic FF of isolated fragment, while for the  
atoms of the other fragment these values go to zero. 
 From (22), one can write the following, 
 

 0 0
A ,AB B ,AB A B

1 1 1 1

1
.

2

k k k k

k k k k

a b a b

k k k k

f f f f+ −

= = = =

 
+ = + 

 
∑ ∑ ∑ ∑  (37) 

(a) (b) 

(c) (d) 

(e) 
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Figure 3. Variation of local reactivity descriptors with BN′ distance (a)–(b) H N       

bonded, (c)–(d) HN    
free , (e) nitrogen. 

 f +,  f –,  f 0,  s+,  s–,  s0,  w+ (#), w– (#), w0,  RE(*),  
RN(%) (#scaled up by factor of 10; *scaled down by factor of 100 in (a) and by factor of 40 in others; % scaled down by 
factor of 40; points in the shaded region correspond to the half value of monomers except for RE and RN where it cor-
responds to the full value). 
 
 
 
One can conclude about the condensed FF for radi-
cal attack,  
 

 0 0
A ,AB A A/ 2

k k k
f f f+= ≠ , 

 0 0
B ,AB B B/ 2 .

k k k
f f f+= ≠  (38) 

Though electrophilic- and nucleophilic-condensed 
FF’s of the complex at the isolated limit separate out 
as those of the isolated fragments depending on the 
fragmentation of cation or anion of the complex, it is 
interesting to note that the condensed FF describing 
radical attack has different behaviour.  

(c) 

(b) 

(d) 

(e) 

(a) 
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 It should be noted that throughout the paper, anions 
or cations referred to are the vertical anions or cations, 
since the definition of FF demands that external po-
tential be kept constant while calculating the deriva-
tives.  

4. Methodology and computational details 

For simplicity, the symmetrical (C2) closed shell 
system (BH3NH3)2 is chosen, which, on fragmenta-
tion, also yields closed shell monomer BH3NH3. Geo-
metry optimization of the individual BH3NH3 as 
well as constrained optimization of (BH3NH3)2 were 
carried out with ab-initio Moller–Plesset perturbation 
(MP2) quantum chemical calculations using 6-
31++G(d, p) basis set. Condensed FF’s were calcu-
lated were calculated via (13) using Lowdin popula-
tion analysis (LPA)19a,b at MP2 level. The average 
values are reported for dihydrogen bonded hydrogen 
connected to boron H B       

bonded and free hydrogen con-
nected to nitrogen HN    

free .  
 For obtaining limiting values of the FF of atoms 
of the complex, calculations were performed on iso-
lated BH3NH3 molecules.  
 The calculations were performed using the 
GAMESS system of programs.32 

5. Results and discussions 

Figure 1 presents the structure of the BH3NH3 
dimer. The structure corresponds to the fully opti-
mized structure of BH3NH3 dimer and the B–N′ dis-
tance is 3⋅31469 Å. Figure 2 presents the variation 
of different reactivity descriptors for the atoms of 
BH3 as the B–N′ distance is changed. Figure 2a pre-
sents nucleophilc and radical reactivity descriptors 
of H B       

bonded. Figure 2b presents electrophilic descrip-
tors of H B       

bonded. Figures 2c and d present correspond-
ing reactivity descriptors of HB    

free. Figure 2e presents 
all eleven reactivity descriptors for the boron atom. 
The local philicity values are scaled up ten times 
and values for RE and RN are scaled down by factor 
of 40 for so that they could be shown on the same 
figure.  
 Figure 3 presents the variation of different reac-
tivity descriptors for the atoms of NH3 as the B–N′ 
distance is changed. Figure 3a presents electrophilic 
and radical reactivity descriptors of H N       

bonded. Figure 
3b presents nucleophilic descriptors of H N       

bonded. Fig-
ures 3c and d present corresponding reactivity de-
scriptors of HN    

free. Figure 3e presents all eleven 

reactivity descriptors for boron atom. The local 
philicity values are scaled up ten times and values 
for RE and RN are scaled down by factor of 40 ex-
cept in figure 3a where RE is scaled down by factor 
of 100. 
 Points under the shaded region in figures 2 and 3 
correspond to the half values of the reactivity de-
scriptors of the monomer BH3NH3 except for rela-
tive-electrophilicity and relative-nucleophilicity, 
where they correspond to the values for the mono-
mer. From figures 2 and 3 it can be seen that the re-
activity descriptors do behave as described in the §3. 
Condensed Fukui functions, local softness and local 
philicity of dimers separate out as half the monomer 
values, while relative electrophilicity and relative 
nucleophilicity approach the corresponding mono-
mer values.  
 Recently, we discussed the behaviour of reactivity 
descriptors during complexation of BH3 and NH3 us-
ing ab-initio calculation.24 We have seen that the 
non-interacting values of f + or f – are approached 
only by atoms of fragmented species for complex 
anion or cation respectively. Our discussion in §3 
for complex AB analytically justifies the results ob-
tained earlier. 
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