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The scalar wave equation is analyzed in the relativistic front form, appropriate for paraxial-wave
optics. The group-theoretical basis for this treatment is uncovered. The formal similarity of the
propagation of paraxial beams through optical systems to the quantum mechanics of particles in two
dimensions subject to harmonic impulses, and the role of the metaplectic group of Bacry and
Cadilhac, are both traced back to the structure of the Poincaré group. Light rays are defined in this
context as in statistical-wave optics, and the laws for their free propagation as well as transmission

through lenses are derived.

I. INTRODUCTION

In the study of the passage of light through an optical
system it is often advantageous to consider the paraxial
approximation in which the beam travels along an “axis”
and directions close to it. In such a context the illumina-
tion may be identified as a combination of axial pencils of
light for which the opening angles are all rather small. If
a typical angle is 6 we designate those situations in which
cosd may be well approximated by 1—+6? as paraxial.
Thin lenses lend themselves to considerable simplification
for paraxial optics.

For light propagation in vacuum the wave numbers
k1,k,,k for light of frequency w satisfy

2
()

k2=—c7 k}—k3 .

If we have a paraxial pencil traveling along the positive x>
direction, it would be a superposition of waves for each of
which we have k% +k2 much less than k2, and so we may
deduce

c 2w/c

Hence k; differs from its value w/c for strictly axial prop-
agation by terms quadratic in the transverse wave numbers
ky,k,. Since in optics one is often interested in the propa-
gation of quasimonochromatic radiation, we can see that
as the wave travels along the axis the phase advance is not
quite that for a strictly axial wave but differs from it by
terms of the form

k2+k2
ky=2 1%

In

which is reminiscent of the phase propagation in time of a
Schrodinger wave function for a free nonrelativistic “par-
ticle” of mass #iw/c2. On the other hand, the phase dis-
tortion introduced by a thin lens of focal length f ( 20 ac-
cordingly as the lens is convex or concave) is essentially of
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the form

O

2fc
provided the lens is placed centrally and normally on the
axis. If we can find an exact description for the propaga-
tion of quasimonochromatic light which employs “wave
functions” in planes normal to the axis, then a lens would
appear as an object yielding a harmonic impulse to an oth-
erwise free quantum-mechanical particle. The succession
of harmonic impulses to free particles corresponding to a
sequence of lenses can be easily computed. We would thus
expect such a description to be easily visualizable in terms
of our knowledge of quantum systems. Furthermore, the
composition of several harmonic impulses separated by in-
tervals of free particle propagation can be expressed in
terms of a single magnification and a single harmonic im-
pulse.

It would therefore be appropriate to search for such a
description. It turns out that there is a transcription of
relativistic wave propagation into the so-called “front
form” in which such a description emerges naturally.'
The usual idea of quasimonochromaticity is replaced by a
new but closely related concept of ‘“henochromaticity”
(from the Greek “heis” for single as in henotheistic). In
this paper we describe this approach to relativistic wave
propagation and apply it to the problem of paraxial optics
in successive stages of refinement. For convenience of
presentation and since the ideas of the relativistic front
description may be somewhat unfamiliar in the present
context, we restrict ourselves in this paper to scalar
waves.? In a succeeding paper we take up the case of the
complete system of Maxwell’s equations for vector waves.

We begin in Sec. II with a fairly detailed account of the
front form of relativistic dynamics, adapted to the case of
scalar wave propagation. We take care to point out the
group-theoretical structures involved, in terms of the
underlying Poincaré invariance of the wave equation, and
to bring out the similarities as well as differences of the
front form in relation to the usual split of space-time into
physical space and physical time. The existence of a

(x24y?),
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(2 + 1)-dimensional Galilean group (or rather a central ex-
tension of it) embedded within the Poincaré group, which
is revealed by the front form, is explained.’ Section III ex-
plains the significance of the terms henochromatic and
quasihenochromatic in the context of the front form,
derives the conditions under which they are equivalent to
one another, and to the corresponding more familiar con-
cepts relating to temporal frequency of waves. With this
preparation, we go on to deal with the propagation of par-
axial beams, and show how the usual description of the ef-
fect of a lens on a monochromatic incident wave can be
reexpressed in the front language. Since the independent
front variables are combinations of the physical space and
time coordinates, this reexpression has to be done with
some care. We recall also at this point the very interesting
considerationc of Bacry and Cadilhac* on the relevance of
the metaplectic group to these problems, and stress that
the existence of this group can be traced back to the
(2 4+ 1) Galilean algebra mentioned above. The composi-
tion of many lenses and their equivalence to a single lens
plus a magnifier are traced. In Sec. IV we adapt the re-
cently introduced notion of generalized rays of light in
statistical wave optics,’ to the case of paraxial beams in
the front form.% In this limiting situation their propaga-
tion laws are much simpler than in the full three-
dimensional case: We are able to explicitly solve the equa-
tion of motion for the generalized intensity of light rays
and see that in free space these rays travel in straight
lines.” The effect of a thin lens on a generalized light ray
is shown to be a simple bending on encounter with the
lens, in the quadratic approximation to the lens phase
transformation. On the basis of this result a startlingly
simple derivation of the fundamental thin lens formula is
obtained. We also outline why “ray tracing” fails beyond
the quadratic phase approximation in the action of a thin
lens, not only because of caustics and astigmatism but be-
cause of the true wave behavior of pencils of generalized
rays of light going beyond diffraction. The concluding
section, Sec. V, summarizes the essential properties of the
front form for this class of problems.

