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Abstract. A general analysis of the Hamilton-Jacobi form of dynamics motivated 
by phase space methods and classical transformation theory is presented. The con- 
nection between constants of motion, symmetries, and the Hamilton-Jacobi equation 
is described. 
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1. Introduction 

The formulation of classical dynamics based on the Hamilton-Jacobi (H-J) equation 
has played an important role in the development of quantum mechanics. In the 
days of the old quantum theory it was used most effectively by Sommerfeld, Wilson, 
Epstein and Einstein among others to extend the Bohr quantization condition, ori- 
ginally formulated for the hydrogen atom, to more complex systems (Sommerfeld 
[14]; Wilson [19]; Epstein [6]; Einstein [5]; see also Born [1], Sommerfeld [15]. 
Later on Schr6dinger [13] used the H-J equation as the starting point in his construc- 
tion of wave mechanics based on de Broglie's theory of phase waves. Conversely, 
once the Schr6dinger wave equation had been established, the H-J equation w a s  

recovered as the first step in solving the wave equation in the quasi-classical WKB 
approximation (Wentzel [17]; Kramers [7]; Brillouin [2]). 

~ After the advent of quantum mechanics the study of invariance and symmetry 
properties of dynamical systems took on great importance. The linear structure of 
quantum mechanics expressed by the superposition principle gave to this study 
great elegance and simplicity, and enabled one to draw extensively upon the mathe- 
matical theory of group representations. At least partly due to the fact that for 
some time now quantum mechanics has been much more thoroughly studied and 
taught than classical mechanics, there is the feeling that the mathematical description 
of symmetry is easier to grasp in the quantum context than in the classical one. 
However it must be admitted that the mathematical description of symmetry is an 
important part of the formalism of classical mechanics. Classical descriptions of 
symmetry and invariance of course do exist, both in the Lagrangian form of mecha- 
nics and in the Hamiltonian phase space form. The intimate connection between 
symmetries and conservation laws expressed by the Noether theorems is an important 
aspect of the Lagrangian formulation (Noether [9]). And the realisation of 
symmetry operations as canonical transformations on phase space is an important 
aspect of the Hamiltonian formulation. 

85 

P. (A)- - I  



86 ~N Mukunda 

Given all this it would seem somewhat surprising that there appears to be no easily 
accessible discussion of the H-J form of dynamics which analyses the action of sym- 
metry operations directly on the H-J equation and its solutions. (Several classic 
treatments of the H-J form of dynamics are, of course, available; see, for instance, 
Nordheim and Fues [10] Whittaker [18] ; Lanczos [8]). The corresponding quantum 
discussion in which symmetry operations are implemented by the action of unitary 
transformations on solutions to the Schr6dinger equation is of course well known. 
But a discussion of how concepts and methods natural to the phase space description 
of dynamics can be adapted to the H-J description seems unavailable. The concept 
of the Poisson Bracket (PB) among phase space functions, and the generation of 
canonical transformations by given phase space functions which may in particular 
be constants of motion, are among the important elements of the phase space des- 
cription of dynamics; and it would be instructive to see how these are related to the 
H-J equation and its solutions. There is also another point of view from which it is 
illuminating to study the H-J theory, which is the following. It is well known that 
an individual solution of the H-J equation describes a family of solutions of the 
Hamiltonian equations of motion, constructed in a special way. It is these classical 
families that stand in correspondence with individual solutions of the Schr6dinger 
equation, which of course describe single states of motion in quantum mechanics. 
At the kinematic level a single function on configuration space (which in a well known 
way generates one of the above mentioned classical families of trajectories) is analo- 
gous to one Schr6dinger wavefunction or more generally one state in quantum mecha- 
nics. For state vectors many characteristically quantum mechanical properties 
obtain. For instance, a state vector can be a simultaneous eigenvector of two distinct 
operators only if it is also an eigenvector of their commutator corresponding to the 
eigenvalue zero. Again a given state vector can always be expanded as a linear 
combination of, say, energy eigenstates, and there is a straightforward way to isolate 
individual terms in this expansion. All these features of quantum mechanics turn 
out to possess analogues in the H-J form of classical mechanics, some being better 
known than others. The purpose of this paper is to provide a study of'the; H-J 
theory from these points of view. 

The H-J equation forms an important component of a highly developed part of 
classical mathematics having deep connections with the calculus of variations and 
with systems of ordinary differential equations (Caratheodory [3]; Rund [11]). 
However a discussion of it along the lines mentioned above seems unavailable. 

The material of this paper is arranged as follows. In section 1, some useful geo- 
metrical ideas in phase space are introduced. The essential point is to associate a 
surface in phase space with every configuration space function in a special way and 
with certain intrinsic canonical invariant features. The action of canonical transfor- 
mations on these surfaces and evaluation of PB's on them are analysed, permitting 
a simple discussion of simultaneous H-J equations. Section 2 gives a detailed geo- 
metrical interpretation of solutions of the time-dependent H-J equation, and the 
action of symmetry transformations on the manifold of solutions. The contrast 
between values of a dynamical variable and the transformations it generates is clearly 
exhibited. In section 3 the relations between solutions of the time dependent and 
time-independent H-J equations is analysed motivated by similar situations in quan- 
tum mechanics. One is thereby led to a better understanding of a well known 
method of passing from one equation to the other. Section 4 introduces very 



Hamilton-Jacobi theory in phase space 87 

briefly the notion of  H-J equations on a Lie group. Section 5 contains concluding 
remarks. The appendix summarises some useful properties of  canonical transforma- 
tions and Lagrange brackets in phase space, and the general mathematical techniques 
for building up solutions of the H-J equations. 

