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SU(3) representation for the polarisation of light
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Abstract, A new mathematical representation for discussing the state of polarisation
of an arbitrary beam of partially polarised light is described which makes use of the
generators of the group SU(3). This representation is sufficiently general to describe
not only physical photons which are transverse but also virtual photons. The cor~
respondence between our representation and the conventional Stokes parameter
representation is established and this leads to an equivalent geometrical description
of partially polarised light in terms of diametrically opposite points on a Poincars
sphere with radius equal to the degree of polarisation. The connection with the
spherical tensor representation is also discussed and this leads to a simple geometrical

interpretation of the bounds on the parameters characterizing an arbitrary beam of
partially polarised light.

Keywords. Photons; polarisation; density matrix, Stokes parameters; SU(3) repre-
sentation; bounds.

1. Introduction

New mathematical representations for the state of polarisation of light or photons
are of considerable interest in several areas of physics like crystal optics, nuclear
theory or elementary particles. The well-known review article by Ramachandran and
Ramaseshan (1961) discusses exhaustively several methods, starting with the Poin-
care sphere and its connection with the Stokes parameters. The review articles by
Fano (1957) and McMaster (1961) based on quantum mechanical ideas show how
polarisation of light can be represented using the concept of the density matrix.
Although the spin of the photon is one, it is found sufficient here, to use 2 X 2
matrices in view of the fact that light is a transverse wave and consequently the
longitudinal state of polarisation is physically absent. However, in dealing with
interactions between charged particles, it is well-known from quantum electro-
dynamics (Feynman 1962) that longitudinal state is also involved along with the two
transverse states for the photons; in fact, the well-known Coulomb law between
two charged particles is the result of an exchange of a * lon gitudinal photon’. There-
fore, in several physical problems as in the case of electroproduction of pions (Dom-
bey 1971), for example, it is advantageous to use 3 X 3 density matrices to repre-
sent the state of photon polarisation. A representation using the Kemmar algebra
has been proposed by Roman (1959a, b) to describe the (3 X 3) density matrix for
a stationary quasi-monochromatic field which is not a plane wave. ‘

The distinct advantage which the density matrix formalism shares with the de-
scription in terms of Stokes parameters is that it can describe partially polarised as
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well as completely polarised systems with equal facility. Moreover the density
matrix formalism lends itself to an elegant discussion of the behaviour of the system

under coordinate transformations; in particular, rotations. While the formalism in

terms of 2 X 2 matrices (Fano 1957; McMaster 1961) is quite adequate to discuss
coordinate rotations with respect to an axis coinciding with the direction of propa-
gation, a description in terms of 3 X 3 matrices is basically necessary for discussing
the behaviour under rotations, in general,

A probably well-known but least mentioned fact while looking at the photon
polarisation problem from the density matrix point of view is that a light beam
characterised by the Stokes’ parameters (Born and Wolf 1959) s, s;, 5, and sz is

basically a non-oriented system® if s; 2 0. More specifically, a 2 X 2 density matrix
p written in the form

T”z(”) [1+oP], 0

in terms of the Pauli spin matrices oy, o, and o, can be diagonalised purely through
rotations alone if p denotes, for example, a system of spin } particles; this is simply
a consequence of the isomorphism between the group SU(2) and the rotation group
in three dimensions R;. However, the form (1) is not, in general, diagonalisable
purely through rotations when p describes a system of photons. This feature, aris-
ing out of the fact that the spin of the photon is 1, comes out naturally when the
density matrix for the system of photons is expanded in terms of the generators of
the group SU(3) rather than the generators of the group SU(2). Moreover, a re-
presentation of the system in terms of the generators of the group SU(3) is capable
of describing photons not only when they are physical (i.e., transverse) but also
when they are longitudinal as in problems where they are exchanged between two
charged particles.

