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Abstract 

We present a review of where our research group stands in parallel finite element simulation of flow problems on the 
Connection Machines, an effort that started for our group in the fourth quarter of 1991. This review includes an overview of our 
work on computation of flow problems involving moving boundaries and interfaces, such as free surfaces, two-liquid interfaces, 
and fluid-structure and fluid-particle interactions. With numerous examples, we demonstrate that, with these new computational 
capabilities, today we are at a point where we routinely solve practical flow problems, including those in 3D and those involving 
moving boundaries and interfaces. We solve these problems with unstructured grids and implicit methods, with some of the 
problem sizes exceeding 5 000 000 equations, and with computational speeds up to two orders of magnitude higher than what was 
previously available to us on the traditional vector supercomputers. 

1. Introduction 

In this review article, we report on where we are now, roughly two years after we first started, in the 
fourth quarter of 1991, implementing our finite element formulations of flow problems on the 
connection Machine family of supercomputers from Thinking Machines Corporation. We also report on 
where we are nearly three and half years after we started, in the third quarter of 1990, our 
computations of flow problems involving moving boundaries and interfaces. This article contains 
material extracted from articles by these authors and their coworkers, which appeared recently or are 
about to appear. 

In mid-1990, with the deformable-spatial-domain/stabilized-space-time (DSD/ SST) formulation 
(Tezduyar et al. [l, 2]), we initiated the development of what turned out to be a powerful, general- 
purpose numerical capability for solving a large class of compressible and incompressible flow problems 
involving moving boundaries and interfaces, such as free surfaces, two-liquid interfaces, and fluid- 
structure and fluid-particle interactions. Changes in the shape of the spatial domain with respect to time 
are taken into account automatically by the DSD/SST formulation, because this formulation is written 
over the space--time domain of a problem. 

The stabilizat.ion is achieved by employing, typically, for compressible flows the streamline-upwind/ 
Petrov-Galerkin (SUPG) formulation [3-51, and for incompressible flows the Galerkin / least-squares 
(GLS) formulation [6,7]. For compressible flows, we use conservation variables formulations of the 
Euler and Navier-Stokes equations. The SUPG stabilization technique for compressible flows was 
introduced in [3]. In recent years this technique was enhanced by a shock-capturing term [4,5], and this 
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enhancement rendered this technique very comparable in accuracy to those that followed [3] and 
formulated in entropy variables [8, 9]. The stabilized space-time formulation was used in the past by 
other researchers to solve flow problems with fixed spatial domains [7, 9, 10]. For incompressible flows, 
when the spatial domain is fixed, i.e. when the problem does not involve any moving boundaries or 
interfaces, then, to avoid the cost associated with the space-time formulation, we prefer to use the 
pressure-stabilizing/Petrov-Galerkin (PSPG) formulation [ 11, 12], which can be cast in the context of a 
semi-discrete formulation. With these stabilization techniques, we can handle flows at high Mach and 
Reynolds numbers, as well as flows with shocks and sharp boundary layers, with minimal numerical 
dissipation. Furthermore, the stabilized nature of these formulations allows us to use equal-order 
interpolation functions for velocity and pressure. 

In flow problems involving moving boundaries and interfaces, to update the mesh as the spatial 
domain deforms with time, special mesh moving techniques as well as automatic mesh moving methods 
are used to minimize, and in some cases totally eliminate, the need for remeshing (i.e. the need for 
generating a new set of nodes and elements). Remeshing involves projection errors, and in 3D 
problems, the cost of repetitive mesh generation and parallelization set up (following each remeshing) 
could be prohibitive. For these reasons, we find mesh update strategies which minimize the frequency 
of remeshing desirable. With special mesh moving schemes designed for specific problems and 
geometries, we were able to solve, with no need for remeshing, a number of problems, such as air 
intake of a jet engine with adjustable spool [13-15], vortex-induced vibrations of a cylinder [16-19], 
flow past a pitching airfoil [17-19], dynamics of an airfoil falling in a fluid [18, 20, 21], and flow-induced 
vibrations of a flexible pipe [21, 22]. 

In a more general setting, for problems with more complicated or significantly varying geometries, we 
use a general-purpose, automatic mesh moving scheme [18, 23-25] in which the nodal motions are 
governed by the equations of elasticity, with the boundary conditions determined by the motion of the 
free surfaces, interfaces and solid boundaries. Similar mesh moving schemes were used earlier by other 
researchers [26]. In our approach, we drop from the finite element formulation the Jacobian of the 
transformation between the physical and finite element domains, and this results in keeping the shape 
of the smaller elements more intact compared to the larger elements. With this approach, we have 
solved several problems, such as dynamics of a liquid drop falling in a fluid [18, 23-25], flow past an 
oscillating airfoil [23-25], and flow past two airfoils with one of them oscillating [25]. In these problems 
involving airfoils, we use structured meshes with quadrilateral elements near the airfoils, and 
unstructured meshes with triangular elements elsewhere. The structured meshes undergo rigid-body 
motion with the airfoils, while the unstructured meshes are moved with the automatic mesh moving 
schemes described above. Even with this automatic mesh moving scheme, sometimes it becomes 
necessary to remesh; but the idea is to minimize the frequency of remeshing, as we did in solving the 
problem of flow through a sluice gate [25]. Detailed description of these mesh update schemes and 
several examples can be found in [25]. 