II. THE FRONT FORM AND PARAXIAL
PROPAGATION

We use space-time coordinates x* with x®=ct, and the
spacelike metric ggo= — 1. The free scalar wave equation

3,0 (x)=(V2—3)Y(x)=0 @2.1)

is invariant under the action of the inhomogeneous
Lorentz, or Poincaré, group 2. An infinitesimal element
of & is specified by the six parameters o**= —w" of an
infinitesimal homogeneous Lorentz transformation, and
an infinitesimal space-time translation vector a*:

xtsxt=xHt48xt, Sxt=wl"x,4+a" . (2.2)

Its action on ¥ can be expressed by saying that the func-

tional form of ¢ gets altered by the amount
S(x)= —8xH9,¥(x) . (2.3)

Following quantum-mechanical usage we can associate a
generator G with this transformation in the following way:
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=+o*M,, —a*P, ,
2 . K I3 . (24)
M,,=—i(x,0,~x,3,), P,=—id,.
Then Egs. (2.2) and (2.3) can be expressed as the effects of

applying G to x* and ¥(x), respectively,

oxt=—iGx#, &yY(x)=iG(x) . (2.5)

The ten differential operators M,,,,P, reflect the structure
of Z through their commutation relations:

[Mp,pro] =i (gprva —gvap,a +gyaMpv —gvaMpy) ’
[Mwaplzi(gy,va _gvap) ’ (2.6)
[P,,P,]=0.

To avoid any misunderstanding, let us note the following
points: Since we are dealing with a classical theory, the
generator G has only a geometrical significance and not a
dynamical one. It is therefore merely a convention to have
the factors of i appear in the expressions above. The gen-
erators of Z acquire the status of dynamical variables
only when one develops a classical theory in its canonical
Hamiltonian form, or goes into quantum mechanics. The
homogeneous Lorentz generators M, are dimensionless,
while the translation generators P, carry dimension of in-
verse length. [In quantum mechanics one would essential-
ly deal with # times the operators in Eq. (2.4), which are
then physical angular momenta and energy momenta.]

The relativistic invariance of a dynamical system can be
presented in several distinct forms, which at the classical
level are equivalent to one another. These forms have
been elaborated by Dirac,! and they differ from one anoth-
er in the way in which the overall space-time development
of the system is split into kinematical and dynamical
parts. In the familiar instant form, we view the equal-
time configuration of the system over all space as its state.
The subgroup of Euclidean transformations generated by
M,P;, j,k=12,3, leaves a constant-time surface in
space-time unchanged, and is kinematical. The generator
P? changes one such surface into another and is dynami-
cal; the boosts M(; tilt such a surface and mix space and
time coordinates, and so they are also dynamical.

We explain now in a preliminary way why the front
form of relativistic description is particularly suited to
paraxial wave propagation. A general positive-frequency
plane wave solution of Eq. (2.1) is

Yx)=e®** k°50, |k|=k°. 2.7

If this plane wave were strictly axial, i.e., propagating
along the positive x3 axis, its dependence on x* is only
through the combination x°—x3;

k3=k0>0, eik'x=e—iko(x0—x3) . (2.8)

This suggests the use of the light cone combinations

04,3 —(yl 2 . : :
x"*x°, x;=(x",x°) as independent space-time coordi-
nates in place of the original x*. The general plane wave
(2.7) has in these variables the form

etkx T8(x%+x31},
(2.9)

where k| is the transverse (x ' —x?2) two-dimensional com-
ponent of the wave vector k, and .# and & are defined as

=exp{ilk,x, —M(x°—x3)—
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M= kO+K3), E=Kk"—K3. (2.10)
Both .# and & are inverse lengths, and the condition
k2=0 takes the (exact) form

ME =K. 2.11)
If this plane wave is paraxial, then by definition |k, | is
much smaller than k° or k3, so one has the system of ine-
qualities

& << |ky| <A . (2.12)

The usefulness of the particular variables x°—x3x,,
x%4x3 for a paraxial plane wave, or for a paraxial beam
made up of a narrow superposition of such waves, is now
clear: The function ¥(x) experiences its most rapid varia-
tion when one changes x°— x3; with respect to x, it has a
much slower variation, by the relative factor |k, |/.#;
and with respect to x°+x3 it has an even slower variation,
by yet another factor of |k, |/.# as is clear from Eq.
(2.11). These statements are valid, of course, under the as-
sumption that the paraxial beam propagates roughly along
the positive x> axis.

Let us now develop the front form of dynamics, paying
attention to the group-theoretical aspects as well. The
basic idea is to define a one-parameter succession of paral-
lel hyperplanes or fronts in space-time, over each of which
one of the two combinations x°+x? stays constant. This
one we shall call : It labels the fronts and plays the role
of evolution parameter. The other combination of x° and
x3, denoted by o, together with x|, parametrize the points
on each front and are to be thought of as “spatial” coordi-
nates. It is known that when the generators of Z are also
rearranged in suitable fashion, a natural subalgebra with
the structure of the Lie algebra of the Galilei group in
(2 4+ 1) dimensions emerges.® The “Hamiltonian” in this
subalgebra is that combination of P° and P that causes
changes in 7, i.e., moves a front, but leaves o unchanged;
while the role of “mass” is played by the other combina-
tion of P° and P? causing changes in ¢ and leaving 7 in-
variant. We make our choices of o and 7 so that, as anti-
cipated by the notation in Eq. (2.10), for paraxial beams
propagating in the positive x* direction the “mass” is
large and is essentially the temporal frequency, while the
“Hamiltonian” is small. This requirement leads directly
to the definitions

o=x"—x3 r1=3(x"4x?%), (2.13)
and to the front form of the wave equation (2.1):
& v=5Viv. (2.14)
d7d0 :

The front labeled by 7 consists of all points in space-
time at which 7 has a given fixed value. There is a corre-
sponding subgroup of Z with the property that each of its
elements takes a point on this front to another point on
the same front, and so leaves the front as a whole un-
changed. The independent generators of this subgroup are
easily found by using Egs. (2.4) and (2.5). We write
K_[ =M0j,(M23,M3[,M12):(Jl,Jz,J3), using subscripts
a,b, ..., to go over the (transverse) values 1,2 and the
two-dimensional antisymmetric symbol €, with €;,=1.