2. Geometry of phase space surfaces 

The usual geometrical pictures that are constructed to aid in the understanding of  
the H-J equation are confined to configuration space. They are based on Huyghen's 
principle in optics and the analogy between optics and mechanics discovered by 
Hamilton (see, for instance, Lanczos [8] ; Rund [11]). We shall find it more useful 
and suggestive to work in phase space since that makes the action of  canonical trans- 
formations easier to visualise. 

We consider a classical dynamical system with n degrees of freedom and a 2n 
dimensional phase space with canonical coordinates q ,  p,, r--~), 2 . . . . .  n. The same 
system of coordinates will be used throughout the discussion, so that canonical trans- 
formations will always be interpreted in the active sense as arising from invertible 
mappings of  the phase space onto itself. The condition for such a mapping to be 
canonical is given in the appendix (eq. (A.1)). 

Let M be an m-dimensional hypersurface embedded in the 2n dimensional phase 
space, and let the real independent variables us, ~ ---- 1, 2 . . . .  , m, give a parametri- 
sation of M. The points of M then appear as q,(u), pr(u). The Lagrange brackets 
(LB) of the u~ with one another are defined as 

[u~, us]-----Oq,(u) Opr(u_____)_ Oq,(u_____) Op,(u) (1) 
Oua Oup c3up Oua 

[Summation over repeated indices is understood]. With these LB's as elements we 
can set up an m • m real antisymmetric matrix. We assume for simplicity that 
this matrix has constant rank over M, and call it the symplectic rank of M. It is 
easily verified that the symplectic rank is independent of the choice of parameters 
u,. Let a canonical transformation now be given. Applied to the points of M it 
leads to another m-dimensional hypersurface, M'  say, for which the u~ again serve 
as parameters. The point q,(u), p,(u) on M is carried by the canonical transforma- 
tion to Q,(u), Pr(u) on M'.  It now follows from the invariance of LB's under canoni- 
cal transformations (proved in the appendix) that M'  has the same symplectic rank 
as M. Thus the symplectic rank of a hypersurface in phase space is an intrinsic 
canonical invariant property of the hypersurface. 

Let us now consider the case that M has zero symplectic rank. The appendix 
shows that the functions qr(u), pr(u) must then be such that we have 

p,(u) Oq,(u) __ as(u) (2) 
Oua Ou~ 

for some function s(u). If  m < n, knowledge of qr(u) and s(u) does not suffice to 
determine p,(u). Let us assume next that m=n and that the u~ can be taken to be 
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the position variables q,. In that case we can set s(q) in place of s(u) in eq. (2) and 
see that on M the momenta p~ are functions of the q,: 

p ,  = , ( 3 )  
Oq, 

Thus an n-dimensional hypersurface of vanishing symplectic rank over which the qr 
are independent variables is uniquely determined by any given function s(q) on 
configuration space; and conversely such a hypersurface determines an s(q) up to an 
additive constant. We shall use the notation it' Is(q)] for such hypersurfaces in 
phase space, additional arguments of s being inserted when necessary. Occasionally 
the arguments of s will be omitted if no confusion is likely to arise. 

Let f(q, p) be a given phase space function. On restricting the arguments of f 
to a 1" Is] we produce a function on configuration space; this is achieved by substitut- 
ing forpr inf f rom eq. (3). We shall describe this process by which one passes from 
a phase space function to a configuration space function, given an s(q), with this 
notation: 

f ( q, OS(q)) _~ ( f (q, p))~. 
\ Oq I 

(4) 

It is useful to know the relationship between the PB operation and this restriction 
operation. If g(q,p) is another phase space function, the PB of f with g is a third 
phase space function given by 

{f, g} _ Of  ~3g _ ~ f  c~g. (5) 
~gq, OPt ~P, ~q~ 

Naturally the restriction of { f, g} to r [s] cannot be expressed in terms of the 
restrictions of f and g alone; however with the help of eq. (3) one easily finds the 
very important result 

(6) 

We will use this formula repeatedly in what follows. 
With the concepts introduced so far, let us examine the action of canonical trans- 

formations on hypersurfaces of the type F Is]. We shall only be interested in in- 
finitesimal transformations generated by given functions A (q, p) on phase space. 
The explicit formula for such canonical transformations is given in eq. (A.2) of the 
appendix. A concise notation for the infinite power series occurring in the trans- 
formation is achieved if we introduce a partial differential operator A* associated 
with the function A (the asterisk is always used in this sense throughout the paper, 
and never to denote complex conjugation): 

_ 9 A  0 _ . . .  ( 7 )  

(~q~ ~p~ Op~,~q~ 
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The action of A* on a function B (q, p) then produces the PB {A, B}. Then, the 
canonical transformation with parameter ~ and infinitesimal generator A(q, p) takes 
the form 

Q, (q, p, ~ -~ exp ( ,A*) q~, P, (q, p, 0 = exp (,A*)p, (8) 

The transformation itself may be denoted by the symbol exp (EA*). Let us now 
apply this canonical transformation to the points comprising a given hypersurface 
F [s]. Since we shall be interested only in terms up to at most second order in the 
(small) parameter ~, we may assume that the image of F Is] also permits the use of 
the q, as independent parameters over it; thus this image must be r [s'] for some 
s'(q). We can in principle get s' using eq. (A.3) of the appendix: if Q,  P~ is the image 
in r [s'] of q,, p~ in r [s], then 

[ ,3 ] P, dQ, = d  s(q) + ~(A - -p ,  {q~ ,A) )~- -5({A,p , (qr ,  A)}) ,  . . . .  (9) 

By expressing the function within square brackets as a function of Q rather than q, 
we discover the functional form of s'. After some algebra we get the result 

s'(q) = s(q) -k ~(A). fl- e" ~(A)~(OA) (I0) 
2 0q, ~ ~"" 

(One recognises that this is just the solution of the H-J equation corresponding to A 
and with ~ as parameter). So we can also write 

e x p  ( - ~ a * )  r is] - -  

[ ,~O(A)s(OA) ] r s +, (A)s +2 (11) Oq, ~ ~ . . . .  