We started implementing our incompressible flow formulations on the Connection Machines in the 
fourth quarter of 1991. We reported our first results in [18], and we were soon able to solve a large class 
of practical flow problems, such as simple fluid-body and fluid-structure interactions [18-21], including 
those in 3D [21,22], and several 3D problems [21-24, 27-29], including those involving free surfaces 
[23, 24, 27]. In all these computations the parallel implementation is based on the assumption that the 
mesh is unstructured, and this gives us a parallel performance with little dependence on the complexity 
of the geometry and mesh. Furthermore, all these computations are based on implicit time-integration 
methods. 

Our massively parallel computations of compressible flows started in early 1992, with our first results 
reported in [23]. A later version of [23] appeared as a journal article [24], The compressible flow 
problems we consider come mostly from aerospace applications. These computations include those in 
3D, such as flows past projectiles [23, 24], simple models of aerospace vehicles [14, 15, 23, 24], and 
commercial aircraft [14, 15]. These computations also include those involving moving boundaries and 
interfaces, such as air intake of jet engine with adjustable spool [14, 15]. In compressible flow 
computations, for time-integration we typically use implicit methods, although we also have the 
capability to use, and have in fact used, explicit methods in some problems. 
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These new computational capabilities are now allowing us to solve problems which we were not able 
to attempt before. Today, essentially all our computations are carried out on the massively parallel 
platforms of the Connection Machines, mainly on a CM-5 with 512 processing nodes with computation- 
al speeds which are two orders of magnitude higher than what was available to us two to three years ago 
on the traditional vector supercomputers. Today we routinely solve time-dependent, 3D flow problems, 
even 3D problems with moving boundaries and interfaces. Among the time-dependent, 3D incompress- 
ible flow problems solved are, flow between two concentric cylinders for a range of Reynolds numbers 
(with 282 000 + Eqs.), sloshing in a container subjected to vertical vibrations (52 000 + Eqs.), flow past a 
sphere (388000+ Eqs.), flow around a submarine (466000+Eqs.), flow past a rectangular wing 
(320000 + Eqs.), and flow-induced vibrations of a flexible pipe (145 000 + Eqs.). Among the steady- 
state, 3D compressible flow problems solved are, subsonic flow past a sphere (720000+ Eqs.), 
supersonic flow past a missile (1 100 000 + Eqs.), supersonic flow past a delta-wing (5 000 000 + Eqs.), 
and inviscid, transonic flow past an aircraft (513 000 + Eqs.). The delta-wing and submarine problems 
were featured, respectively, on the cover pages of the Slide Book of the ARPA High Performance 
Computing Software PI Meetings in Norfolk, Virginia, 17-18 March 1993 and in San Diego, California, 
27-29 September !993. 

2.  G o v e r n i n g  equat ions  

In this section, we state the problem in the form of first incompressible, and then compressible, 
Navier-Stokes equations. In the following, O, C R "~d will denote a bounded region at time t E (0, T), 
with boundary F,, where nsd is the number of space dimensions. The time index indicates that the 
domain may be deforming. The symbols p(x, t), u(x, t), p(x, t) and e(x, t) will represent the density, 
velocity, pressure and the total (internal plus kinetic) energy fields, respectively. The external forces, 
such as the gravity, will be represented by f (x ,  t). 

2. I. Incompressible flows 

The Navier-Stokes equations for incompressible flows are 

( a u  - f )  V 0 on/2, Vt•(0, T) p - ~ + u . V u  - . o r =  (1) 

V . u = 0  onO, VtE(0,  T) ,  (2) 

where p is assumed to be constant. For the Newtonian flows under consideration here, the stress tensor 
for a fluid with dynamic viscosity # is defined as follows: 

~r = - p l  + 2/ze(u). (3) 

This equation set is completed by suitable boundary conditions and an initial condition consisting of a 
divergence-free velocity field specified over the entire domain: 

u(x, O) = u o , V" u o = 0 o n / 2  0 . (4 )  

2.2. Compressible flows 

The Navier-Stokes equations for compressible flows can be written in the vector form 

OU OF i OE~ 
#t + Ox---~ Ox---7 = 0 on  O, Vt E (0 ,  T ) ,  (5 )  

where U = (p, pu I , pu 2, pu 3, pe), is the vector of conservation variables, F i and Ei are, respectively, the 
Euler and viscous flux vectors defined as 
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I u~p \ 
u~pu ~ + 6~t p~ 

F, = uiPu2 + ~ , 2 p l  , (6) 
uipt~ 3 q" 8 i 3 P l  

ui(pe + p) ] 
o \ 

zi2 1'  (7) Ei = ~'i3 ] 

-qi + ~'~kU~/ 
r,k are the components of the Newtonian viscous stress tensor, and q~ are the components of the heat 
flux. Here the equation of state is modeled with the ideal gas equation. 