The transformation of the wave equation (2.1) into the
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form (2.14) corresponds to the fundamental relativistic

form being rewritten in terms of x,, o, and 7:
dxidx—(dx°)=dx, dx,—2do-dr . (2.15)

Consequently the ten Poincaré generators can be reex-
pressed as

P“__i_a?c—,,’ Jy=—i xlaiz — 2%1 ,

G, =i raia +xa% =5(K, —€gpJp) ,

M:i%, Kiy=i o3 —T% , (2.16)
Fumt oty |~

H=i.

From among these ten generators we can obtain six gen-
erators P,,J;,G,,M which preserve the front. This set of
six generators can be augmented by the 7-dependent quan-
tity

I(:;—7'(1)0—1‘)3):1'0'i
do

which also preserves the front. These seven generators
constitute a (r-dependent) stabilizer for the fronts; this
means that the subgroup in & leaving the ‘front ”° invari-
ant varies with 7: We shall therefore write 22 (7) for this
subgroup. (This is to be contrasted with the situation in
the instant form, where the subgroup of & preserving a
constant time surface does not change with time; it is the
“fixed” Euclidean subgroup generated by J;,P;.) The
three remaining generators of &, namely %(P{’—P3) and
%(K, +€45Jp), generate transformations that move or tilt
the “front 7.”

The commutation relations of the seven generators of
Z(7) can be read off from the basic ones (2.6). The varia-
tion of Z () with 7 is by conjugation by elements in & of
the form e ?. There is however a six-parameter sub-
group Z,C Z(7) that stays constant and is common to
all the Z(7): It is generated by J3, G,, P,, and M. In the
present realization (2.4), these generators have the forms

(2.17)

J3=—i(x182—x281), Gazi 7'aa'+.xai ’
do
3 (2.18)
Po=—id,, M=i2 .
do

If we now view the three “spatial” variables o,x, as coor-
dinates on each front, we see that J;, P,, and M generate
transformations with 7-independent effects on these vari-
ables, while this is not so in the case of G,. Specifically,
for fixed parameters £,, the element efaCacp o acts on o
and x, as follows:

00 (g 3 ) = (00— Egxg + 1€ s Eaxa—TES) . (2.19)

Therefore, one can identify a subgroup 22,C 2, whose
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elements act in a 7-independent way on o and x, within
each front: It is four dimensional and is generated by J3,
P,, and M. Thus from the group-theoretical analysis we
see that the front form involves the chain of subgroups
P(1)DPyDP,: The first is the 7-dependent stability
group of a front; the second is that part of Z(r) that is
constant in 7; the third is the part that acts in a 7-
independent way on o,x, within each front.

The Galilei group ¥'2’C 2, acting on a fictitious
(2 + 1)-dimensional space-time and associated with the
front form, arises as follows: We adjoin to the six genera-
tors J3,G,,P;,M of P, the single generator H=P°— P3
which moves a front parallel to itself. The nonvanishing
commutators among these seven operators are

[J3,Ga]=i€abi, [J3’Pa]=i6abe N

[Gs,Py]1=ibpM, [G,,H]=iP, . (2.20)

These relations follow directly from the basic ones (2.6)
and do not depend on the particular realization (2.4) ap-
propriate for the scalar wave equation. Thus they hold for
any relativistic dynamical system. We recognize these
commutation relations as corresponding to the Lie algebra
of (a central extension of) the (2 + 1) Galilei group ¥?.°
The importance of the existence of this structure within
2 for problems of paraxial wave optics will become clear
in the sequel. In ¥¥, J; and P, generate rotations and
translations respectively in a plane; G, generate commut-
ing Galilean boosts; M is the mass (here an operator), and
H the “Hamiltonian.” In the realization (2.4) we have, in
addition to (2.18),
. 3
H=i 3

One more item has to be dealt with before we can inter-
pret the wave equation (2.1) as an evolution equation
within the front form. Since we are dealing with waves
traveling exactly with velocity c, there are solutions to Eq.
(2.1) that cannot be treated at all in the spirit of an initial-
value problem in the front form.!® Such solutions are in-
dependent of o and x|, and are of the form

(2.21)

(2.22)

with f an arbitrary function of its argument. These solu-
tions are constant in “space,” i.e., over each front, and
vary only with 7. (It is impossible to construct analogous
solutions in the instant form other than ¥ =const.) In
wave number space, these are exactly antiaxial waves trav-
eling in the negative x> direction: k3= —k°, k,=0. It is
easily seen that all the generators of Z(r) annihilate every
solution of this kind, since none of them involves d/97.
We shall explicitly avoid such solutions in our work. In
fact we shall go further and restrict attention to “analytic
signal” solutions ¥(o;x,;7) in the front form: When
Fourier analyzed with respect to o, the spectrum of values
of #= %(k°+k3) will be required to be strictly positive.!!
Such solutions are automatically analytic signals in the
usual sense as well, since .# >0 implies k°>0. Even
more than that is true: On such solutions, the Galilean
Hamiltonian is also non-negative.

This restricted manifold of “analytic signals” is carried
into itself by all elements of &‘? and also by the transfor-
mations generated by K;. [Elements of & outside this set
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do not have this property and can mix “analytic signals”
with solutions of the form (2.22).] The wave equation
[(2.1) and (2.14)] can now be stated as an equation of
motion in 7:

P,P
iﬁa:dz(o;xl;r):Hx[;: ;Ma
As long as the henochromatic approximation (M ~const)
is obeyed this is an exact result: The unwieldy radical
[(k°?— 62]1/2 familiar from the instant form gives way
to a much more manageable nonrelativistic looking but yet
exactly relativistic expression in the front form. Propaga-
tion of the wave along the 7 variable is formally the same
as of a free nonrelativistic “quantum-mechanical” particle
in two space (x,) and one time (7) dimensions. (Note the
absence of #, the dimensions of H, M, P,, etc.)

We will analyze the properties of paraxial waves in
some detail in the next section, but here we make some re-
marks which help in visualizing what is going on. For a
paraxial solution ¥(o;x;7) with a small spread in .#, the
dominant dependence of ¥ is on the “spatial” coordinate
o; in comparison, the dependence on the remaining “spa-
tial” coordinates x, is much weaker, and that on 7 is even
weaker. Indeed, for exactly axial waves of the form
Y=, (o) there is no 7 dependence at all (or any depen-
dence on x, either). There are, of course, no analogous
nontrivial time-independent solutions in the instant form,
just as there were no space-independent ones.