The negative sign in the exponent is introduced on purpose with a view to securing 
the Baher-Campbell-Hausdorff formula in its usual form later on. We must note 
two important points in this connection. The first is that whereas in eq. (8) A* is to 
be interpreted as a partial differential operator that acts on any function of q, p that 
may stand to its right, in eq. (11) it is not to be interpreted literally in this sense but 
only symbolically. In fact the action of the symbol exp (--cA*) on a hypersurface 
r is completely defined by eq. (11). The second is that eq. (11) does not tell us 
how each point on r [s] is affected by the canonical transformation but only how 
the function s is affected; thus it only specifies the image of I' [s] as a whole. 

In the remainder of this section we use the definitions and results obtained thus 
far to discuss some of the kinematic features associated with the H-J form of dyna- 
mics. It will be seen that these are very similar to well known features of quantum 
mechanics. The H-J equation per se is taken up in the succeeding sections. Let us 
ask first under what conditions a hypersurfaee r [s] is invariant under a canonical 
transformation exp (--cA*). Working only to the order e, we see from eq. (11), 
that this happens if and only if 

( (A)~-------A q, 0-~ = a ,  (12) 
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where a is some constant. This equation can be called the H-J equation (time- 
independent!) corresponding to the function A(q, 17). Thus F Is] is invariant under 
exp (-- cA*) if and only if s obeys the H-J equation corresponding to A for some 
value of the constant a. This can be taken to be the analogue af the following state- 
ment in quantum mechanics: A (pure) physical state is unaffected by the unitary 
transformation generated by a given hermitian operator if and only if the corres- 
ponding state vector is an eigenvector of the operator in question. The fact that 
adding a constant to s does not change F [s] corresponds exactly to the fact that a 
physical state is unaltered when the state vector is multiplied by a phase factor. 
[Incidentally when eq. (12) is obeyed the r term in eq. (11) is identically zero; this 
will persist in higher orders]. When eq. (12) holds, the structure of F Is] can be 
described in this way: Clearly the orbits of points in F Is] under the one-parameter 
family (group) of canonical transformations exp (CA*) lie entirely in F Is]. Thus 
F [s] can be reconstructed if one is given a suitable (n--1)-dimensional subsurface 
of it, a cross-section of the orbits, to all points of which one applies the canonical 
transformation exp (cA*) for all real ~. This is just the way in which solutions 
of  the time-independent H-J equation can be generated, as described in the 
appendix. 

Suppose next that F Is] is invariant under the canonical transformations generated 
by A (q, p) as well as under those generated by some B(q, p). Thus s must obey 
two H-J equations simultaneously: 

(A)s = a, (B)s ---- b. (13) 

Using this in the PB formula eq. (6) we see immediately that 

({A,  B)), = o. (14) 

Thus s obeys the H-J equation corresponding to the phase space function {A, B} 
with the constant on the right being zero. (This is a known result; see for instance 
Caratheodory [3] w 58). This is the analogue to the statement in quantum mechanics 
that if a state vector is simultaneously an eigenvector of two distinct operators, then 
it is also an eigenvector of their commutator with eigenvalue zero. Conversely, if 
the PB {A,B} is non zero throughout phase space, which happens irA and B form a 
canonically conjugate pair of functions, no function s(q) can obey simultaneously 
the H-J equations corresponding to A and to B. 

2. Symmetry transformations and the H-J equation 

We analyse in this section the action of symmetries of a dynamical system on the 
solutions of the H-J equation. For this purpose we first build up a geometrical 
picture for the solutions themselves. Let the possibly explicitly time-dependent 
Hamiltonian be H(q, p, t) and let S (q ; t) be a solution of the H-J equation 

(H(q,p,  t ) )  s + 0  S(q; -~0. (15) 
cOt 
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For each time t we construct the corresponding hypersurface r' [S(q; t)] in phase 
space. This hypersurface then moves with time, always preserving its character of 
being n-dimensional and of having vanishing symplectic rank. That S obeys eq. 
(15) can now be interpreted in this way: the hypersurface at time t§ coincides with 
the result of applying the infinitesimal canonical transformation with generator 
J H  (q, p, t ) 8t to the hypersurface at time t. This is entirely natural, but it is an 
interesting application of eq. (11). Retaining only terms up to first order in St, we 
have: 

exp (St H (q, p, t)*) F IS (q; t) ] 

= I" IS (q; t ) -- 8t (H (q, p, t ) )s] 

= F[S(q;t ) -kSt  aS(q;t)]  
at 

~- F [S(q;t § $t)]. (16) 

Use of eq. (11) was followed by use of eq. (15). It is true that motion according to 
Hamilton's equations from time t to t -k 8t is an infinitesimal canonical mapping of 
phase space onto itself but that is not the content of eq. (16). Rather we must view 
eq. (16) as expressing the following property of S : If S is any solution whatsoever 
of the H-J eq. (15), the evolution in time of F [S (q; t)] as determined by the explicit 
time dependence of S coincides with the canonical evolution as determined by eq. (11) 
with H(q,p, t) as generator. This interpretation is well known. Equation (16) 
gives a geometrical picture of it. 