Alternatively, Eq. (5) can be written in the quasi-linear form 

at + A, (gxi fgxi K o = 0 on (Z t Vt E (0, T) ,  (8) 

where 

OF i 
A , -  0U '  (9) 

0U 
. (lo) 

It is assumed that appropriate sets of boundary and initial conditions are specified with Eq. (8). 

3. Finite element formulations, 

In a space-time formulation, the space-time domain is first divided into a sequence of space-.time 
slabs Q,,, and each slab is decomposed into space-time elements Q,~I. A slab Q, is located between the 
time levels t,, and t,+ t. The integration of a functional over a slab will include integration over both the 
spatial domain O, and the temporal one [t,,t,,+~]. Since many of the functions introduced in the 
following subsection will be discontinuous across slab interfaces, we will employ the notation (.),~ and 
(.),,+ to indicate the values at t,, as it is approached from below and above, respectively. The number of 
elements in slab n is written as (n=~),. 

3.1. Incompressible flows 

The finite element formulation begins with choosing appropriate trial solution ((ff~),, and (SP~),,) and 
weighting function ( ( ~ ) ,  and ( ~ ) , ,  = ( ~ ) , , )  spaces for the velocity and pressure. In our computations 
we employ piecewise linear functions for all fields. 

The stabilized space-time formulation for deforming domains can be written as follows: given (uh),~, 
find u h E (AP~),, and phE (~I~),, soch that Vw" E ( ~ ) , ,  and Vq"E ( ~ ) ,  

,, w"" p\'-~" + =h .Vuh _ f  dQ + ,. ~.(wh):o'(p I', U h) dQ 

+ qhV'Uh d Q +  tw ),, "O((u ). - (uh)2)dl~ 
PI t!  

("~''fQ 1 [  (dw h ) ] 
+  MOM-  O\-Ti-+U 'VW" --V'(,(q",W") 

e= l ,~ 
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It,( °uh u h. - f )  v. ] 
• \- '~- + Vu h - ~r(p h, uh)_ I dQ 

(nel)n 

+ X fo I"CONTV'Whp~''hdQ=f( wh'hhdp"  
e=l ~ e.)h 

(11) 

Here h h represents the Neumann boundary condition imposed, (P,)h is the part of the slab boundary 
with such conditions, and rMo M and ~'CONT are the stabilization parameters. The solution to (11) is 
obtained sequentially for all space-time slabs Q t, Q2, • • •, QN-~, and the computations start with 

h (Uh)o = Uo. (12) 

The deformation of the mesh is reflected in the deformation of space-time elements, and is 
automatically accounted for when computing the transport terms. In the formulation given by Eq. (11), 
the first four integrals, together with the right-hand side, represent the time-discontinuous Galerkin 
formulation of (1)-(2). The fourth integral weakly enforces the continuity of the velocity field in time. 
The two series of element-level integrals in the formulation are the least-squares stabilization terms. 
The reader can refer to [1, 2, 27] for further details regarding the space-time formulation for 
incompressible flows, including definitions of the stabilization parameters. For problems not involving 
moving boundaries and interfaces, a semi-discrete formulation derived from Eq. (11) can be written by 
dropping the fourth integral and the term awh/Ot, and by converting all space-time integrations to 
spatial integrations. 

3.2. Compressib!e flows 

In finite element formulation of compressible flows, we define the function spaces 6e~ and °F~ 
c¢~rresponding to the trial solutions and weighting functions, respectively. Again, we use first-order 
polynomials as interpolation functions. Globally, these functions are continuous in space but discontinu- 
ous in time. 