The purpose of this paper is thus to discuss a representation for the density matrix
of the photons using the generators A;, i=1,..., 8 of the group SU(3) introduced by
Gell-Mann (1962) in the context of the quark model (see for example Gell-Mann and
Neeman 1964; Lichtenberg 1978). Such a representation has already been used suc-
cessfully to describe the spin states of the deuterons by Ramachandran and Murthy
(1978). In §2 we indicate the 3 X 3 density matrix formalism for physical photons,
introduce the SU(3) parameters characterising the light beam and express them in
terms of Stokes parameters. Observing that the 3 x 3 density matrix has the so-
called checker-board form (Capps 1961, Dalitz 1966, Ramachandran and Murthy
1979), we diagonalise the matrix and show that it leads to the characterisation of a
partially polarised beam by specifying the intensities I, gand I . _ gof two
orthogonal states of polarisation denoted by the parameters (2a, 28) and 2o 4=,
—2p) on the Poincare sphere. The four parameters a, 8, 1 ’ ﬁand Iy 2,8 provide

a,

a complete description of a partially polarised beam as do the Stokes parameters sy,
83, Soand s, In §3, we generalise the density matrix description to virtual photons
including the longitudinal state of polarisation. In particular, we write down
explicitly the density matrix for a photon emitted at a vertex when the initial and

tA system is said to be non-oriente

. d if the density matrix i i ugh an
rotation of the coordinate axis. Y cannot be diagonalised throug Y
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final spin states of the electron are specified either with respect to an external z-axis
or in terms of its helicities. We also discuss the special form which the density
matrix takes in the interesting case of the Breit frame (Perl 1974). These ideas
will be applied to some problems in a sequel to this paper. In § 4, we express the
3 X 3 density matrix p in terms of the conventional spherical tensor parameters f,,
and discuss the bounds on the 7, as well as the SU(3) parameters. The absence of
the longitudinal state of polarisation for the photons leads to certain additional
constraints on the parameters and consequently the bounds are more restrictive.
The eight SU(3) parameters A, introduced in § 2, the eight spherical tensor
parameters 7, and the eight generalised Stokes parameters r, of Roman are related
to each other. Explicit expressions for our A; are given in the Appendix in terms
of t;, and r,.

2. SU(3) formalism for physical photons

We choose a right handed frame of reference with the z-axis along the direction of
propagation. If the density matrix is written in the form (1), with

Tr (p) = 5, | @)

(where Tr denotes the trace), the Stokes parameters s;, 5, and s, are given by (Fano
1957)

8y = 8oPz; 85 = 5Py 83 = SoP,, | , 3
if the rows and columns of the matrix are labelled by the two linearly polarised states
along x- and y- axes respectively. On the other hand, if the basis states are chosen
to be the left circular and right circular states respectively,

8y = 5Py 53 = 5,Py; 53 = 5,P,, ‘ 4

where the left circular (LC) and right circular (RC) states are related to the linearly
polarised states through

|LC>=—$§(|x>-—ilJ’>), | | (5)
IRC>=$§(|x>+i|y>). ©

If|x'> and |»' > denote linearly polarised states along the axes with respect to a
coordinate system obtained on rotation through an angle o, i.e.,

|x") =cos a|x) +sinalyd, v ™

[V = —sina|x) + cosa|y, ®)
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the elliptically polarised state

' 1 N b ]y
lo, B =m[alx> +ib | ¥, )]
where ¢ and b are real and
B = tan—1 (b/a), (10)

is represented by a point on the Poincaré sphere with unit radius and Whose spherical
polar coordinates (8, ¢) are given by

§ =T — 28, (11)
3 B
$ =2a. 12
Noting that
| &, B = (cos B cos a — i sin B sin @) | x> + (cos B sin a + 7 sin B cos @) | )
=c | x> +cy Iy>, _ ‘ (13)
where ¢; and ¢, are complex, we have
tan @ = Re (c,) — Im (01)’ (14)
Re (¢)) Im (c,)
tan § = Im(ey) _ _Im(e) (15)
Re (c;) Re (cy)
The state orthogonal to (13) is therefore
o2, =By = — | %) + e |9, 19

which is represented by a diametrically opposite point (to |a, 8) on the Poincare
sphere (Pancharathnam 1956a). The two orthogonal states (13) and (16) may also
be expressed in terms of the circularly polarised states as

la, B = —\% [exp (— 7a) (cos B + sin B) | RC)
+ exp (ia) (cos B — sin ) | LCD], a7
ERSE \:/‘;' [exp (— ia) (cos B — sin B) | RCD
— exp (ia) (cos B + sin B) | LCY] (18)
which would be useful later.