Next suppose a phase space function G (q, p, t ) is given, which happens to be a 
constant of motion: 

+ = 0. (17) 
at  

In the transformation theory of dynamics, this is usually interpreted thus: under the 
(time-dependent) canonical transformation generated by G the Hamiltonian preserves 
its functional form. We wish to connect this with the properties of solutions of the 
H-J equation. Let us recall first the analogous situation in quantum mechanics. 

Let a quantum system have a Hamiltonian operator / t  (t) and let G (t) be a hermitian 
constant of motion, either or both possessing explicit time dependence (we work in 
the Schr6dinger picture of quantum mechanics): 

- -  i [ G ( t ) ,  /-I(t)  ] + a__G(t) _ 0. (18) 
at  

i f  [ $(t))  is any solution of the Schr~Sdinger equation 

d 
i dt [~( t ) )  : ~r(t) I ~(t)}, (19) 
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and one defines a unitary operator U(r t) by 

U(, ;  t) = exp ( i ,  G (t)), 

then one finds that 

I #(t)) = U(,; t) I if(t)> 

is also a solution of the SchrSdinger equation. It is very easy to show this for 
infinitesimal ~, and with a little operator algebra for any E. Thus the (possibly time 
dependent) unitary transformation generated by a (possibly explicitly time depen- 

dent) constant of motion G maps any possible state of motion onto another such. 
We seek the corresponding result within H-J theory. Given G (q, p, t) obeying 
eq. (17) and any solution S(q; t) of eq. (15), let us set up the time dependent hyper- 
surface F[S(q; t)] and apply to it an infinitesimal canonical transformation with 
parameter E and generator G taken at time t; from eq. (11) we get 

exp (-- �9 G (q,p, t)*) r [S (q; t)] : r [S' (q; t)], 

S' (q; t) = S (q; t) + ,  (G (q,p, t)) s. (20) 

We first confirm by direct calculation that S' too obeys the H-J equation, and then 
show it geometrically. The time arguments being t throughout, we have: 

( H ) s , _ ( H ) s  = r  a(G)s; (21a) 
s aq, 

aS' aS a(G)s 
at at at 

( a a ) _  , (a~) a(n)s 
= ~  ~ s  s aqr 

(21b) 

By combining these with the PB restriction formula (6) and with the restriction of 
eq. (17) to r[S(q; t)] we see immediately that S'(q; t) is also a solution of the H-J 
equation. Thus we have the classical result that any constant of motion G brings 
with it a one-to-one mapping of the manifold of solutions of the H-J equation onto 
itself. Recalling that, as shown in the appendix, each solution S(q; t ) o f  the H-J 
equation is determined in a one-one manner by a function s(q) on configuration space, 
we can also say: the phase space canonical transformation generated by G gives rise 
to a mapping of configuration space functions onto themselves that preserves the 
H-J equation. 

It is illuminating to give another, more geometrical, derivation of this result. 
This is where we need to use the second order terms in ~ appearing on the right hand 



Hamilton-Jaeobi theory in phase space 93 

side of eq. (11). Let E, e' be two independent small parameters, A(q, p) and B(q, p) 
two phase space functions, and 1" Is] a given hypersurface. We wish to calculate 
the result of applying two infinitesimal canonical transformations in succession to 
r Is]. Let us write 

exp (-- riB*) exp (-- cA*) r [s] = exp ( -  riB*) r [s t] = IF' [sz]. (22) 

Our objective is to relate s2 to s in the manner of eq. (11) via a single canonical trans- 
formation, retaining at all stages terms that are at most of second order in E and e' 
jointly. We relate s~ to s, and then s~ to s~, and retain the terms of  interest to get: 

~z c3(A)~ ( OA] (23a) 
s 1 = s -~- E (A), + 2 cgq, kOp, l~ 

2 cgq, t s~ 

~_ s + ,  (a), +-~ aq----f ~-~, : + @): + ~ap--,#,-g~-, J 

1 e(,A + ~'B)~ (o(,A + ,'~)) 
= s + ( , a  + ('B), + ~ Oq, ~ Op, - ,  

�9 ~ s -}-(C),-f-I0(C),((9C), 

c =  ,A + , ' s  + �89 , , '  {A, ~}. (23b) 

Note the use of eq. (6) at the last step but one in the above. We thus have the for- 
mula, valid to quadratic terms, 

cxp (-- ,'B*) exp (-- EA*) F [s] 

= exp (-- ,A* -- ~'B* - -  �89 , , '  {A, B}*) 1" [s]. (24) 

This is the Baker-Campbell-Hausdorff formula for composition of  canonical trans- 
formations, to lowest nontrivial order. (For more details see, for instance, Sudarshan 
and Mukunda [16]). On interchanging the roles of  A and B, we get a similar for- 
mula; and comparing the two we get, again to the second order, the result 

exp (--~'B*) exp (-- cA*) ----- exp (--ee'{A, B}*) exp (-- cA*) exp (--r 
_~ exp ( - ,  (~ + ~' {A, ~})*) exv ( - , 'B*)  (25) 
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valid in the sense of eq. (1 l) when both sides are applied to any I ~ [s]. In this general 
result, let us take A to be the constant of motion G(q,p, t), B the Hamiltonian H(q,p, t) 
and --r  an infinitesimal time interval ~t. Because of  eq. (17) the combination of 
A and B on the right hand side of eq. (25) becomes 

A § e' {A,B} : G ( q , p , t + S t ) .  (26) 

I f  we now apply both sides of  eq. (25) to a hypersurface F [S(q, t)] where S is any 
solution of the H-J eq. (15) and use eq. (16) as well as the definition of S' given in 
eq. (20), we get: 

exp (8t t t  (q,p,t)*) I ~ IS' (q; t)] 

= exp (--  e G (q, p, t § St)*) F [S (q; t q- 80] 

= F IS' (q; t q- 8t)]. (27) 