The DSD/SST formulation of (8) can be written as follows: given (Uh),T, find u h ~  5¢~, ', such that 
vw"  'rl: 

low,, (or" ,, ov" ] ( ow"'] ,, +v" ] fo.. ,-z, ,  °o, 

+ ,=, ~ ~ ' (A~)r \ -b- '~/  L--~ +AI' ax, ox, K i ' j -~x j /_ ldO 

+ _ • d e .  
e= 1 Pn)~ 

( w " y .  ((v"),, + - (v") ; , )  d a  

(13) 

The solution to (13) is obtained sequentially for Qt, Q 2 , . . . ,  QN-I, commencing with 

(U")~ =V~,  (14) 

where U0 is the initial value of the vector U. 
In the formulation (13), the first three integrals, together with the right-hand side, represent the 

time-discontinuous Galerkin formulation of (8). The third integral weakly enforces the continuity of the 
conservation variables in time. The first series of element-level integrals are the SUPG stabilization 
terms, and the second series are the shock-capturing terms added to the formulation. The definition of 
and 6 are given in [13]. For problems not involving moving boundaries and interfaces, a semi-discrete 
formulation derived from Eq. (13) can be written by dropping the third integral, and by converting all 
space-time integrations to spatial integrations. 
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4. Parallel implementatbn 

With the advent of parallel computing, a new degree of difficulty has been added to the numerical 
code development. New algorithms not only have to be efficient from the scalar and vector point of 
view, but must also exhibit scalable performance when executing in parallel on hundreds or thousands 
of interconnected procel~sors. In this section, we provide an overview of our data parallel approach to 
implementing finite element methods on the Connection Machine range of supercompute~. ~The details 
of the implementation can be found in [19, 29]. 

A common starting point for the design of a brand-new parallel implementation of a finite element 
code on a distributed memory machine like the CM-5 is the decision regarding distribution of the 
variables among the processing nodes. One of the natural data storage modes is an element-level mode 
in which one element and all of its associated variables and parameters reside in the local memory of a 
single processing node. This necessarily leads to duplication of certain quantities, such as nodal 
coordinates, which would be stored at a node-level in a conventional implementation. However, this 
kind of data distribution will allow a majority of operations in a finite element program to proceed in 
parallel without any inter-processor communication whatsoever. The phase of the program which deals 
with GMRES iterations [30] to solve the linear equation system obtained from the finite element 
discretization, will require another data structure, either node-level or an equation-level one. Although 
the differences between these two alternatives are minor, our implementations employ the equation- 
level structures. Here, all data associated with a single entry of the equation system resides on a single 
processing node, again rendering many steps of the GMRES iterations communication-free. 

The two kinds of data structures will interact mainly in GMRES iterations, and it is here that the 
communication issues become important. The mapping between the two data sets is determined by the 
element connectivity and the numbering of global degrees-of-freedom, or equations. Note that this 
numbering, as well as the numbering of elements, are not unique and can be adjusted to produce the 
best data locality. Although the preceding approach is applicable to any machine which supports data 
parallel programming model, such as Cray T3D or MasPar, it highly benefits from the features included 
in the Connection Machine Scientific Software Library (CMSSL) available on the Connection Machine 
computers. The communication between the element-level and equation-level data can be performed 
using the highly optimized CMSSL gather and scatter routines. These routines have the ability to save 
various communication trace information in order to achieve much faster subsequent gathers and 
scatters if the communication pattern is unchanged. Equally important are the CMSSI, utilities for 
partitioning the finite element mesh into subdomains, grouping elements belonging to each subdomain 
on a single processing node, and suitably aligning the equation-level data with the reordered element- 
level data. The CMSSL communication routines can exploit the resulting data locality, and perform 
significant portion of the gather and scatter operations referencing only the local memory of the 

! 

processing no~es. 

5. Examples 

In this section, we describe our numerical examples in two parts: incompressible and compressible 
flows. Except for the first problem in each part, all examples presented here are 3D simulations. In all 
problems we employ a GMRES iterative solver. Except where noted, these problems were computed 
on the CM-5. 

5.1. Incompressible flows 

Dynamics of a falling airfoil 
In this 2D simulation we study the dynamics of a NACA 0012 airfoil falling in a viscous fluid. Of 

interest here is the effect of the location of the center of gravity of the airfoil on its pitch stability. The 
motion of the airfoil is governed by Newton's laws of motion. The mass and the polar moment of inertia 
of the airfoil are 4.07 and 0.22, respectively. The center of gravity of the airfoil is located on the chord 



1ine, at 0.,{2 chord lengths ftom the leading edge. 'Ihc finitc clcmcnt mesh consists of 8446 nodcs and
8304 quadrilateral elements. Al every iime step 19 992 non-linear equations are solved to update the
llow field. Zero velocitr is specified at the in8ow boundarics and traction free conditions arc imposcd at
the outflow boundaries. The entire mesh is movcd with thc velocitl of the mjd chord point of thc
aidoil.

