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SUMMARY
In the near future, large ram-air parachutes are expected to provide the capability of delivering 21 ton payloads
from altitudes as high as 25,000 ft. In development and test and evaluation of these parachutes the size of the
parachute needed and the deployment stages involved make high-performance computing (HPC) simulations a
desirable alternative to costly airdrop tests. Although computational simulations based on realistic, 3D, time-
dependent models will continue to be a major computational challenge, advanced finite element simulation
techniques recently developed for this purpose and the execution of these techniques on "PC platforms are
significant steps in the direction to meet this challenge. In this paper, two approaches for analysis of the inflation
and gliding of ram-air parachutes are presented. In one of the approaches the point mass flight mechanics
equations are solved with the time-varying drag and lift areas obtained from empirical data. This approach is
limited to parachutes with similar configurations to those for which data are available. The other approach is 3D
finite element computations based on the Navier-Stokes equations governing the airflow around the parachute
canopy and Newton's law of motion governing the 3D dynamics of the canopy, with the forces acting on the
canopy calculated from the simulated flow field. At the earlier stages of canopy inflation the parachute is
modelled as an expanding box, whereas at the later stages, as it expands, the box transforms to a parafoil and
glides. These finite element computations are carried out on the massively parallel supercomputers CRA Y T3D
and Thinking Machines CM-5, typically with millions of coupled, non-linear finite elemeJIt equations solved
simultaneously at every time step or pseudo-time step of the simulation. ~ 1997 by John Wiley & Sons, Ltd.
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I. INTRODUCTION

Small-scale gliding (ram-air) parachutes, commonly used by the sports parachute community as well
as by the military for personnel drop, have reached a satisfactory level of reliability, aerodynamic
efficiency and controllability. Furthermore, larger-size versions of these parachutes are being
increasingly used for the recovery of large payloads. I Gliding parachutes coupled with automatic

onboard guidance offer superior controllability and substantial wind penetration when compared with
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1354 V. KALRO ET AL

round parachutes. Since their introduction in the early 1 960s, gliding parachutes have been
redesigned and refined by the sports community. These personnel-type parachutes are small but have
lower wing loading than those required for large payloads.

Future military airdrops will require the deployment of high-altitude delivery systems capable of
delivering up to 21 tons from 25,000 ft above ground level with increased accuracy and reduced
impact velocity. Gliding parachutes which are at least an order of magnitude larger and with a wing
loading three times larger than existing parachutes are currently being developed.

The deployment and control of such large parachutes pose many challenging technical problems.
In the design of any parachute system it is important to predict opening forces for choice of materials.
Only a limited database is available for large gliding parachutes; therefore methods for inflation
analysis based on first principles may be useful in design.

In this paper, two approaches for opening force analysis are presented.2.3 One of the approaches is
an extension of the classical Pflanz method.4-6 Here the lift and drag areas are assumed to vary with
time and the point mass flight mechanics equations are solved as a function of time to yield the
opening forces. This method requires empirical data in order to model the temporal evolution of lift
and drag, so its predictive capabilities are restricted to parachutes similar to those for which data are
available.

The second approach focuses on advanced finite element flow simulation techniques to use
realistic, 3D computer models representing the parachute system and its deployment stages. The
aerodynamics of ram-air parachutes involves a large number of complex phenomena. The
deployment, extension and evolution to the gliding stage involve rapidly changing geometries,
unsteady and turbulent flow behaviour and non-linear interactions between the parachute structure,
aerodynamic forces and the payload. Even the gliding stage involves deformations of the canopy,
changes in the orientation of the parachute and changes in relative motion between the canopy and
the payload. All these behaviours require 3D simulation techniques capable of handling time-varying
computational domains with formulations which are robust and accurate. Implementations on HPC
platforms with sufficient computational speed and memory are necessary.