Thus we have recovered the result that S' obeys the H-J equation if S does. 
A well known feature of classical (and quantum) mechanics is the dual role played 

by every dynamical variable. On the one hand it assumes a value (expectation 
value) in a given state of motion, which value does not change with time if  the variable 
is a constant of motion. On the other hand, the variable acts as the generator of 
canonical (unitary) transformations. These two roles come across particularly 
clearly in the above analysis showing how a constant of  motion acts on a solution of 
the H-J equation to produce another solution. Each solution S(q; t) of the H-J 
equation describes a family of  solutions of the equations of  motion corresponding to 
all initial phases lying on F [s] where s is the value of S at t = 0. A constant of  
motion G(q, p, t) has a time-independent value on each one of the trajectories in the 
family but the value of  G will generally vary over the family. This variation is 
present when the restriction of G(q, p, 0)to r [s] is a non constant function of q: and 
exactly in that case the new solution S' to the H-J equation obtained from S through,  
eq. (20) differs from S and describes a different family. But if (G (q, p, 0) ), is inde- 
pendent of q, then the value of G is constant over the family at t = 0 and so remains 
constant for all t. Formally we see from eqs (21b) and (17) that, the time arguments 
being t throughout, 

(28) 

so that as is to be expected 

(G (q, p, 0) )s ----- constant = g ~ (G (q, p, t) )s = g" (29) 

For such a solution S of the H-J equation the new solution S' is essentially the same 
as S, meaning that the transformation generated by G has no effect on S at all. 

For the sake of complete generality we have treated the situation where both the 
Hamiltonian and the constant of  motion were permitted to have explicit time depen- 
dences. The simpler statements valid if these dependences are absent are easily 
obtained from the results given already. 
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3. The time-independent H-J equation 

We now consider conservative dynamical systems and the role of the time indepen- 
dent H-J equation. The general method by which solutions to this equation arise 
is explained in the appendix. We are particularly interested in the relationship 
between solutions of the time dependent and independent H-J equations and the 
points of similarity to the situation in quantum mechanics. We recall the latter 
situation first. Suppose ]~b ( t ))  is a general solution of the SchriAdinger eq. (19) 

A 

with a time-independent Hamiltonian operator H, determined by the initial state 
i ~ )  at t = o: 

14 ( t ) )  : exp ( - - i t  H)  ] ~b). (30) 

This solution can be expanded linearly in terms of energy eigenstates with harmonic 
time dependence, say: 

I ~b (t)) = f dglr (E))  exp (-- i Et). (31) 

For simplicity we have assumed that /~ has a continuous spectrum, and ] ~ (E)) is a 

(not necessarily normalised) eigenvector o f / t  with eigenvalue E. The values of E 
that occur, and the corresponding vectors I ff (E)), are all characteristic of the state 
at time t ~ 0: 

] q~) : f dE] ~ (E)). (32) 

The rule by which each of the ' pieces' [ ff (E))  present in [ ~b) can be projected out 
of l~> reads: 

l f ~  ^ -- dt exp (iEt) exp ( - - i tH)[~ )  = 8 (E- - /~  [ ~b). (33) 

In words: One subjects ] ~b) to time translation by all possible amounts, multiplies 
by the factor exp (i E t), and integrates over all time. By this method one produces, 
from any given [ ~), energy eigenstates for all those values of E that are ' present' 
in I ~). 

There is an analogous procedure in the classical H-J theory (see, for instance, 
Sommerfeld [15]). Let S(q;t) be a nonlinearly time dependent solution of the H-J 
equation 

(H (q, p) )s + 0 S (q; t) = O. (34) 
St 

If we introduce an energy parameter E by 

( n  (q, p))s = e ,  (35) 
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we regard E as a function of  q and t, and conversely by inversion t'as a function of q 
and E: 

t = a (q; E). (36) 

We now eliminate the variable t in favour of E by a Legendre transformation and 
define a function W (q; E) by 

W(q; E) = S(q; t) + Et 

= S(q; a(q; E)) + E a(q; e). (37) 

One sees then using eq. (34) that 

O W (q; E) -- ( OS ~ t ) (38) 

Of course the differentiation of  W is at constant E, while that of S is at constant t 
followed by substitution for t. Equations (35) and (38) now show that W(q; E) is a 
solution of the time independent H-J equation: 

(H (q; P))rv : E 09)  

Analysing this construction more closely we see the following. We know that a 
solution S(q; t) of eq. (34) arises uniquely from an arbitrarily specified function s(q) 
on configuration space to which S must reduce at t = 0. On the other hand, the 
solution W(q; E) to eq. (39) is determined uniquely given S and E. It follows that 
every function s(q) on configuration space must lead in a definite manner to definite 
solutions W(q; E) of eq. (39) for each E in a certain range. It is natural to trace the 
emergence of W(q; E) directly from s(q), analogously to the quantu m result (33). 
It is possible to do this using the geometrical constructs of  section 1 an'd the results 
given in the appendix. Given s(q) we first set up the n-dimensional hypersurface 
F [s]. As q runs over all of configuration space the restriction (H)~ of the Hamil- 
tonian to F Is] takes up a certain range of values. For any E in this range we define 
an (n--1)-dimensional region in configuration space by the equation 

(H  (q, p)), = E. (40) 

Suppose ua, a = 1, 2, . . . ,  n --  1, give a parametrisation of this region, so that func- 
tions qr (u) solve eq. (40). The restriction of the qr to this region of configuration 
space gives a sub surface in F [s] as well, of dimension (n--l). The values of the 
momenta in this subsurface could be expressed as Os(q)/8q~with the q, being restricted 
after the partial differentiations are done. Alternatively we can observe the restric- 
tion (40) on the q~ from the start by saying that the momenta are determined in the 
region considered by the equations 

p, (u) Oq,(u.____) = c3s'(u_____) 
~u~ Oua 

H (q (u), p (u)) ----- E, 

(41a) 