At t:0. thc ai bil is released from rest at 10" angle lvitb lhc linc ol gravify. Results from this
simulation were reported in Mitlal and Tezduyar l20l; after a while the airfoil reaches a temporally
periodic motion. In addition to having a translatory notion, there is a superinposed pitching motion.
The first four frames in Fig. 1 show the vorticity lield lor this simulation during one peiod of thc pitch
motion of the aiffoil. The average Revnolds number for this periodic solution (bascd on thc
translalional vclocity of the airfoil and its chord length) is approximatcllr 225-

T.E. TezAutar et al. i C.ttuput. lltcthn^ Attl it..h ttagtg 119 (19q1) t57 t77

t-__

l

Frg. 1. 2D inco,ntr.$lble iow sinulaton ol the dynanic\ olan ridoil lalling in n viscous flu ln rhe ftst parr ol the sinuliton
lhc .enter oi gravit)_ n local.d at 0.12 chord lengrhs fr.m the leading edge, in the sec.nd prr! il r n.ved Lo l).30 .h.id-lcngdx.
Tbi\ change re$nr in higher pitch stabihl lor rhc aifoil. Thc frst lour imagcs shor dr. vorticitl, ncld for the 6.si part oi the
sidulation. and drc l.st 1{o in.ses lor the se.ond Dnn.



't ta Tezdutar et al. I Conput. Methotls App!. Mech. Engry 119(1991)157 177

In the next part of this simulation, the center of gravity of the airfoil is moved to 0.30 chord-lengths
frcm the leading edge. This change results in a higher pitch stabilily for lhe airfoil. The last two frames
in Fig. 1 show thc vorlicity field for this part of the simulation. We observe that in this case, the motion
of the airloil is primarily translational. The glide angle ofthe airfoil is approximately 80'with the line of
gravity; the Reynolds number is approximately 320. More details about this simulation can be found in
Mittal and Tezduyar 122]. This sirnulation was carried ort on the CM-5 and CM-200.

Flow bet|teen tuo concentric cllinders (Tatlor-Couette IIow)
The purpose of thjs set of computations is to simulate the instabilities that develop between two

concentric cylinders in relative rotation. The Reynolds rumber is based on the gap size bctween the two
cylinders ard the speed of the inner cylinder; thc ouler cylinder is at resl. B€yond a certain critical
Reynolds number, the rcgular Couette llow becomes unsiable and onc sccs the development of Taylor
vortices. Fu her increasc in the Reynolds number leads to an unstcady flow pattern, the wavy vortex
flow [31]. In Tezduyar et al. [24] we presented our results for various Reynolds numbers. Here, we
revicw two of those cases: Reynolds numbcr 150 and 250.

The finite elcmcnt mcsh employed consists of 38400 hexahedral elements and 45 024 nodes. The
mesh contains 6 elernents in the radial direction.32 elemerts in the circumferential direction and 200
elemcnts in the axial direction. At every time step, a set of 282366 nonlinear equations resulting ftom
the finite element discretization are solved iteratively.

As boundary conditions at the upper and lower boundaries, the axial component of the velocity and
the n and I components of the stress vector are sct to zerc (the z axis lies in the axial direction).

In the liftt case considered herc, thc Rcynolds number is 150. This value is grcater than the critical
Reynolds rumber. and therefore, for certain disturbanc€s, one would expect the Couette llow to
devclop instabilities. We have an interesting observatjon rclated to this flow. When thc solution is
computed with no cxternal disturbances, a stable Couette flow is obsened. On the other hand, if the
solution is obtained with an initial condition that corresponds to an msteady solution from a higher
Reynolds number, a Taylor vortex flow is realized. Fig. 2 shows the axial velocity at the vertical,
cylindrical and horizontal sections. Tbe cylindrical section lies midway betwcen the inner and outer
cylinders. We observe that the solution at this Reynolds numbcr is axisymmetric.

vefl i!al aD(l Cylindrical Se(liols
Axial Velocit3-

4.09 0 +0.0rt
--

Horizont{lSection

Fig. 2. 3D inconpressible now ber*een hro conenfic cylindes Tle outer cyli.dd is fixed, and the inner one is spinning at
ReynoLds ntrmbcr 150. 41 this Roynolds nnmbcr thc RoN is axis)mnetnc. The inages shoN thc axial velocily at vertial,
cllindncal and ho.izontal sections. Nunber of non linear equatiors solved a! every iine stcp is 282000+.
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V€.ticll and Cylindrical SectioDs
Axbl Yelmlty

4.8 0 +08
-

Horizootal Section

Fig. 3. 3D in@npft$ible floN between two conccndc cylirders. The orter cflinder js nxed, and the imer onc is sPinning ar
Reynolds nnnbcr 250. At this Reynolds number the ioq is 3D and involves forr saves traveling i. zimuihal direction. The
inages show the axial velocity at vcrtical, cylindncal and horizonlal sectioos. Number ol non linear equalions solved at every line

At Reynolds number 250, our computatio s reveal the plesetcc of wavy vortex ffow- At this
Reynolds numbei the solution is no longer axisymmetric and involves 3D imtabilities. Fig. 3 shows the
axial velocity at the vertical, cylindrical and horizontal sections foi a nearly temporally periodic
solution. We obseNe that. in addition to the cells in the axial direction, there are foul waves traveling in
the azimuthal direction.