The Poincaré invariance of the wave equation, com-
bined with its linearity, implies the following: If we apply
any of the generators M,,,P, of &, or any function
F(M,,,P,) of them, to a solution 4, the result is another
solution. Of course, F must not carry any explicit depen-
dence on o, x|, or 7. One might expect from this that par-
axial solutions are carried into similar solutions if we ap-
ply (functions of) the generators of Z(7) to them. This is
not quite true, for two reasons. First, the generator
K3 —71(Py—P;) in (2.17) changes the value of M but leaves
a henochromatic analytic signal henochromatic and ana-
lytic.

We now consider applying (functions of) the generators
(2.18) of Z to a paraxial solution and inquire if the result
is again paraxial. Here it is trivially obvious that this will
be so if we use only the generators J3,P,,M of Z, which
have a 7-independent effect on the “space coordinates”
o,x,. With G, the situation is more subtle. A general
paraxial solution 3 can be expanded in the form

Wosx = [da [ d*k, o (a;k))

ik x| —i.#o—i&T

b (2.23)

Xe
(2.24)
E=ki/2.4 ,

where it is understood that the integration on .# is over a
narrow band, and only small values of k; (in relation to
) appear. (These conditions will be stated more precise-
ly in the next section.) Then the action of G, can be seen
using Eq. (2.16) to be as follows:

Gotosx;n)= [ da [ d*k, [u/ A (Mik,)

3
3k,

ik 'x, —i#o—i&T

Xe (2.25)
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For sufficiently smooth weight functions & (.#;k ), this
shows that any finite polynomial in the G, will preserve

. . .o iE,G
the paraxial nature of ¥. But with the exponential e ¢ ¢
for instance, which is an element of 2 not contained in
2|, we have

eig"G"zlz(o;xL;T): fd.ﬁfdzkl.z((u//;kl—./lfél)

eikl-xl—i‘//a—iéf‘r ) (2.26)
The paraxial nature of ¥ will in this case be preserved only
for |&,| <<1. Analogous restrictions can be worked out
if one wishes to apply more complicated expressions, as
for instance exp(i0G,G,), to ¥ and wants to preserve the
paraxial form of .

Finally, it is characteristic of the Galilei algebra that it
always supplies “canonical conjugates” to the translation
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generators P, in a direct way.'> From Egs. (2.20) we have

G G, G
— P, ﬁﬁ" —0. (2.27)

; =184,

This is true for the scalar wave equation as well as for the
vector case, which we shall examine in Paper II. It is in
fact a general feature of any relativistic dynamical system,
and is seen on expressing relativistic invariance in the
front form and exposing the existence of the ‘) struc-
ture. For the scalar wave equation we see from Egs. (2.18)
that

G, P,
MM

(2.28)

so that x, can be identified with G, /M at 7=0.

III. PROPAGATION AND TRANSMISSION BY LENS SYSTEMS

We now want to investigate the effect of a thin lens on a paraxial wave described in the front form. Physically, we
consider a lens located at a fixed position along the x* axis in real space for all real time. This situation must be tran-
scribed faithfully in terms of the front variables o,7. As a preliminary, we define various types of exact analytic signal
solutions to the wave equation and examine the connections between them, then turn to the lens problem.

Let us say that an analytic signal is henochromatic and paraxial if it is of the form

l/}l(a;xl;T):e_i'l/Oofdzkl&[(kl)exp[i(kl-xi—ka/Mo)] ,

(3.1)

where .#, (>0) is fixed, and the function &/ (k) is nonzero only for values of | k; | much less than .#, i.e., only in the

domain

|ky| <Ak << M .

(3.2)

Superposing a narrow band of such waves, a quasihenochromatic paraxial analytic signal is one of the form

Yulo;x;7)= fdJ/fdzkl.f[(.///;kl)exp[i(kl‘xl—J//o—ka/M)] ,

where now 7 (.#;k ) is nonzero only when
J//O_A‘/”S‘/”SMO_FM’ A.///<<./”0 N
lki| <Ak <My .

(3.3)

A monochromatic paraxial analytic signal in the usual sense is of the form

Yinlx%x x ) =e ~F*° [ @k o (k) )explik, -x, +i[(K°P—k3]'x%)

where k ° (> 0) is fixed and 7 (k) is nonvanishing only for

|k, | <Ak <<k®.

(3.6)

Finally, on superposing a narrow band of such waves, we arrive at a quasimonochromatic paraxial wave in the usual

sense:

Yvix%xsx)= [ dk® [ d%k, .o (k% expfik,-x, —ik®%+i[(k°2—k1]"2x?)

with .« (k° k) nonzero only when
kO— Ak <k®<k°+AK° AKk®<«<k?®,
| &y | 5Ak<<E°.

(3.7

(3.8)

An analytic signal of type II is of course also one of type IV, by mere identification of integration variables, namely

M= (KO [(KO)P—k1]} . 3.9

Up to terms of order Ak /.#, one can also identify k © and Ak® with .#, and A.#, respectively. On the other hand, for
suitable limits on o and 7, one can with good accuracy replace a quasihenochromatic wave of type II by a henochromatic
wave of type I, both being paraxial*:
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2

o] <« 27 | Mo 17| <« 47 | Mo Mo
My | A My | A Ak (3.10)
—i kir
i o 2 . 1
X 3T) =~ k [ . Mk ] ki'x ——— .
duloix ;7 ~e Ja*k, | [dow aa;k,) |exp |i |k, x, -

Note that the limits on o and 7 are quite different, because a paraxial wave depends very differently on them. In the
same spirit, we can search for conditions under which a henochromatic paraxial signal of type I is equal, with good accu-
racy, to a monochromatic paraxial signal of type III. By a simple analysis similar to that which leads to Eq. (3.10), we
find that the controlling quantity here is, naturally, Ak:

My

Ak

|o| <<8_7r
M

3.11)
Yinlx%x ;x3) e ~F% [ % o (k Jexpli (kyx, —k37/2K0)] .