(41b) 
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where 

s' ( . )  = ; ( q  ( . ) ) .  (42) 

(For ease in writing the additional argument E has been omitted izI both q(u) and 
p(u)). Equation (41) are of just the form of eq. (A.16), so from s(q) and E we have 
produced an (n-- l )  parameter family of initial phases q,(u), p,(u). From the appen- 
dix we know that these are just the ingredients needed for the construction of a solu- 
tion of the time independent H-J equation with energy E: we must apply all possible 
time translations to this family of initial phases, thereby generating an n-dimensional 
hypersurface r e  in phase space which is guaranteed to be F [W (q; E)] for some 
W (q; E) obeying eq. (39). 

To explicitly find W(q; E) we must use q, as parameters over I'E and express the 
momenta p, at points on I ' s  in the form 

P, : 0 W(q; E) (43) 
~gq, 

Figure 1 clarifies the construction: The n-dimensional hypersurface r' Is] appears 
as a '  line ' ;  its (n--0-dimensional subsurface defined by eq. (40) appears as a '  point '; 
the application of all possible time translations to this ' p o i n t '  generates the (n- 
dimensional) ' l i n e '  Fe. A point on I'e with configuration q determines a corres- 
ponding momentum p. This phase space point (q,p) ties on the hypersurface F[S(q; t)], 
obtained by canonical transformation from F Is], for some t. The figure shows that 
t is determined in terms of q and E just by eqs (35) and (36)--thus clarifying the 
meaning of turning time into a function of q and E. If  the q, are viewed as para- 
metrising F IS (q; t)], p, are given by 

~9S (q; t) 
p ,  = _ _  ( 4 4 )  

~gq, 

This i s '  differentiation at constant t '. We want to express the same p, in the manner 
of eq. (43) which is ' differentiation at constant E '  corresponding to the use of the 

~[s cq,t)] 

k 

L q 

Figure 1. Generation of solutions to time-independent H-J equation. 
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q, as parameters for rE. This means that we must use eq. (35) to eliminate t in 
favour of E, and the Legendre transformation (37) gives just the correct W in terms 
of  which we secure eq. (43). 

Thus the generation of solutions W(q; E) to the time-independent H-J equation 
starting from any configuration space function s(q) is understood and seen to be 
similar in several respects to the situation in quantum mechanics. 

4. H - J  equations on a L i e  group 

Though it is not directly related to the topics discussed in the preceding sections, we 
describe very briefly in this section an extension of the H-J theory in which the single 
time parameter is replaced by an element of a Lie group. This is natural to consider 
for those dynamical systems which possess an invariance group larger than the group 
of time translations. 

Let a J, j ---- 1, 2, ..., N, be a coordinate system for an N-parameter Lie group if, 
normalised so that a J ~ 0 at the identity. Let the product of the elements a, 13 
have coordinates f J  (a,/3). The functions defined by 

{ (/3, = \  (45) 

are known to form a nonsingular matrix reducing to the unit matrix at a = 0;  and 
obey 

(46) 

where the C's are the structure constants of ~. (For a concise account see, for 
instance, Sudarshan and Mukunda [16] Ch. 13). 

A Hamiltonian dynamical system with invariance group ~ supplies us with a set 
of phase space functions Gj (q, p) giving a PB realisation of the Lie algebra of fg 
(Saletan and Cromer [12], Ch. IX; Sudarshan and Mukunda [16] Ch. 14): 

{Gj (q, p), Gk (q, p)} = Cj~' Gz (q, p). (47) 

For simplicity the possible presence of neutral elements in the realisation is ignored. 
These relations ensure that the finite canonical transformations generated by the 
Gj (q, p) give a realisation of ft. If  ff consisted of time translations alone, we would 
have just one G, the Hamiltonian. 

In this framework one sees that the single H-J equation of ordinary dynamics gets 
enlarged to a system of H-J equations, one for each a J, in this form: 

~Tfl (a) OS(q;a)Ot~ ~ + (Gj (q, P))s = O. (48) 

The unknown here is a configuration space function S that depends also on the N 
parameters a J. Equations (46) and (47) jointly ensure the integrability of this system 
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of H-J equations, provided we use formula (6) as well. We do not analyse this system 
further here, but point it out as an interesting extension of the usual theory. 

5. Conclusion 

We have provided a general analysis of the Hamilton-Jacobi formulation of classical 
dynamics laying particular emphasis on the description of symmetries and invariance. 
We have tried to see to what extent the classical transformation theory adapts itself 
naturally to this form of dynamics. This study has been motivated by certain well- 
known features of the Schr~dinger form of quantum mechanics as well as the desire 
to understand better the grouping together of classical states of motion into families 
that is characteristic of the Hamilton-Jacobi method (cf. the remarks of Dirac [4]). 
Our interest has been to trace the connections existing between different elements of 
the theory and not to provide new techniques for solving known equations. 

As an example of the better insight provided by this work into standard applications 
of the H-J theory, we mention the following. The cases where the H-J equation is 
explicitly solved are rather few in number, usually corresponding to situations where 
the method of separation of variables works. It is well known that these are the cases 
possessing specific symmetry properties; these symmetries lead to special coordinate 
systems in which the H-J equation separates. From sections 1 and 2 the significance 
of these cases is realised clearly and in a deeper way. These are just the situations 
wherein a maximal number of global constants of motion exist, with the property that 
any two of them are in involution, i.e., have vanishing PB. Precisely then does there 
exist a single function S that simultaneously satisfies the H-J equations corresponding 
to each of these constants of motion. In fact S is (essentially) uniquely determined 
by these equations. This is exactly like finding simultaneous eigenvectors for a 
complete commuting set of operators in quantum mechanics. 