At this phase of the simulations the time-variation of the geometry of the canopy is assumed to be
given, approximated using the initial and final configurations and dimensions of the canopy.
However, the dynamics of the canopy, i.e. its translational and rotational motion, still needs to be
determined as part of the overall solution. This motion depends on the weight and motion of the
payload and also on the aerodynamic forces generated by the unsteady flow field. The airflow around
the parachute canopy is governed by the 3D Navier-Stokes equations of incompressible flow with
time-dependent spatial domains. The 3D dynamics of the canopy is governed by Newton's law of
motion, with the forces acting on the canopy calculated from the simulated flow field. At the initial
stage of canopy inflation the parachute is modelled as a falling, expanding box, whereas at the later
stages the box transforms to an expanding, gliding parafoil. It is important to note that to accurately
resolve the flow around such complex 3D geometries, it is essential to use very refined computational
grids leading to very large systems of non-linear equations. The availability of advanced HPC
platforms and efficient implementation techniques makes these computations feasible!'s

To handle the time-variant domains encountered in simulations of parachute systems, we employ
the deformable-spatial-domainjstabilized-space-time (DSDjSST) finite element formulation. In this
formulation the finite element interpolation polynomials are functions of both space and time and the
stabilized variational formulation of the problem is written over the associated space-time domain.
This method was introduced by Tezduyar et al.9.lo to solve incompressible flow problems involving
free surfaces, two-liquid interfaces and fluid-structure and fluid-particle interactions. Later, similar
formulations were developed for compressible gas flows I I and compressible liquid flows.12

INT. J. NUMER. METH. FLUIDS, VOL 24: 1353-1369 (1997) (!:) 1997 by John Wiley & Sons, Ltd.



1355SIMULATION OF LARGE RAM-AIR PARACHln"ES

In this paper we discuss the steady glide aerodynamics and inflation aerodynamics of ram-air
parafoils. The computations reported are performed on the Thinking Machines CM-5 and CRA Y
T3D massively parallel computers. On the CM-5 we use an SIMD or data-parallel implementation13
and on the T3D we use a message-passing paradigm based on PVM.14

In these computations, updating the finite element mesh as the spatial domain changes its shape
with time becomes a major issue. There are several ways of managing this; the detailed description of
these approaches together with their advantages and disadvantages can be found in Reference 15. In
our studies the motion of each finite element grid point is prescribed explicitly. This is accomplished
with no remeshing (i.e. without generating a new set of nodes and elements). With this approach the
connectivity of the mesh remains the same throughout the simulation. As a result, both the mesh
generation and parallelization set-up costs are reduced to a minimum. This is desirable for practical
simulations with hundreds of time steps.

The organization of this paper is as follows. The governing equations are reviewed in Section 2.
The stabilized finite element formulation is presented in Section 3. In Section 4 we present the mesh
moving scheme used in our simulation of the inflation stage. Parallel implementation aspects are
briefly covered in Section 5. The steady glide and inflation simulations comprise Section 6. The flight
mechanics simulations are presented in Section 7.

2. GOVERNING EQUATIONS

Let.Qt C ~nod and (0, 7) be the spatial and temporal domains respectively, where nsd is the number of
space dimensions, and let r t denote the boundary of .Qt. The subscript t implies the time dependence
of the spatial domain. The spatial and temporal coordinates are denoted by x = (x,y, z) E .Qt and

t E (0, T). The governing equations for the flow field computations are the Navier-Stokes equations
of incompressible flows,

( au
P -;Ji+uoVu+f -v . (J" = 0 on Q, (1)

v . u = 0 on 0, (2)

where p is the (constant) density and u is the velocity vector. Here f is the external force consisting of
gravity. For the Newtonian fluids under consideration the stress tensor for a fluid with dynamic
viscosity Jl is defined as

(3)a(o,p) = -pI + 2Jl£(0),

where p is the mechanical pressure and £(0) is the strain rate tensor given by

E(U) = ![VU + (VU)T (4)

Both Dirichlet- and Neumann-type boundary conditions are accounted for, represented as

u=g on (r')g' n°O'=h on (r,)1t, (5)

where (r,)g and (r')h are complementary subsets of the boundary
velocity is specified as

The initial condition on the

on '>.0. (6)O(X, 0) = 00

where 00 is divergence-free.
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1356 V. KALRO ET AL

The parafoil is treated as a solid body with known geometric time variation. The Navier-Stokes
equations are coupled together with Newton's laws of motiort for the parafoil system. Purely
translational motion is considered. These equations are

F + W = (W /g)a, (7)

where F is the aerodynamic force acting on the parafoil and W is the gravitational force acting on the
parafoiljpayload system. Here a is the linear acceleration of the mass centre of the parafoiljpayload
system.