Sloshing in a container subjeckd to veftical vibrations
Here we pefform a 3D study of sloshing in a container subjected to vertical vibrations. The

experimental and theoretical evidence [32] hdicates the existence of multiple solution branches when
the horizontal cross-section of the container is nea y squarc. Depending on the frequency of the
vibrations, the competing wave modes interact generating complex pedodic, as well as chaotic, wave
behavioi. The pa icular case considered here is based on the expedment performed by Feng and
Sethna [32].

A fuller description of ihis simulation is given in [27], with only tlle most significant facts outlined
here. The hodzontal cross section of the tank is a IyxA rectangle, where W:0.178m and }1=
0.180m. The water level, initially llat, is at D:0.127 m. Side and bottom bounda es allow slip in the
direction tangent to the surface. The open suface of the water is assumed to be free from nomal and
shear sfesses, and it moves consistently with the normal component of the fluid velocity at the surface.
The extemal forces acting on the fluid consist of a constant gravitational acceleration of magnitude
g=9.81ms'andofasinusoidalvert icalexci tat ion?4gsindlwith.r :2r l , / :4.00t{zand,4suchthat
the amplitude of the oscillations remains at 1mm. The spatial mesh for each time slab consists of 7056
nodes and 6000 quadrilinear brick elements which result in 52 878 equations being solved using the
GMRES solver. Fig. 4 shows, at 9 equally-spaced instants during the simulation, the free-surface
displacement and the pr€ssue field. This simulation was caried out on the CM-200.

Flow arcund a submafine
Here we simulate three-dimensional flow arcund a Los Angeles-class submarine. We use the

stabilized space time method. The Reynolds nurnber based on the ftee-stream velocity and the hul
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Fig- 4- 3D sinrlation of sloshing in a @ntainer panialy filed with {ater and subjected to ve.tical vibrations. The ituges show
th€ fr€. sfa@ dd the pftssft ield. Nmber of non linear eqlations solved at every time step is 52000+.

length is 1x 10'. A Smagorinsky turbulence model [33] was used in this unsteady computation, which
was restarted from a steady-state solution ar Reynolds number I \ 106. A similar problem is described
in more detail in [29]. we employed a spatial mesh consisting of 71035 nodes and 345 129 tetiahedral
elements. This has resulted h 466 688 equations solved using GMRES iterahons. Fig. 5 shows the
pressure field on the submarine surface, as well as a set of streamlines at a single instant during the
unsteady computation.

With the Krylov space dimension of 40, and 5 outer iterations, a single ron-Linear iteration took
approximately 30 seconds on a CM-5 with 512 processing nodesi and the computations proceeded at an
overall rate of 7.0 GigaFLOPS.
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Fie. 5. Flow arolnd a Los Angeles-class subnanre. Nunber of non-linear equaiions solved at every rinc step is 466 000+. The
top image shows the streamlines and lhe pressue distibltioo o. thc su.fa@ oI the subnarine The second image shows the
stream dbbons colo.coded rirh the axial velocity. These inages appea.ed on lhe cover page of the Slide Bool of the ARPA

High Perfomane Cnhputing Sollware PI Meeting, san Die8o, Califomia. 2?-29 septenber 1993.

t67

3D flow past a rectangulnr wing
This 3D computation involves flow past a fixed rectangular wing at an angle of attack of 15". The

wing has an aspect ratio of 3 and its cross sectior is a NACA 0015 airfoil. The Reynolds number, based
on the inflow vetocity and the chordlength of the wing, is 10000. The finite element mesh consists of
84058 nodes and 79104 hexahednl elements. At every lime step 320563 nonlinear equatioft are
solved to update the flow field.

Figure 6 shows the flow 6eld at the wing sufface and a cross-section at a certain time hstant, from a
preliminary computation [21]. The top image shows the pressure distribution on the wing surtace and
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Fig. 6, 3D in@mpiessible flor past a recrargular wing at Rcynolds nunbe. 10 000- The 1op image shows the pressu.e distribntion
on the wing surlace and the siremlines at two difrcrcnt cross*ctions- The s4ond inage shows ihe pressure lield and the velocity
vecros a! a dos section. Nunber of nonlinear equations solved al every time step is 320000+.

the streamlines at two cross-sections- As expected, these streamlines suggest the presence oI wing{ip
voftices. The second image shows the pressure field and the velocity vectors at a ooss-section-
Interested reade$ aie rcferred to Mittal and Tezduyar [22] for mor€ details-

Flow-i duced vibrutions of a cantilevered. fuxible pipe
ln this fluid-structure interaction problem, we simulate the 3D flow in a cantilevered, flexible pipe

and the response of the pipe to this flow. The deformation of the pipe, assumed to be planar, is
govemed by the Bernoulli Euler beam theory and this limits the reliability of oul rcsults to small
deformations of the pipe. It is known that beyond a certain c.itical inflow velocity, the pipe exhibits
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flow-induced oscillations [34]. In this simulation the Reynolds number, based on the pipe diameter and 
the inflow velocity at the pipe centerline, is 1000. The length of the pipe is 20 times its diameter. 