The 3 X 3 form for the density matrix for physical photons is now easily written
down from equations (1) and (4) as |

So—S3 0 "—(Sl‘!—isz)
p=3%|0 0 0 ; (19)

—(s;—is) 0 sptsy
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where the rows and columns are labelled for convenience, in terms of the | 415,
|0 and | —1) states which behave under rotations like the components of a
spherical tensor (Racah 1961) of rank 1. More specifically, the state [0 denotes the
longitudinal polarisation and

|+1y = —|R-C); |1 =|L-c). (20)

Expressing now the density matrix (19) in terms of the generators of the group
SU(3) (Ramachandran and Murthy 1978, 1979),

p -—-’Tf;*’)(l +zg A Ai), | @1)

i=1

where the generators A, satisfy

Tr (A A)) =3 8, (22
and the parameters

A=Tr (\ p)fTx (p), | (23)

denote the average expectation values. The parameters A, i=1, ..., 8 are expressi-
ble in terms of the Stokes parameters and are given by

A=0=A,, (24)
1 3( s3) :
—2 /31 =%), 25
As 2\/ 71— @3
A4=—\/§ So 515 (26)
As=VE 5,5, | @7)
Ag=0=A,, (28)
1 3s.

Av=— L (1 _3), 29
8 2\/2( + . | (29)

where it may be noted that As and Ag satisfy the constraint
As+ V3 Ag=—V6syls (30)
for transverse photons. ‘
Observing that the density matrix in (19) is in the checker board form (Capps

1961), it may be diagonalised, for instance, using the procedure outlined earlier

P—3
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(Ramachandran and Murthy 1979). The diagonal density matrix is then giveﬁ by

1+P O 0
p°=%—[1 + z Ag&]:%ﬂ o o o |, 31)
= o o 1-P].
where siP?=3sl+s2453, (32)
and p=TopTusmnp

7 (33)

denotes the degree of partial polarisation (when I denotes the total intensity). The
rows and columns in (31) are labelled by elliptically polarised states | a, 8, |0 and
| a-fm[2, —B where

a=tan=t (sy/s), (34)
B =% sin* (s3/Psy). (35)

An arbitrary beam of light with intensity I=Tr(p)=s, whose state of polarisation
is specified by the Stokes parameters s;, s, and s; may therefore also be described in
terms of either the SU(3) parameters A,.. .., Ag (of which only 3 are independent)
or the parameters a, f and P or the parameters AJ, Ag, «, B where

VIAL— Al =2, (36)
P = 55/ 5,sin 28 (37

Equivalently, the state of polarisation of an arbitrary partially polarised beam of
light may also be specified completely in a geometrical way by the point (2a, 28)
on a Poincare sphere whose radius is taken as P given by equation (37). This is in
contrast to the normal practice of choosing the radius of the sphere to be either

1 or proportional to the intensity 7=s, which is appropriate only to describe a pure
state for which P == 1. :

3. SU(3) formalism for virtual photons

The maximum utility of the SU(3) description is realised, when we consider a photon

R el
emitted at a vertex by a charged particle, say an electron. If e denotes the polari-

sation of the photon and we choose the z-axis to be along the three momentum
e

transfer g=Fk,—k, (see figure 1), the density matrix for the emitted photon can by
defined by the elements

Pij = € 5}'5 Lj=x1y,z (38)




SU(3) representation for light polarisation 363

where z corresponds to the longitudinal state. If the fermion line in figure 1 denotes
an electron, then €, are given by'

p o (k) v, u k), (39)

where u denotes the electron spinor. These €, are explicitly given in table 1, where

the time-like component of € is not linearly independent of the spatial components
—
¢, since

g, €, =0 (40)

The symbols 4 and | in table 1 correspond to the spin of the electron along
the z-axis in terms of the standard solutions of the Dirac equation.

Figure 1. Feynman diagram corresponding to virtual photon creation. Solid lines
denote Fermions and the wavy line denotes the virtual photon.

Table 1. The components e, ¢ and e; are given in terms of the initial and final
— —
electron momenta k, (ki, e;) and k, (k;, e;) when the reaction plane is the x — z
-
plane and the Breit frame (ky + k3 = 0). N is the product of spinor normalizations.