Again the condition on o is the more stringent one. This  conditions in Eq. (3.11) leading to ¥;~tyy;, which involve
case is particularly interesting for the following reason:  just Ak. We shall restrict ourselves to paraxial analytic
The two functions v and ¥y are both exact solutions of  signals in the front form which are such that whenever o
the wave equations, but one is simple in the front form  and 7 obey the former conditions, they obey the latter also.
and the other is simple in the instant form. If Ak=0, they = The extra requirement needed to ensure this turns out to
are of course the same, a single plane wave. If Ak >0, be the same in respect of o and of 7, and it is

these two exact solutions are equal to one another, with 1/2
good accuracy, if |o| and |7]| are limited as in Eq. £<2 Ax (3.14)
(3.11). We may identify .#, and /(k,) occurring in ; Mo | Mo

with £ ® and (k) occurring in Yy, respectively, in stat-
ing their approximate equality. This relationship can also
be expressed in the following more convenient form. Let
us introduce the functions ¢,y in cases I and III by

We will assume this is obeyed. It means that for a given
degree of paraxial behavior (nonaxial wave vectors) in the
wave, we have a lower limit on A.# or an upper limit on
) the precision with which the frequency may be specified.
Yr(o;x l;r)=e_'"”°a¢l(x 67 Granted this we can say the following: (at least) for all

(3.12a) those values of o and 7 for which a quasihenochromatic

. 2 Sr e 12 paraxial signal can be treated as being a henochromatic
$rlxs37)= f Akl (kJexplilky x, —kir/240)] , one, we can go further and regard it as being approximate-

¢[11(x°;xl;x3)=e_iE0x0¢111(x1;x3) , ly monoch.romatic. as well. We comment l?ﬂeﬂy on the
need for this condition at the end of this section.
(3.12b) We are now able to undertake the propagation of a
$mixixd)= [ d%, o (k i : - i
X ;x7)= 1 1) quasihenochromatic paraxial wave through a thin lens.

. — We will impose the restrictions (3.10) on ¢ and 7, so that
. 0y2_ 1271723 p s

Xexplikyx, +[(K7)F—ki]' %%} the wave can be approximated well by a henochromatic ¢.
Then, when o and T obey the conditions stated in Eq.  Both before and after the encounter with the lens, the
(3.11), we have the two equivalent assertions (remember equation of axial propagation is then given by (2.23) with

Mo=kO) the operator M replaced by its mean value .#,. Let the
gl Lo lens be centrally located ata position x3.=a' on 'the axis, its

i(x,;T)~e 2 dulx;r—+0), (3.13a)  Plane normal to the axis. We assume it is circular, has
o thickness A,, refractive index n, and focal length f (20
bulxxD=e T ox ;x+10) . (3.13b)  accordingly as it is a converging or a diverging lens).

Then it is well known that its effect on a paraxial mono-
chromatic wave incident from the left, x> <4, is to intro-
duce a phase transformation of amount!?

These statements are nontrivial, and must be properly in-
terpreted, in the following sense: One may be tempted to
argue, in the case of (3.13a) say, that since the same com- )
bination 50 —7 appears both outside and inside ¢y;; on the e o(x)=MonAo—x2/2f) . (3.15)
right-hand side, and since we claim there is no surviving o . . )
dependence, there can then be no ~ dependence either. But ~ 1his expression for @ is to be used only for values of x,
this is not so. A simple but careful analysis confirms that  Such that
because the limits on the two variables are quite different, 2 _ _
within these limits the right-hand side is sercllsibly indepen- %17 <2n —1)fBo=280R 1Ry /(R1 +R3) 3.16
dent of o but dependent on 7. In a similar way, the right-  which corresponds to the edge of the lens; here R{,R, are
hand side of (3.13b) is sensibly independent of o but not of  the positive radii of curvature of the spherical surfaces of
x3. the lens (assuming the case f >0 and both sides convex).
The conditions for ¢~y in Eq. (3.10) involve both  Beyond this point the phase shift is just the amount .#A,
A.# and Ak. They are in general quite different from the due to free propagation. An incoming wave ¢y is



changed by the lens to an outgoing wave ¢yy;:

dmlxy;a +‘;‘Ao)=ei‘p(xi)¢m(x1;a —340) . (3.17)

We assume, of course, that ¢y is also paraxial; this will
mean that the values of x, considered must be much
smaller than R,R,.

We will express this effect of the lens as a transforma-
tion of the henochromatic amplitude ¢y(x;7) appropriate
to the front form. Pending this, and remembering that the
free propagation is given exactly by Eq. (2.23),

vi

2.4

1'—a—¢[(xl;7'): — oix;7), (3.18)

ar
we see the following: The encounter of the wave ¢; with
the lens is like the encounter of a two-dimensional
“quantum-mechanical” free nonrelativistic particle of
“mass” .#, with an instantaneous harmonic impulse. If
we were able to specify both position and “momentum” of
the particle simultaneously, such an impulse would change
the “momentum” discontinuously by an amount propor-
tional to its position. For this change in “momentum” we
may write

In the next section we will see how to realize the physical
content of this operator equation in terms of the trajec-
tories of generalized light rays.

For the moment suppress the transverse variables x .
In the x%x? plane the space-time location of the lens is
given by the line x*=a. Switching to the front variables o

and 7, this world line of the lens becomes
T=30+a. (3.20)

dilx;T)=¢

or(x ) )=Mo(nAy —x2/2f,), r=1,2,...,n

provided 7>a, >a,_;> - >a;>0.

In place of a spherical lens if we had a cylindrical one,
say with its axis in the y direction, then the phase transfor-
mation produced on passage through it is given by the
one-dimensional form of (3.15):

expli#o(nAg—x2/21)1, (3.24)

and similarly for other orientations of the cylinder axis.
In general for any thin lens in the paraxial approximation
the phase transformation is of the form

expl — i olax?+2Bxy +yy?)] (3.25)

apart from a constant term.