The finite element mesh consists of 20 449 nodes and 18 720 hexahedral elements. At every time step 
145 298 non-linear equations are solved to update the flow field. The structural part of the problem 
involves solution of 240 equations at every time step. 

Fig. 7 shows the flow field in the pipe section in its plane of motion during a full period of oscillations. 
The images in the left column show the pressure field, and the ones in the right column show the lateral 
component of velocity. From these pictures we observe that the pipe exhibits the second mode of 
cantilevered beam oscillations. More details about these computations can be found in Mittal and 
Tezduyar [22]. This simulation was carried out on the CM-200. 

5.2. Compressible flows 

Air intake of  a jet engine at Mach 2 and Reynolds number 0.8 million 
This axisymmetric computation demonstrates the potential of the DSD/SST formulation to model 

intricate compressible flows involving interactions between boundary layers, shocks and moving 
surfaces. This type of flow is encountered in the air intake of a jet engine with adjustable spool. The 
efficiency of these engines at supersonic speeds can be improved by moving the spool back and forth 
and thus adapting the outstanding shock. The free-stream Mach number is 2, and the Reynolds number 
based on the free-stream values and the gap size is 0.8 million. We use 48 450 quadrilateral elements 
and 49091 nodes. At each time step~ 386974 non-linear equations are solved simultaneously. 
Computation starts with the free-stream values as initial condition, and after a prescribed period of time 
the spool starts to move forward. 

The mesh moving strategy used for this problem is such that the connectivity of the mesh remains 
unchanged throughout the simulation. This eliminates the projection errors associated with remeshing 
and also eliminates the parallelization overhead associated with remeshing. The images in Fig. 8 show 
the Mach number at six different instants during the motion of the spool. A full problem description 
and discussion can be found in [15]. This simulation was carried out on the CM-200. 

3D flow past a sphere at Mach 0.1 
We solved this 3D problem for a set of Reynolds numbers ranging from 30 to 200 to demonstrate the 

reliability of our method at low Mach number flows. Here the Reynolds number is based on the 
free-stream values and the diameter of the sphere. The free-stream Mach number is 0.1. At this low 
Mach number, the variations in density are less than 0.5%. This allows us to compare our steady-state 
results with incompressible flow data from Schlichting [35]. 

The mesh used to solve this problem consists of 148 969 nodes and 142 364 hexahedral elements. For 
the time integration, an explicit method is used, and 720 657 non-linear equations are solved at each 
time step. Computed and experimental drag coefficients compare very well. Fig. 9 shows the pressure 
distribution on the surface of the sphere and in the symmetry plane. See [15] for more details. 

3D flow past a delta-wing at Mach 3 and Reynolds number 1.1 million 
In this problem, we consider the flow of air past a delta-wing model of an aerospace vehicle at Mach 

3. The Reynolds number based on free-stream values and the maximum chord length (along the plane 
of symmetry) is 1.1 million. Due to the assumed symmetry of the solution, only half of the flow over the 
delta-wing is computed. 

The delta-wing has a wedge type cross section as an underbody in which its corners merge smoothly 
to the flat surface on the top. The delta-wing has unit length in the chordwise direction and is tapered 
from 0.0 to 0.69 units in the spanwise direction. The surface geometry of the delta-wing was provided to 
us by Dr. Chien Li from NASA-JSC. Our preliminary steady-state solution of this problem was 
obtained on a relatively coarse mesh, with 152 397 nodes and 143 920 hexahedral elements (see [24]). 
This solution is presented in Fig. 10 with two images showing the side and front views of the delta-wing 
together with the Mach number distribution around it. Later, we solved this problem with a mesh 
consisting of 1 032 328 nodes and 1002684 hexahedral elements. In this case, 5 001 031 non-linear 
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Fie. ?. Flow-indeed vibrations of a cantilevered, flexible pipe with 3D in@np$sible flow at Reyrolds nntuber 1000. The
iras6 show the presw (left @lMn) and latqal velocity Gisht @lumr) i. the pipe wtion in irs plane or motion dring a iull
period of osilatiotrs. Nmber of mn-lirear eqnatiotrs solved io npdate the flow neld at eyery time step is 145000+. The
sEuctual part ol the prcblem, govebed by a lD model, involves slurior of 240 eqnations at every time slep.
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Fie. 8. Axisynnetic simulation of an intake of a jet engine with adjnsrable spool at Mach 2 and ReFolds nnnber 0-8 nilion.
The images stow the Mach number at six different instdts dlring the notion of tne spool. Nmber of nonlinee equatio$
solved at every rine step is 386000+.
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FiA.9. 3D steady-state, subsnic flow past a spherc at Mach 0.1 dd Reynolds Mber 100. The inage shows the presure
distribution on the surf@ of the sphere and in the symmetry plane. Nunler of non liDear equations solved a1 every tioe step is
?20 000+.