€y | Ey €z

x—z N(ﬁﬁ—-l--’f”‘ ) —in —le—--"”‘) | kiz +-—k"—)

ee+m ' e+ m e+m e +m eet+m' e+ m

t—>1
Breit 0 0 0
— klz — kzz . klz — kaz N klx — kzx
=z N(e1+m ez-}-m) 'N(el-%-m e,-{—m) N(e1+m e,—l—m)
Py
Breit kym ik, /m 0
—p — kyz — kaz . kyz kaz kix - kax
xE N(el-i-m. ez-{-m) lN(e,—i—m_eg-l—m) N(e1+m e2+m)
+—>1
— kax kax : kyx —- kax Y Kz Koy
=z N(el+m+eg+m) lN(el-i-m e,-!—m) N(e1+m e,+m)
=

Breit - 0 0 , 0

tWe have adopted the Bjorken and Drell (1965) conventions for the metric and the y-matrices.
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The density matrix when expressed with rows and columns labelled by the | + 13,
|0 and | — 1)) states taken the form

e cxte et 4-2Im (e4€}) ~—\/—2_(ex+iey)e’; —(exet—e,es+2iRe (e,6%))
p=1% —V2 e, (et —ie3) 2e,¢* % Eez(e;—i—iéj)
-—-,(exe: —e, 3 —2iRe (e.€3)) '\/.Z-Cexwiey)e; e et te,es—2Im (e et
(41)

which may again be expressed in the standard form (21) in terms of the SU(3) gene-
rators A,. The parameters A; are now given by

Ai=— :/1_2 Re ((ex-ie,)e?), @)
Ay =— '{}i Tm ((ex--ie)e?), @)
Ae=paf 20—t 2 ) (4
Ay = — % (et —eyel), (45)
A = —Re (e €8 )
Ro=Re(e (e + i) - @)
Ar= _\%Im (e (e2 + i), ’V (48)
Ag= 23/2[" et 4+2Tm (e, e’;)—%} (49)

The density matrix (41) transforms under any arbitrary 3-dimensional rotation R
of the coordinates characterised by the Euler angles (e, 8, y) according to

R @, P, |
P ( ﬂﬁp':RpR‘l (50)
sothat  pl.,, = DL, (aBy)p,, DL, (aBy)*, (51)

in terms of the well-known rotation matrices D (Rose 1957). [If the density matrix
is oriented, i.e, if it is diagonalisable through rotations, we should have A;=0
for all i except for i = 3, 8 for some suitable choice of a, B and y.] The transfor-

mation for A,, corresponding to an arbitrary rotation of the basis is explicitly given
as

A= M; A, (52)
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where the coefficients M;; are given by

- o (W mE—m)! (14 mt (1 — 1\
M= k;, A (AJ)'""( A+DIA =Dl A+ B! (1 =R )

exp [i (n—m) y] exp [i (k —1) a] (cosg)m+l+"+k ( sin g)mwml.ﬂk

(m—~1, m+1)

s (cos B) p{Hm8 (cos ), (53)

where Pt ™ (cos B) denote Jacobi polynomials.

In some problems in physics it is often advantageous to describe the initial and
final spin states of the electrons as eigenstates of the helicity operator; but this
leads to fairly complicated expressions for €, However, if we now go into the

Breit frame, these simplify to the same as those given in table 1; the reacon for this
: -

is obvious since in Breit frame the only momentum vector g is chosen to be along

the z-axis.

4. Bounds on the polarisation parameters of the photon

One of the important problems in discussing polarisation phenomena is the discus-
sion of bounds on the polarisation parameters. When the density matrix is repre-
sented in terms of the Stokes parameters s, s, and s, (see equation (19)) it is well-

known (Pancharathnam 1956b) that any variation of s, s, and s; is constrained by
the condition

s§ 455 + 53 S 2. (54)

Interpreted geometrically, equation (54) means that the Stokes parameters Sy Sy

and s, lie within a sphere of radius s, which is usually referred to as the Poincare
sphere (Born and Wolf 1959).

The density matrix for a spin 1 system in the spherical tensor representation is

written as , |
IO S S e

k=1g=-k

where the spherical tensor operators T}, are normalised (see for example Barschall
and Haeberli 1970) such that

3 TH(Tyy Tod) = 8 8 | (56)
and the average expectation values #,, are given by

y _ Tr(eTy)
kg = s

57)
Tr(p) (

i AN e+ g e

.
i
i
e
3
§
4

e i e
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The density matrix written explicitly assumes the Checker-board form (Capps 1961)

_ 5 . _
1+\/2- t1o+75 t20 0 | \/§t22
T -
p=_r§”_) 0 1—V21, O (58)
- §t n 1
V3 t, , 0 1— 5 "0 —\-/—tho

since t,, for odd g goes to zero. Using the positive-definiteness of the eigenvalues
of the density matrix p we obtain the following constraints (choosing Tr(p)=1 for
simplicity) on #,, (Minnaert 1966; Dalitz 1966; Seiler and Roser 1977)