Bacry and Cadilhac* have pointed out a very interesting
group-theoretical connection that simplifies the computa-
tion of the effect of an axial system of thin lenses. They
recognize that the operators x2, P%, and (xP + Px) consti-
tute a closed Lie algebra generating the metaplectic group
on one canonical pair: This is the group of real linear

PARAXIAL-WAVE OPTICS . . . .

—i(r—a,)P}/2 loei(pn(xl o i @n—an_, P2 /2. #0,i%n
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The region left (right) of the lens in space x3 <a (x3>a) is
the half plane 7<30+a (7> +0+a) in the front vari-
ables. We now combine Eq. (3.13) with Eq. (3.17) and see
that the encounter of the henochromatic paraxial signal ¢,
with the lens must, in the first instance, be described as
follows: In the region 7 < 50 +a we have the freely prop-
agating incident wave ¢y(x,;7); across the line T=%a+a
we have a phase transformation

ip(x

$r—di(x i totra)=e " g (x ;Lo +a) . (3.21)

Beyond this line the free propagation law (3.18) takes over
again and determines ¢i(x;7) for 7> yo+a. But now
under the condition (3.14) which allows us to replace ¢; by
¢ via Eq. (3.13a), the precise value of o is not relevant,
as long as the limits on o and 7 are obeyed. We may as
well take 0=0 both in Eq. (3.13a) and in (3.21) above.
Provided a henochromatic paraxial wave can be treated as
a monochromatic one, the lens located in space at x*=a
appears, to good approximation, as effectively located at
T=a in the front form. The incident and refracted waves
are then related at the lens by

¢ (x;a)=e " o (x 5a) . (3.22)

The complete wave function ¥; contains also the factor
~"%07 which goes through unaffected.

If we have a succession of thin lenses at positions
ai,a,, ...,a, with focal lengths f,f,, ..., f,, placed
centrally and normal to the axis, and if we assume that at
each stage the paraxial nature is maintained, then the
front form propagation law for the system is

(x)) ip((x,) —ia,P2/2.u
1'% Prixy 1171/ 0
e e (31

x.;0),

(3.23)

transformations on x and P preserving the commutation
relation between them.!* The first two generate lens phase
transformations and free axial propagation, respectively,
while the third one generates scale changes. It follows
that the composition of any number of thin circular lenses
placed at arbitrary distances along the axis can always be
represented as the product of three factors; hence any such
system acting as in (3.23) is equivalent to a single lens, a
magnifier, and a certain amount of axial propagation. Let
us briefly indicate the foundations for this equivalence of
lens actions and free propagations to elements of the meta-
plectic group. We use a mapping that uses dimensionless
variables and so differs in detail from Ref. 4. The param-
eter .# is related to the mean wavelength of the beam by

./110=21T/)» .

The dimensionless operators of interest, and their commu-
tation relations corresponding to the Lie algebra of the
metaplectic group, are
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Jo=1A2P2+x2/0%), Ji=+(AP}—x}/AY),
. (3.26a)
Jy=7(x;"P+P;'x)),
[Jo,J1]1=iT5 5 [JoJ2]l=—iJy,
[Ji,J21=—iJo .

These can be mapped into Pauli matrices with the same
J

(3.26b)

U(d)=exp(—idH)=exp(—idP?} /2.4 ;) =exp

. d
—1 A (Jo+J|)
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commutation relations in this way:

Jo——30,, Ji—>~ioy, J,—io;. (3.27)
Then free axial propagation over an interval d, represented

by the action of an operator U(d) on the amplitude ¢, is

mapped into an upper triangular matrix with positive off-

diagonal element:

1 d/2wA
0 1

d
27A

i(Tl—O'z

2

—1i

exp

(3.28)

On the other hand, an axially symmetric lens of focal length f is represented by a lower triangular matrix. Omitting the

constant term in the phase @ in Eq. (3.15) we have

2miA

M
9 x2 - Jo—J1)

—i=2x?

2f

L (f)=exp =exp

—>€Xp

1 0
—27A/f 1

27iA
f

i0'1+0'2
2

. (3.29)

The operator J, generates magnifications and demagnifications which are mapped into positive diagonal matrices:

2iaJ
e’ pix ;r)=e%(e% ;7)) ,

e™® 0

2iaJ, e —aoy
— =
0 e“

e

All these two-dimensional matrices are real unimodular.

(3.30)

As a simple application of these rules, consider the following arrangement. The incident beam encounters at first a
convex lens of focal length f >0, then propagates freely through a distance d, and finally passes through a concave lens
with focal length — f. The net effect on the amplitude is given by a product of three factors which can be mapped into a

corresponding matrix:

1—d/f d/2mh
L(—NU(dL(f)— _2mad/f? 1+d/f | (3.31)
But this matrix can be rearranged as the following product:
1—d/f d/2a\ 1 d\/2mh | le=@ 0 0
—2aAd/f2 14+d/f | 1 0 e®||—2mA/fy 1|”
(3.32)
di=d(1+d/f)~", e®*=1+d/f, fi=f1+f/d).
—
This implies XaXp » PPy, +(xgPy+Pyx,) for a,b=1,2.
(3.34)

L(—AU@L(H=Ud)e L)), (3.33)

and so the given arrangement is equivalent to the follow-
ing: The beam first meets a convex lens with focal length
f1> f located at the same position as the original convex
lens; it then immediately undergoes a magnification of
amount e ~%, then propagates freely over a distance d, <d
and is then observed. If we consider f <0, so that the first
lens in the original arrangement is concave but the second
one is convex, then provided d < | f | we see that in the
equivalent system we have f;>0,e%<1,d;>d. Thus in
this case the system is a convex lens, then a magnification,
then free propagation.