equations are solved simultaneously using matrix-fiee itemtions. This computation was carried out on a
CM-5 with 512 Focessing nodes at a.sustained speed of 9.8 GigaFLOPS. The cost of a single non-linear
iteration with I GMRES outer iterarion and a Krylov space dirilension of l0 is 14.9 seconds. The top
image in Fig. 11 shows the prcssure distdbutiotr on the wing sudace and at a cross section. The second
image shows the top view of the delta-wing together with the pressure field around it. We re{er the
reader to [15] for more details about this problem.

3D flow past an aircra[r a! Mach 0.7b8
In this problem, we compute steady-state solution of the Euler equations which govem approximately

the flow field at very high Reyrclds rumben around an aircraJt. ln this inviscid, tansonic simularion,
the free-stream Mach number is 0.768, and the angle of attack is 1.116". We use a fitrite element mesh
made of tetrahedral elements. This mesh has 106 064 nodes and 575 986 elements, and was provided to
us by Professor Dimitd Mavripilis of Pdncetotr Univenity.

The computation starts with the free-stream values as initial condition, and by using our explicit, local
time stepping algorithm, 513 365 equations aie solved at each non-Iinear iteration. In Fig. 12, the top
image shows tle mesh in the sylnmefy plane and the Mach number distdbutiotr on the aircraft surface.
The second image shows the streamlines and surface prgssure distribution near the engine. For morc
details see 1151.

6. Concluding renarks

We have reviewed our work on parallel finite element computation of compressible and itrcomprcss'
ible flows. These computations were carried out on the Coimection Machines CM-5 and CM-200, and
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Fig, 10. 3D steady-state, superso.ic dw past a delta-wing at Mach 3 dd Reynolds nnnbei 1-1 nillion. The images shos the Sde
ed font views of the d€lra wing roeether with the Mach nunber di$nbudon aroud it. Nunher of non-linear equations solved at
eve.y tine step is 725000+. These images alpeared on the @ver page of the slide Book ol the ARPA Higb Perrormanc
Clonputing Softwee PI Meeting, Norfou(, Virginia, 1? 18 Mecb 1993.

were based mostly on implicit methods. The parallel implementations arc always based on t]le
assumption that the finite mesh is unstructued. We summarize the parrllel 3D computation per-
formance on the CM-5 with 512 processing nodes for selected problems in Tables I and 2. We note a
large disparity between the times required for a single nonlinear iteratior for these two problems. This
is because in the submarine problem, we use a space time formulation, and a geater number of inner
and outer GMRES iterations are needed for convergence in incompressible flows.

Flor dound a snbmarine: perfomane for inllicit inmmprssible dow implonontation, Total nmber of GMRES iterations pel
no. linear ite.ation is 200

c'ofpurario. rare (cigaFloPs)
Non-linear ieratio. st G/iteration)
Non-linear itention 6si (ps/iremtion/node)

7.O
29.3

206.5
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Fie. 11. 3D stcady-slate, supersoni. flowpast a della ving ai Mach 3 and Reynolds number L t nillion The top inage shows 1he
pressure dislribudon on thc sing su rce.nd !1a cross-sedion. The second inage shows lhe roP liew olthe delta wing togeihcr
with the pre$ure licld around it. Nlrbcr of non linear equations solvcd at every dbe step is 5000000+.

We have demonsffated that today we are at a point where we have the capability to solve a iarge class

of practical problems, including those involving moving boundades and intefaces and those in 3D,
using implicit formulations wilh problem sizes over 5 000 000 equatioff and mmputational speeds at 12
GigaFLOPS. We believe this new capability has pushed larg€-scale finile element computation of flow
problems to a new era in numerical simulation.

Flow past a delt!$ing al Mach 3 and Reynolds nlnber 1 | nillion: perlornance for implicil conpressibb noF inplene.tatron.
Toral number ol GMRES ircmdons Der non linear ireration h 10.

Conputadon rare (cigaFLOPS)
Non-liNar it$ation .osr G / iteraiion)
Non linear iteration osr (ps/irer.tion/node)

9.8
14.9
1,1.5
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Fig- 12. Steady-state. inviscid, lratronic now pdt ao airoaft at Mach 0.768. The toP image shows tte mesh in the slmetry
plde and the Mach nunber dislribtrtion on the andaft surfa@. Tbe second i6aee shows rhe st eadines and surface pressure

dislribution aear the engine. Number of non-linear equations solved at every tine step is 513000+
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