3. DEFORMING SPATIAL DOMAIN/STABILIZED SPACE-TIME (DSD/SST)

FORMULATION

In order to construct the finite element function spaces for the space-time method, we partition the
time interval (0, 7) into subintervals 1/1 = (1/1' 1/1+1), where 1/1 and 1/1+1 belong to an ordered series of
time levels 0 = 10 < I( < ." < IN = T. Let.Q/I =.QI and r /I = r, ' We define the space-time slab
Q/I as the domain enclosed by the surfaces .Q/I' .Q/I+1 a"nd P /I' where P /I is the surface described by the
boundary r 1 as I traverses 1/1' As is the case with r I' the surface P /I is decomposed into (P /I)g and (P /I)h
with respect to the type of boundary condition (Dirichlet or Neumann) being imposed. For each
space-time slab we define the corresponding finite element function spaces (9":)/1' ("1/':)/1' (9";)/1 and
("1/';)/1' Over the element domain this space is formed by using first-order polynomials in space and
time. Globally the interpolation functions are continuous in space but discontinuous in time.

The stabilized space-time formulation for deforming domains is then written as follows: given
(Uh);;, find uh E (9":)/1 and ph E (9";)/1 such that Vwh E ("1/':)/1 and Vqh E ("1/';)/1

J Wh. P(~ + uh . Vuh + f)d.Q + J. E(wh):a(ph, uh)dQ + J. qhV' uhdQ
O. Q. Q.

/1.1 J. I /1.1
J.+ L -tL(w, q) . [L(u,p) + pf]dQ + L c5V . whpV . uhdQ .

e=1 Q: P e=1 Q..

+ J (wh):' p[(Uh): - (Uh);;] d.Q = J Wh . hhdP. (8)
O. (P .)A

QN-lo In the variational

(9)

Jim u(tn :i:: 8).
£-.0 (10)

JQ"
)dQ = J. J

I. Q.
)d.Qdt, (II)

.)dP = )drdt.(. (12)
p.
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SIMULATION OF LARGE RAM-AIR PARACHUTES

The computations start with

(Oh)O = 00.

Remarks

1. In the variational formulation given by equation (8), the first three terms and the right-hand side
constitute the Galerkin formulation of the problem.

2. The first series of element-level integrals in equation (8) consists of the least squares terms
based on the momentum equation. Here T is defined as

(~lIuhll) 2 +(~) 2- -1/2

T=
h

where h is the element length and v = Jl/ p.
3. The second series of element-level integrals is added to the formulation for numerical stability

at high Reynolds numbers. These are the least squares terms based on the continuity equation.
The coefficient 15 is defined as

() 5)

where

Reu/3,
1,

Reu ~ 3,
Reu > 3

z=

and Reu is the cell Reynolds number.
4. Both stabilization terms are weighted residuals and therefore maintain the consistency of the

formulation.
5. The sixth term enforces, weakly, the continuity of the velocity field across the space-time slabs.

4. MESH MOVING SCHEMES

In our finite element computations we consider two categories of mesh moving schemes: automatic
schemes and special schemes.

In automatic schemes the mesh displacements are prescribed on the boundaries and the
displacements in the interior are determined by solving the equations of elasticity for the domain. IS

This scheme is very general and particularly suitable for unstructured meshes; however, it involves
the additional cost of solving for the node displacements. Furthermore, when the mesh becomes
excessively distorted, remeshing needs to be undertaken. This involves generating a new mesh and
projecting the solution from the old mesh to the new mesh. Projection and mesh generation are time-
consuming and pose bottlenecks in the parallel implementation.

In special mesh-moving schemes, which are normally designed for specific problems, the motion
of each node is prescribed explicitly. In our computations we utilize such a scheme together with a
specially designed algebraic mesh generator. In its initial state prior to inflation the parafoil is
assumed to have the shape of a box. In its final state it is fully inflated. The mesh connectivity
between the two states remain unchanged. The time for inflation is estimated from drop test data. The
inflation process is modelled as a smooth transformation between the two states. As a result of this,
the mesh generator is used to generate meshes corresponding to the two end states only, and at a

~ 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. RUmS, VOL 24: 1353-1369 (1997)



]358 V. KALRO ET AL

given instant during inflation the mesh is interpolated from these two states with no need for
remeshing. At this time the pitching motion of the parafoil is constrained.

It is important to note that the true deformation history would come out of the solution of a
complex fluid-structure interaction problem which we plan to consider in the future.