When the circular lenses are replaced by more general
ones, the generators become ten in number:

They generate the metaplectic group on two canonical
pairs.'* To synthesize the most general configuration we
now need nine independent elements including one free
propagation. When the lenses are not exactly centered or
are not precisely normal to the axis the linear terms x,,P,
also come in; such linear dependence on x, is characteris-
tic of prisms. The description now requires the 15-
parameter affine metaplectic group as discussed by Bacry
and Cadilhac.*

The significance of the relativistic front form for these
considerations should by now be clear. Through the g
structure it guarantees the existence of conjugates G, /M
to the transverse momenta P,. Once one has canonical
pairs of operators, one is automatically led to the meta-
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plectic group. Thus we may trace the origins of this
group, exposed by the work of Bacry and Cadilhac,* to the
basic Poincaré invariance of the wave equation. The im-
portance of this statement, which may not be fully ap-
parent with the scalar wave equation, will certainly come
through when we analyze the vector case in paper II. The
other point is that the free propagation in between lenses
is exactly given by the Hamiltonian H of Eq. (2.23) qua-
dratic in P, and so in fact a generator of the metaplectic
group. If we had wished to get something analogous in
the instant form, we would have been compelled to treat
the free propagation along the x* axis in an approximate
way.!

In concluding this section we make the remark that if
we do not adopt the condition (3.14), then in the range of
values of o and 7 where a quasihenochromatic paraxial
wave can be replaced by a henochromatic one, it may not
follow that it is monochromatic as well. The notion of the
location of the lens will be unavoidably complicated in the
front language, and it will not at all be easy to make a
clean separation between the “spatial” variable o and the
“temporal” 7.

IV. PENCILS OF RAYS IN PARAXIAL WAVE OPTICS

We have so far dealt with the description, propagation,
and transmission through lenses of the wave amplitude in
the front form. It is well known, however, that for dis-
cussing partial coherence and more generally the statistical
properties of light, the appropriate theoretical object is not
the wave amplitude ¢ but the two-point correlation func-
tion I defined symbolically as'®

T(1,2)~{[¢(D]"P(2)) .

The angular brackets denote a stochastic averaging of the
quantity enclosed, over an ensemble suited to the situation
being considered. It has more recently been shown that in
terms of T one can introduce the notion of generalized
pencils of light rays in statistical wave optics, in an exact
sense.” The key idea is to apply to I' the Wigner-Moyal
transform familiar from the phase space description of
quantum mechanics.!” One then faithfully reproduces the
typical wave properties of interference and diffraction in a
new language. In this section we indicate how these ideas
can be adapted to the wave description in the front form.

We assume we are dealing with an ensemble of analytic
signals ¥(o;x,;7), all of which obey the quasiheno-
chromatic and quasiparaxial conditions. We limit all
space-time variables o, to the region where the approxi-
mation (3.10) holds, so that we are dealing effectively with
a henochromatic paraxial ensemble, over which we may
write uniformly

—i# o

Yoy x;;m)=e 4.1)

&(x ;7).

Then the two-point function measuring the correlation be-
tween the amplitudes at two points on the same front is
defined as

Floy,x)500,%2;7)= (PYopxy ;7) Poyxs ;7))

gy —ay)

ze' olo1—0o; F(O)(xll;le;T) R

. (4.2)
T Oxy 5% 57)=(lx ;7)'b(x257)) .
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(0)

Applying the Wigner-Moyal transformation to I'"™’ we ob-

tain the Wolf function W:
W(xl;pl;7')=(277')_2fdzé’ieipl'gl
X O, +5E5x— 7657 -
4.3)

This function is real but not necessarily pointwise positive
definite. It is interpreted as the (generalized) intensity of
light rays with transverse direction p, at the transverse po-
sition x; on the front 7. The complete wave vector, to
leading order, is p"=M,p,,p°=—p,=0. Note that this
transverse wave vector p, has dimension of inverse length.

The free propagation equation (3.18) for ¢ implies for
I'? the corresponding law

d i
EF(O)(MN‘:L;T): —2‘70(V%1—Vf1) Tx, 5x557)

(4.4
For the Wolf function W we then get
d P
S;W(xl;pl;'r)z—IO'VHW(xl;pl;T) . 4.5)

This linear partial differential equation has the immediate
solution

X, —Tﬂ—;pl;O (4.6)

W(x;;pi;m)=W
(x;;p1;7) 7

We emphasize that this is an exact propagation law for
generalized rays in the front description. It states that the
rays travel in empty space along straight lines with the
natural linear displacement in the transverse position x|,
as the front advances in space-time.

The effect of a thin lens on generalized rays of light also
has a simple geometrical form, which we now consider.
At this point we will invoke the condition (3.14), so that
the henochromatic ensemble can be approximated by a
monochromatic one. As explained in the preceding sec-
tion, the front label 7 can then be equivalently regarded as
denoting spatial location x? in the axial direction. Recall
first the elementary derivation in the wave picture of the
image forming property of a convex circular lens.'® Let
the lens be at x3=0 on the axis, and let a point object at
the location (a, —u) to the left of the lens emit a spherical
wave with frequency .#, We assume of course
|a, | <<u. Over the plane of the lens the incident wave
has the form, omitting unimportant factors and in the
paraxial approximation:

Yinc(x1;0) ~exp{io[u?+(x; —a,)?]'"?)