13k 122 1|2 <2, (39)

(1242 | 1y |9 — (V2410 <o0. (60)

However, for physical photons we have an additional constraint due to the absence
of longitudinal states of polarisation, viz.,

poo =0, (61)
which yields
tzo = 1/\/5. : (62)

Conditions (59) and (60) are represented geometrically in figure 2 for a spin 1 system.
It is obvious that condition (60) is more restrictive than condition (59) and the #,, are
constrained to be within the volume of a cone inscribed inside an ellipsoid. In the
case of real photons, equation (62) imposes a further restriction and the relevant

geometrical bounds are given by the base of the cone (which is an ellipse) whose
centre is at

(o oo | taa|) = (o, % o) 63)

Figure 2. Schematic representation of the bounds on the spherical tensor parameters
T10, Iag @nd {z,5]. The bounds on 1, for real photons are given by the base of the cone
(inscribed inside the ellipsoid whose semimajor axis and semiminor axis are given by
NP=V3]2 and NL="V3/2 respectively).
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It is extremely interesting to note that the absence of longitudinal polarisation re-
Bregented equivalently by equation (62) implies that physical photons considered as
Spin 1 particles are always tensor-polarised even when the light beam is in a random
State of polarisation.

- In order to provide a convenient geometrical representation of the bounds for
the SUQ3) parameters Ay, Ag Ag and Ay for the photons, we represent the density
Matrix in terms of the Cartesian basis corresponding to the linearly polarised states
©Of the photon. The density matrix is now written as (choosing Tr (p) = 1)

3_ 1] ]- ! -3_ 4 . 4
1+ ,\/-2- A,“i‘\—/'i As \/E(Al - lAZ) 0

= 3 ’ ea é— ,. 1 R . 64
. ’ % '\/'2'(A1+1A2) 1— \/3 A3+V§.A3 0 ( )

0 0 1—V2 A's

in general for any spin-1 system. The new set (Ag, Ag A Ag) is equivalent
to the set (A3 Ag Ap Ag)- Using the positive definiteness of the eigenvalues of p,
We obtain

AFHARH AP S 2, (65)
and 32+ | Al )—(V2+A S0, (66)
where A=Ai—iA;. ' (67
For physical photons, we obtain

As =12, (6%

since p,,=0. Represented geometrically, condition (65) yields a sphere of radius

/2 in the (As, As | A1) space. Condition (66), which is more restrictive than
(65) yields a regular cone as shown in figure 3. As in the case of spherical tensor

|A‘|z|

Figure 3. Schematic representation of the bounds on the SU(3) parameters A’s;,
A’sand | Aqq |- The bounds on A’; for real photons are given by the base of the regular

cone (inscribed inside a sphere whose radius is given by BD = V'32).
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representation, the allowed values of A's, A's and | Ay, | for real photons should

lie on the base of the regular cone which is a circle of radius V/'3/2 and whose centre
is (A'sy A'gs | Aza|) = (0, 1/4/2, 0).
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Appendix

The density matrix p in terms of the generalised Stokes parameters of Roman (1959a)
can be written as ’

where the hermitian matrices p, belong to a (3 X 3) dimensional irreducible repre-
sentation of the Kemmer algebra (Roman 1959b). The nine expansion coefficients
r; (which are real) are the generalised Stokes parameters. The relationships between
the generalised Stokes parameters and the SU(3) parameters and the spherical tensor
parameters (see equations (21) and (55)) canbeeasily obtained by equating the corres-
ponding density matrix elements in each of these three representations provided the
basis states are the same, i.e., either Cartesian or spherical basis. These relation-
ships are given by

Ay = Htpy — tuy + tami — ta) = V6ralBro + 210, M
Ay= §i(tn gty ) =—V 5r3/(3ro‘ + 2ry, )
As = Mty + V3tz) = VB + 1IGro + 270, ®)
Ae= st 19 = VBrGro + 200 @
As = -{/%(zgz — 1) = — V6rs/(3ro +2ry, ®)

Ao =¥ty —tn — fas & o) = VB —1)ICrot 20 O
Ar= 2E (fy + 110 — tga—lg) =— vV g(rs — rg)|(Bro + 2rp, M

Ao =} (VB — ty) === B = dlCro + 200 ®
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