5. PARALLEL IMPLEMENTATION

We briefly describe here the parallel implementation of the finite element algorithms on the Thinking
Machines CM-5 and CRA Y T3D supercomputers.

The finite element formulations described in earlier sections give rise to very large systems of
coupled non-linear equations which require the use of iterative strategies with update techniques such
as GMRES 16 for their solution. To further reduce the memory requirements, we use matrix-free

iterations and thus eliminate the need to store element-level matrices.
The bulk of the computing cost is taken up by two tasks.

I. Computation of element-level quantities.
2. Communication of data across processors while forming the global equation systems. This

involves the data transfer modes Gather (global/node -+ local/element) and Scatter
(global/node +-local/element).

Of these two, the first task is fully parallel in the sense that all operations for each element are
entirely local to a processor. The second step can be a bottleneck and thus careful consideration has to
be given to the use and distribution of data structures to maximize localityl7.18 and minimize
communication.

On the CM-5 we use a data-parallel programming paradigm. The task of synchronizing processing
nodes is internal to the machine. The mesh is partitioned and communication traces are computed and
stored through calls to routines in the Connection Machine Scientific Software Library (CMSSL).
The interested reader is referred to References 7 and 19 for further details.

On the T3D we use a message-passing paradigm built upon the CRA Y extension of the Parallel
Virtual Machine (PVM) software. Here synchronization between processors is realized explicitly
through PVM barriers placed accordingly in the code. Gather and scatter operations are performed by
routines programmed to offer the same functionality available on the CM-5.

6. FINITE ELEMENT SlMULA TIONS

Steady state simulations at Re = 107

All the parafoil simulations reported in this Section are carried out on the CRA Y T3D massively
parallel supercomputer. The aerodynamic characteristics of a parafoil are the crucial quantities which
determine its performance. We have carried out steady state simulations at various angles of attack
(a).

The mesh for the parafoil, with a Clark- Y cross-section with a rounded leading edge, consists of
291,437 nodes and 279,888 hexahedral elements. The aspect ratio of the parafoil is 3.0 and the ratio
of line length to span 0.6. The x-axis is in the chordwise direction and the y-axis along the span.
Boundary conditions consist of no-slip conditions on the parafoil surface, specification of the velocity
at the inflow boundary, zero shear stress and zero normal velocities at the side boundaries and
traction-free conditions at the outflow boundary. In these simulations, b refers to the parafoil span and
c to the chord length.

INT. J. NUMER. METH. FLUIDS. VOL 24: 1353-1369 (1997) (!d 1997 by Jobn Wiley & Sons. Ltd.



SIMULATION' OF LARGE RAM-AIR PARACHUTES 1359

A semidiscrete formulation coupled with matrix-free iterations was used to obtain the solutions. At
every step, 1,129,248 coupled non-linear equations are solved. Turbulence is incorporated into the
simulations using a simplified version of the algebraic Baldwin-Lomax2o model,

(16)

(17)

.Llt = pflrol.
1= ICn[l - exp( -n+ /A+)].

where III is the eddy viscosity, w is the vorticity vector, " = 0.41 and A+ = 25.0 are constants, n is
the normal distance to the wall and n+ is the same distance expressed in wall units. In our
computations this distance is measured from the closest node on the surface.

Figure 1 shows the chordwise pressure distribution on the parafoil surface at y I b = 0.0 (midspan)
for various angles of attack. The pressure profile is similar to that of a 20 aerofoil with suction
present on the upper surface. Figure 2 shows the chordwise pressure distribution on the parafoil
surface close to the parafoil tip for various angles of attack. 30 effects are distinctly present, with the
suction decreased owing to leakage of fluid around the tips from the lower to the upper surface.
Figures 3-5 show the spanwise pressure distribution on the parafoil surface at different chord lengths
for various angles of attack. The pressure distribution is close to elliptical, with the effect of parafoil
bumps clearly prevalent at the leading edge; the distribution flattens out progressively towards the
trailing edge.