The discussion in this paper has been restricted (implicitly at least !) to local proper- 
ties in phase space; it is extremely hard to make statements about properties in the 
large. In spite of this we feel that the methods used here are interesting in their own 
right and may suggest new points of view in analysing the semiclassical regime of 
quantum mechanics and its relation to classical mechanics. We hope to have 
successfully brought out some of the beautiful aspects of the Hamilton-Jacobi form 
of dynamics so that it may be viewed as something more than merely a means to 
solving Hamilton's equations of motion. 

Appendix 

The material in this appendix is presented solely for the convenience of the reader, no 
specifically new results being involved. Several well-known ideas have been put 
together in a compact form especially suitable for the applications made in the body 
of the paper. 

Let qr, Pr, r =  1, 2, ..., n, be a canonical coordinate system for a 2n-dimensional 
phase space. There are many equivalent ways of defining a canonical transforma- 
tion, of which we choose the one based on the differential expression prdq,. An 
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invertible one-to-one mapping of the phase space onto itself, taking a general point 
qr, P, to the point Q, (q, p), P, (q, p), is a canonical transformation if the expression 

e ,  dQ, - -  ?,aq, 

is a perfect differential, i.e., if there exists a phase space function w(p, q) such that 

P, dQr -- p,dqr = dw (q, p). (A1) 

Here, dq, and dp, may be pictured as independent small changes in the coordinates 
of the point q,, p,, leading via the mapping to definite small changes dQ,  dPr in the 
coordinates of the image point Q,, Pr. If the canonical transformation depends on 
one or more parameters, these will enter as arguments of w as well. 

A given function A(q, p) on phase space can be used as the (infinitesimal) generator 
of a one-parameter family of canonical transformations in a well-known way. If  �9 
is the (real) parameter of the transformation, the equations of the transformation can 
be formally written using PB notation as: 

�9 
Q,(q,p, �9 : q r  + �9 {A,q~} + ~.~ {A, {A, q,}} + ..., 

�9 
P,(q,p,  e) = P r  + �9 {A,p,} + ~ { A ,  {A,p,}} %- .... (a2) 

Naturally, only canonical transformations continuously connected to the identity 
transformation can be produced in this way with the help of an infinitesimal generator. 
Putting eq. (A2) into eq. (A1), the function w (q, p, �9 can be calculated as a power 
series in �9 Up to second order, the result is 

�9 {A, Pr (qr, A)}...] P, d Q , - - p ,  dqr = d e(A--p~{q,, A})-- 5 (A3) 

While q, and Pr appear as independent variables in eq. (A 1), one can obtain useful 
results by restricting them in various ways. Let M be an m-dimensional hypersurface 
embedded in the 2n-dimensional phase space, and let u~, a = I, 2, ..., m, give a real 
parametrisation of M in the sense that the coordinates of points of M can be written 
as q,(u), p,(u) with the u~ being independently variable. The canonical transformation 
applied to the points of M leads to another m-dimensional hypersurface, M' say, with 
the image of the point q, (u), p, (u) on M being the point Q, (u), P, (u) on M';  thus the 
ua serve as parameters for M'  as well. We now restrict dqr, dp, to be just those 
possible small changes in q,, p, that can be produced by independent small changes in 
the ua, so that along with q,, p~, the point q,+dq~, p,+dp~ also belongs to M. The 
canonical nature of the transformation then leads to an equation of the form 

P,(u) OQ~(u) p, (u) Oq,(u) _ ~w,u:..: ~ (A4) 
~u~ Oua ~u~ 
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From here we conclude that 

(AS) 

which is in fact an explicit expression of the invariance of the LB's among the u,, under 
a canonical transformation: 

t". ,  u lo,p = t . . ,  ur (A6) 

In the remainder of this appendix we summarise briefly how general solutions to the 
time dependent H-J equation for a general Hamiltonian H(q, p, t) and to the time 
independent H-J equation for a conservative Hamiltonian H(q, p), can in principle be 
constructed (For detailed discussions see Caratheodory [3], Rund [11]). The key 
idea to be used is of course the fact that time evolution according to Hamilton's 
equations of motion, 

Q, == {Qr, H(Q, P, t)~-,/;r = s I f(Q,  P, t )}  (a7) 

is the continuous unfolding of a canonical transformation. As preparation for both 
cases we consider first the following situation. Choose as above an m-dimensional 
hypersurface M with parameters u, and consider the m-fold infinity of phases q,(u), 
p~(u) at an initial time t=0.  Each of these initial phases gives rise via eq. (A7) to a 
corresponding phase space trajectory, the phase at time t on a general one of these 
trajectories being Q, (t; u), P, (t; u). Equation (A6) now states that the LB's [u~, u/~] 
are independent of time. It follows that these LB's vanish for all time over the entire 
family of trajectories if they vanish everywhere on M, i.e., the hypersurface M is 
such that for a suitable function s(u) we have 

p,  (u) Oqr(u), _ Os(u) (A8) 
Oua Ou,~ 

Let these equations be fulfilled. Then we see that, for the m-parameter family of 
trajectories being considered, eq. (A4) guarantees the existence of a function w(t; u) 
such that 

P,(t; u) OQr(t; u) _ O (s(u) + w(t; u)). 
Oua OUa 

(A9) 

In this general discussion all values of m ~<n are permitted. In particular if m <n, 
knowledge of s(u) and q,(u) does not suffice to determine p,(u) completely via eq. (A8). 