~exp . 4.7

ity
——(x,—a,)?
2u

The lens phase function (3.15) applied to this incident
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wave gives at x *=0 an outgoing wave of the form

Mo | (xp—a))? xi

Your(x;0) ~exp IT —u——_T

Ao 2
~exp [(—i)—— |x;+—a, ) (4.8)

2v
where
1 1 1

PR 4.9
u + v f 4.9)

This is seen to be the paraxial approximation, over the
plane x3=0, to
You(x1;0) ~exp{(—i g)[v?+ (x| +vu ~'a))?]'/?}
(4.10)

J

‘§1F<0)

out

Wom(xl;Pl;O)=(2‘IT)_2fa'zé‘leip1
=2m)? [ d%,expli(p, +Mox, /f)]ET

= Winc(xl;pl +*///0xl/f,0) ’

ie.,

Wine(x13p1350) =Wy (x5p) — Mo x, /f30) . (4.12)

We see here the promised physical realization of the
operator transformation law (3.19): The incoming gen-
eralized ray at x, with direction p, is bent by the lens into
a ray at x, leaving in the direction p, —.#yx,/f. The im-
age forming property is seen on combining this result with
the rectilinear propagation law (4.6). Different generalized
rays at different points (x,0) to the immediate left of the
lens, all originating from a common object located at
(a;, —u) on the left with |a, | <<u, have varying incident
directions p, given by

plz./llou_l(xl—al) . (413)
The lens alters the ray at x, into the new direction
, Mg Mo Mg
P1=P1—_f Xlz—(xl—al)——f X,
M
=—_0 E(—al)—xl N (4.14)
v o |u

where v is determined by Eq. (4.9). Thus all these general-
ized rays at various points x; to the immediate right of
the lens are headed to the common point (—wvu ~la,,v),
giving correctly the image location and magnification.

The qualitative picture obtained above for the effect of
a thin circular lens on generalized rays is maintained for
any thin lens, as long as one stays within the quadratic ap-
proximation to the phase function @(x,) characterizing
the lens. This is also the domain of applicability of the
metaplectic group. Thus the lens could be off center, non-
axially symmetric, nonnormal to the axis, etc. In every
case the change in the two-point function is given by
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which is exactly the phase of a spherical wave converging
to the point (—wvu ~'a,,v) to the right of the lens (assum-
ing v >0 for a real image). Thus the lens transformation
function (3.15) contains within it the ability of the lens to
focus rays to form point images of point objects, the lens
law (4.9) and the correct magnification factors, all in the
paraxial approximation.

Now the effect of the lens on an incident two-point
function I''? is to supply two phase factors (3.15) at the
position 7=0 of the lens:

i
2f

2 2
1, —X2

Fﬁ,?,{(x]l;le;o)z exp (x )

1

X Tindlx15%2,30) - 4.11)

This causes the following change in the Wolf function:

(x;+5E5%, — TE50)

(0)
inc

(x4 3E5%,— +£550)

x[qa(le)—qa(xll)] o)

(0) . . . .
rout(xllaleyo)ze inc(x]1)x21,0) >

(4.15)

where, since @(x,) is no more than quadratic, we will
necessarily have

<p(x21)—<p(x11 )= J/o(x.l—le )a

X[ha+ 3rap(x1, +%2)p],  (4.16)

for some numerical vector A, and matrix u,,. Thus the
change in the Wolf function is no more complicated than
a point transformation:

Winc(x15p1;0) = Wou(x 1;p) — Mok — M opx ;0) .
(4.17)

Each incoming generalized ray remains a single ray in this
approximation, with a position-dependent change in direc-
tion on encounter with the lens, but with no change in po-
sition. However, except for the circular lens, in all other
cases a point object does not produce a point image. For
example, if we have a departure from axial symmetry and
consider a lens with transformation function

H 1y2 2y2
plx)=— 32 % CELL na @
this corresponds to A, =0 and
1/f; O
()= 0 1/f, (4.19)
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in Eq. (4.16). Consequently each incoming generalized ray
is still bent in a definite way but by different amounts in
the two planes, so all the outgoing rays are not headed for
any common image point. This is the case traditionally
referred to as primary astigmatism.

However as soon as we go beyond quadratic terms in the
phase function @(x, ), qualitatively new phenomena appear
and ray tracing is no longer possible, even for generalized

i[:p(xzk)—(p(xl )]

(0) . . 1 (o) . .
l-‘out(-xllr’CZLxO):e I1inc(xll9x21:0) s

(p(xzi)—<p(x11)=(x1 —x,3)(x;+x,) —270— 5

Thus the dependence of the phase factor on x; —x; is no
longer linear. This implies that W, (x;p,;0) is no longer
obtained from Wi, (x,;p,;0) by a point transformation.
The transformation is local in space in the sense that
Wou(x;p1;0) is given by an integral of Wi, (x,;p};0)
with respect to p', including other factors depending on
x,,p1,p1- The interpretation in terms of incident and em-
ergent generalized rays described by the respective Wolf
functions continues to be possible, but ray tracing is not.

The treatment of this section generalizes Gaussian
geometrical optics on the one hand and Fourier optics on
the other to partially coherent fields of illumination.

V. CONCLUDING REMARKS

We recount here briefly the main advantages of using
the front form for paraxial wave problems. It leads to a
clean separation of the space-time variables x* into the
combinations, o,x,,7 on each of which the amplitude ¢
has a characteristically different degree of dependence.
Here it must be mentioned that while the usual terms
monochromatic and quasimonochromatic denote harmon-
ic or near-harmonic dependence of ¢ on the physical time
xY, in the front form the analogous terms henochromatic
and quasihenochromatic refer to dependences on the “spa-

—iwt

tial” variable 0. Factoring away the exponential e is

g[(x1+x2)2+(x1—xz)2]
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rays. As the simplest case let us take
M
¢>(xl)=——2}°—xf+a(xf)2 . (4.20)

It follows that an incident spherical wave front will cease
to be spherical. For the two-point function I'? the effect
is

(4.21)

|

replaced here by factoring away ¢ "’ In the instant
form we then deal with the evolution of the residual wave
function with respect to x3, and this is governed by the
radical (0?/c?—V?)!/2. In the front form, on the other
hand, the evolution of the residual wave function is with
respect to 7 and that is given by —V2/2.#, exactly, free
of radicals. But this must be tempered with the following
remark, amplified by the analysis of Sec. III: In order to
obtain a physically cogent description of the action of sys-
tems of lenses on paraxial beams in the front language, we
have to connect up the properties of henochromatic beams
with ordinary monochromatic ones in some way.

The identification of the transverse coordinates x, with
G, /M, where G, and M appear in the Galilei algebra, will
be the basis of our treatment of vector waves in the
succeeding paper. This will mean that the metaplectic
group retains its significance for the full Maxwell equa-
tions.
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