Figure 6 shows the lift (C/) and drag (Cd) coefficients (which are based on the freestream velocity
and the projected area of the parafoil) as functions of the angles of attack. To account for the inlet, a
factor21 of 0.5hlc is added to the drag coefficient. Here h is the inlet height. A typical value of
hlc = 0.1 is used. We compared these coefficients with available experimental data on parafoils and

the calculated values are in the expected range. We could not carry out a closer comparison because
of differences in the shape of our parafoil model and those for which data are available. Moreover,
while experimental data reveal that most parafoils stall at around 8°-12°, our model does not indicate
this. We think that the reasons for this are as follows: first, our model has a rounded leading edge as
opposed to an inlet; second, the predictive capability of the turbulence model we use diminishes at
high angles of attack in the regions of flow separation; third, in our computations we assume that the
parachutes are not deformable, but this is not the case. Figure 7 shows the lift-to-drag ratio (LID) as a
function of the angle of attack. The typical maximum LID for the ram-air parafoil alone is in the
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Plate I. Steady-state simulations at Re=IO7. at IX =2": pressure distribution on the parafoil surface



Plate 3. Steady-stale simulations al Re=107, at a =10': pressure distribution on the parafoil surface

Plate 4. Transfonnation of the box to a parafoil: pressure distribution on the parafoil surface during the
Ir"n.fnrm"l;nn
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Figure 5. Steady state simulations at Re = 107 for various angles of attack: spanwise pressure distribution on parafoil surface at
x/c = 0.50

range 3.0-5.0. This is somewhat higher than obtainable for typical parafoil systems; however, our
model does not include line and payload drag.

To establish the convergence of our results, at an angle of attack of 6°, the pressure distribution on
the parafoil surface is compared with that obtained on a mesh with 594,587 nodes and 575,968
elements. Figures 8 and 9 indicate good agreement between the solutions obtained on the two meshes.
Plates 1-3 show the pressure distribution on the parafoil surface for various angles of attack.

Transfonnation of the Box to a Parafoil

The inflation of a ram-air inflated gliding parachute takes place in three stages.4 During the first
stage the canopy expands with little cell inflation. The canopy then pitches forwards and air rushes
into the separate cells of the gliding wing, causing them to inflate. As the cells inflate, the parachute
begins to take on the shape of an aerofoil, causing lift to be produced while drag decreases. The
parachute then transits into equilibrium glide. Since we do not take into account the pitching motion
in the computations reported here. only part of the entire process is simulated.

Figure 6. Steady state simulations at Re = 107: drag and lift coefficients as functions of angle of attack

~ 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS. VOL 24: 1353-1369 (1991)
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Figure 7. Steady state simulations at Re = 107: lift/drag (L/D) ratio as function of angle of attack
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All the parafoil simulations reported in this case are carried out on the Thinking Machines CM-5
massively parallel supercomputer. In these computations the parafoil is allowed to fall under the
influence of gravity, inflate and tend towards a steady gliding state. Here a partially inflated box with
dimensions of chord x span x thickness = 48.0 x 33.4 x 12.0 ft3 transforms to a gliding parafoil at
a prescribed rate. The box expands by factors of 1.5 and 6.5 along the chord and span respectively
and the cross-section becomes the same as that of an NACA 0025 aerofoil. Figure 10 shows the
surface mesh for the transformation of the box to a parafoil. The mesh in the middle is interpolated
from the two others using the mesh moving scheme described earlier.

The finite element mesh used in this simulation consists of 170,950 nodes and 161,856 hexahedral
elements. The boundary conditions consist of specifying the freestream velocity (which is zero) at the
inflow boundary, zero normal velocity and zero shear stress at the side boundaries, traction-free
conditions at the outflow boundary and no-slip conditions on the parafoil surface. At every time step,
1,304,606 coupled non-linear equations are solved.

The computation starts at t = 0.0 s, which corresponds to the steady state solution at the initial
configuration of the box at 10° angle of attack and with a velocity of 112 ft S-I. At t = 2.0 s the

Figure 10. Surface mesh for transformation of box to parafoil

(!:) 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS. VOL 24: 1353-136911997)
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~

transformation ends, but the computation continues until t = 3.5 s. The parafoiljpayload system
mass for this case is 22,000 lb.

Figures II and 12 show the time histories of the projection area and velocity respectively. Initially
the box has very little lift and gains speed owing to gravity. As it expands rapidly at high drop
velocities, very large aerodynamic forces are generated, leading to the peaks in Figure 13. We
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Figure 12. Transformation of box to parafoil: time history of parafoil velocity
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Figure 13. Transfonnation of box to parafoil: time history of forces acting on parafoil
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observe that the parafoil attains an almost steady 4° angle of attack as indicated by Figure 14. Plate 4
shows the pressure distribution on the parafoil surface during the transformation.