To arrive at general solutions of the time dependent H-J equation for a general 
Hamiltonian H(Q, P, t), we specialise the above discussion by taking M to be of 
dimension n, re=n, and assuming that the q, can be chosen as the independent 
parameters ua on M. Then eq. (A8) does determine the momentap, on Mas  functions 
of the q,, 

P, _ Os(q), (A10) 

v. CA)--2 
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and M becomes a hypersurface F Is] of the type introduced in section 1, determined 
completely by a given function s(q) on configuration space. The function s(q) then 
produces, according to the previous paragraph, an n-parameter family of trajectories 
with the phase at time t on a general member being Q,(t; q), P,(t; q). We assume 
next for each t that the Q, are independent functions of the q,. In that case, eq. (A9) 
shows that there exists a function S(Q; t) such that at each time t we have 

P, dQ, = dS (Q; t). (A11) 

The family of trajectories is therefore such that the momenta are always determined 
by the positions through 

Pr =" 0S (Q; t) (A12) 

But the family has been obtained by integrating the equations of motion (A7) for a 
particular collection of initial phases, so eq. (A12) must be consistent with eq. (A7). 
This means, on taking the total time derivative of both sides of eq. (A12) and then 
using eqs (A 7) and (A 12) in the result, 

OH(Q,P , t )  _ c32S (OH(Q,P, t )  
0 Q, )s - OQ, Ot + ~gQ--~Q~ \" - ~  ) s ' 

i.e., 

[ (H (Q, e, t)); +-5/ = o. 
OQr 

(A13) 

Since eq.(A11) leaves S undetermined up to the addition of a time-dependent constant, 
we see that Smay be taken to obey the H-J equation 

(H (Q, P, t)) s + 0_._S = 0. (A14) 
0t 

This still leaves S undetermined up to the addition of a time-independent constant. 
This ambiguity is eliminated by comparing eq. (A11) with eq. (A10) and requiring that 
at t = 0  we have 

S (Q; O) --: s (Q). (/%15) 

In this way, each given function s(Q) on configuration space leads to a corresponding 
uniquely determined solution of the time dependent H-J eq. (A14). 

Finally suppose H(Q,P) is a Hamiltonian with no explicit time dependence and we 
wish to build up solu ions to the corresponding time-independent H-J equation. In 
the general discussion preceding eq. (A9) we take m=n--1 and choose the functions 
qr(u) in some way. Thus the initial configurations belong to an (n--D-dimensional 
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region of configuration space. To determine the initial momenta pr(u) we impose n 
equations 

p, (u) Oq,(u) _ Os'(u) , (A16a) 
Ou. Ou,. 

H (q ("), P ("/) = e .  (A 16b) 

Here s'(u) is some function of the (n--l) parameters u, and E an arbitrarily chosen 
energy. (We assume these are independent equations for the p,(u), and skip writing 
the more correct form p(u; E)). This (n--l) parameter family of initial phases 
produces an (n--1) parameter family of trajectories filling out an n-dimensional region 
in phase space. The phase at time t on one of these trajectories can be written Q, 
(t; u; E), P, (t; u; E) and eq. (A9) guarantees the existence of a V (t; u; E) such that 

P, (t; u; E) OQ, (t; u; E) = OV (t; u; E) (A17) 
Ou,. Ou~ 

Energy conservation and eq (A 16b) jointly give 

H(Q(t;  u; E), P(t; u; E)) --= E. (A18) 
Now we must extend eq. (A17) to cover the partial derivatives with respect to t also. 
For this we show first that since H has no explicit time dependence the LB's [t, ua] 
are conserved: 

o o (oe, oe, oe, oi", I ([t'u"l~ ou,, ~u. -ot/ 

_ o (oI-r(o.,P)oe, O H ( e , e ) o a , ]  

0 II(Q,P)- 8 0 H ( q ( u ) , p ( u ) ) = O .  (A19) 
Ot Ou~ Oua Ot 

[The arguments t, u, E of Q, P were omitted for simplicity]. Here we used only the 
conservation of H but not the further property that for all members of the family of 
trajectories considered Hhas  the same value E. If we do take account ofthis property 
then the same steps as in eq. (A 19) but with 0/0 t omitted show that the LB's [t, ud 
in fact have the constant values zero: 

It, ud = ~ n (q (u), p (u)) = 0. ( m 0 )  
OUa 

We express this as 

~u~\ 
(A21) 
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recall that V(t; u; E) in eq. (A 17) is at this stage undetermined up to addition of 
a function of t (and E) alone, and so conclude that V may be chosen so that we 
can write 

PrdQ, = dV(t; u; E) (A22) 

with all n quantities t, u, capable of independent variation. As the last step we 
assume that Q, (t; u; E) are n independent functions of t, ua; this means that the Qr 
can serve as independent parameters for the n-dimensional region in phase space filled 
out by the trajectories. If then V(t; u; E) is written as W(Q; E) eq. (A 22) gives 

1), _ tgW (Q; E) (A23) 
~Q, 

and this coupled with eq.(A18) shows that W is a solution of the time-independent 
H-J equation 

To summarise, each solution of this equation arises by choosing an (n--l) parameter 
family of initial positions qr (u), a function s' (u), and an energy E in such a way that 
the initial momenta can be obtained from eq. (A 16), and such that in the resulting 
family of trajectories Q, can replace t, us as independent variables. The n-dimen- 
sional region of phase space filled out by the trajectories determined by this (n--1) 
parameter family of initial phases forms the hypersurface I'[W (q; E)]. The 
construction just outlined is essentially the one given by Einstein [5], while the one 
described by Schrrdinger [13] is a special case of this one. 
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