(19)

The trajectory and opening force can be determined by solving these equations on a computer. The
primary task is to model correctly the evolution of the lift and drag areas as functions of time. The lift
and drag areas were extracted from data on drop tests 9-309 and 9-310 of ram-air inflated personnel
parachutes and are shown in Figure 15. During the initial inflation of the canopy the airflow is nearly
perpendicular to the chord of the canopy and the aerofoil is at a 90° angle of attack. This causes the
drag coefficient of the parachute to be much higher than during gliding flight. In addition, the airflow
is perpendicular to the inlet openings of the cells. Thus these cells do not inflate and little lift is
produced.

During canopy inflation the simulation uses a parabolic growth curve for the drag area as a function
of time. By matching the simulation output to measured data, the drag area was found to have a
maximum value of 0.80So during the period of canopy inflation, where So is the canopy area. The lift
area was assumed to be zero during this time.

The time of inflation for the canopy was determined using the relation

Vc:KI = (rlV' (21)
0
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Figure 15. Flight mechanics analysis of drop 9-309: lift and drag areas as functions of time

where Do = (So4/7t)0'5, If! is the time for the drag area to grow from zero to its full value (0.8So) and
Vs is the parachute velocity at line stretch. By matching the simulation output to the measured data
for personnel-type gliding parachutes with slider reefing, K\ was determined to have a value of 18.0.

Near the end of inflation the canopy begins to pitch forwards, causing the cells to inflate. As they
inflate, the drag coefficient drops and lift begins to be produced. The time between the beginning of
cell inflation and the beginning of the glide stage, lc2' is determined similarly to lc\' except that
K( = 2.5 and Vs is the velocity at the beginning of cell inflation. Once again the simulation uses a
parabolic curve for the lift area growth and drag area reduction as a function of time. During the final
stage of inflation the drag and lift areas are assumed to be constant, with Cdo = 0.21 and Clo = 0.58.

The simulation was applied to an MC-4 personnel-type parachute with the following
characteristics:

So = 370.0 ft'-. b = 28.5 ft, c = 13.0 ft.

The rigged mass was 360 lb. A great deal of detailed information was available on a number of tests
for this parachute. The simulation is shown to give good results when compared with measured data.
Figures 16 and 17 show comparisons between calculated force and measured force on the parachute
for two separate drop tests. The simulation predicts a peak force almost equal to the measured peak
force in both cases, but it shows the peak force occurring before the actual measured force.
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Figure 17. Flight mechanics analysis of drop 9-310: comparison between computed and measured forces

Figure 18 shows the simulated parachute velocity as a function of time. It can be seen that the
velocity drops quickly to its steady state gliding value. The flight path angle as a function of time is
shown in Figure 19. Initially the payload is falling vertically, but as the parachute deploys and starts
to glide, the initial path angle decreases. Figure 20 shows the altitude as a function of range; this
clearly shows that the parachute is entering into its steady state gliding mode. This method was

Figure 18. Flight mechanics analysis of drop 9-309: parachute velocity as function of time
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Figure 20. Hight mechanics analysis of drop 9-309: parachute altitude as function of range

applied to inflation of a large gliding parachu~e with sequential reefing. After considerable
manipulation of the lift and drag functions it was possible to obtain opening forces which were
similar to experimental data. However, this approach requires access to flight test data and would not
be useful for analysis of a design for which no data are available. We are currently working on
improving our finite element model to use it to predict accurate drag and lift areas histories for such
situations.

8. CONCLUDING REMARKS

We demonstrated the use of two approaches for the simulation of parachute dynamics. One approach
employed state-of-the-art finite element formulations and massively parallel computing technology
for numerical simulation of flow around a parafoil. Computed lift and drag coefficients and L/ D
ratios for steady glide were in reasonable agreement with experimental values. Preliminary
simulations of the inflation stages were made, with the assumption that the time history of the parafoil
surface through the transformation is known. The actual evolution of the surface would involve a
complex fluid-structure interaction problem and this will be the direction of our future research. The
second approach incorporated lift and drag time histories from flight data. These histories were input
to the flight mechanics equations. The use of this method is limited to parachutes similar to those for
which data are available. As our computational model evolves, we hope to use a hybrid technique
where flight data could be obtained from numerical simulations, thus reducing expensive drop tests.
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