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Abstract

We present a review of where our research group stands in parallel finite element simulation of flow problems on the
Connection Machines, an effort that started for our group in the fourth quarter of 1991. This review includes an overview of our
work on computation of flow problems involving moving boundaries and interfaces, such as free surfaces, two-liquid interfaces,
and fluid-structure and fluid-particle interactions. With numerous examples, we deinonstrate that, with these new computational
capabilities, today we are at a point where we routinely solve practical flow problems, including those in 3D and those involving
moving boundaries and interfaces. We solve these problems with unstructured grids and implicit methods, with some of the
problem sizes exceeding 5000 000 equations, and with computational speeds up to two orders of magnitude higher than what was
previously available to us on the traditional vector supercomputers.

1. Introduction

In this review article, we report on where we are now, roughly two years after we first started, in the
fourth quarter of 1991, implementing our finite element formulations of flow problems on the
connection Machine family of supercomputers from Thinking Machines Corporation. We also report on
where we are nearly three and half years after we started, in the third quarter of 1990, our
computations of flow problems involving moving boundaries and interfaces. This article contains
material extracted from articles by these authors and their coworkers, which appeared recently or are
about to appear.

In mid-1990, with the deformable-spatial-domain/stabilized-space~time (DSD/SST) formulation
(Tezduyar et al. [1,2]), we initiated the development of what turned out to bc a powerful, general-
purpose numerical capability for solving a large class of compressible and incompressible flow problems
involving moving boundaries and interfaces, such as free surfaces, two-liquid interfaces, and fluid-
structure and fluid-particle interactions. Changes in the shape of the spatial domain with respect to time
are taken into account automatically by the DSD/SST formulation, because this formulation is written
over the space--time domain of a problem.

The stabilization is achieved by employing, typically, for compressible flows the streamline-upwind/
Petrov-Galerkin (SUPG) formulation [3-5], and for incompressible flows the Galerkin/ least-squares
(GLS) formulation [6,7]. For compressible flows, we use conservation variables formulations of the
Euler and Navier-Stokes equations. The SUPG stabilization technique for compressible flows was
introduced in [3]. In recent years this technique was enhanced by a shock-capturing term [4, 5], and this

* Corresponding author.

0045-7825/94/$07.00 © 1994 Elsevier Science S.A. All rights reserved
SSDI 0045-7825(94)00082-4



158 T.E. Tezduyar et al. | Comput. Methods Appl. Mech. Engrg. 119 (1994) 157-177

enhancement rendered this technique very comparable in accuracy to those that followed [3] and
formulated in entropy variables [8, 9]. The stabilized space-time formulation was used in the past by
other researchers to solve flow problems with fixed spatial domains [7, 9, 10]. For incompressible flows,
when the spatial domain is fixed, i.e. when the problem does not involve any moving boundaries or
interfaces, then, to avoid the cost associated with the space-time formulation, we prefer to use the
pressure-stabilizing / Petrov—Galerkin (PSPG) formulation [11, 12}, which can be cast in the context of a
semi-discrete formulation. With these stabilization techniques, we can handle flows at high Mach and
Reynolds numbers, as well as flows with shocks and sharp boundary layers, with minimal numerical
dissipation. Furthermore, the stabilized nature of these formulations allows us to use equal-order
interpolation functions for velocity and pressure.

In flow problems involving moving boundaries and interfaces, to update the mesh as the spatial
domain deforms with time, special mesh moving techniques as well as automatic mesh moving methods
are used to minimize, and in some cases totally eliminate, the need for remeshing (i.e. the need for
generating a new set of nodes and elements). Remeshing involves projection errors, and in 3D
problems, the cost of repetitive mesh generation and parallelization set up (following each remeshing)
could be prohibitive. For these reasons, we find mesh update strategies which minimize the frequency
of remeshing desirable. With special mesh moving schemes designed for specific problems and
geometries, we were able to solve, with no need for remeshing, a number of problems, such as air
intake of a jet engine with adjustable spool [13-15], vortex-induced vibrations of a cylinder [16-19],
flow past a pitching airfoil [17-19], dynamics of an airfoil falling in a fluid [18, 20, 21], and flow-induced
vibrations of a flexible pipe [21, 22].

In a more general setting, for problems with more complicated or significantly varying geometries, we
use a general-purpose, automatic mesh moving scheme [18, 23-25] in which the nodal motions are
governed by the equations of elasticity, with the boundary conditions determined by the motion of the
free surfaces, interfaces and solid boundaries. Similar mesh moving schemes were used earlier by other
researchers [26]. In our approach, we drop from the finite element formulation the Jacobian of the
transformation between the physical and finite element domains, and this results in keeping the shape
of the smaller clements more intact compared to the larger elements. With this approach, we have
solved several problems, such as dynamics of a liquid drop falling in a fluid 18, 23-25], flow past an
oscillating airfoil [23-25], and flow past two airfoils with one of them oscillating [25]. In these problems
involving airfoils, we use structured meshes with quadrilateral elements near the airfoils, and
unstructured meshes with triangular elements elsewhere. The structured meshes undergo rigid-body
motion with the airfoils, while the unstructured meshes are moved with the automatic mesh moving
schemes described above. Even with this automatic mesh moving scheme, sometimes it becomes
necessary to remesh; but the idea is to minimize the frequency of remeshing, as we did in solving the
problem of flow through a sluice gate [25]. Detailed description of these mesh update schemes and
several examples can be found in [25].

We started implementing our incompressible flow formulations on the Connection Machines in the
fourth quarter of 1991. We reported our first results in [18], and we were soon able to solve a large class
of practical flow problems, such as simple fluid-body and fluid-structure interactions [18-21], including
those in 3D [21, 22], and several 3D problems [21-24, 27-29), including those involving free surfaces
[23, 24'1, 27]. In all these computations the parallel implementation is based on the assumption that the
mesh is unstructured, and this gives us a parallel performance with little dependence on the complexity
of tttl:e égeometry and mesh. Furthermore, all these computations are based on implicit time-integration
methods.

Our massively parallel computations of compressible flows started in early 1992, with our first results
reported in [23]. A later version of [23] appeared as a journal article [24]. The compressible fiow
problems we consider come mostly from aerospace applications. These computations include those in
3D, such as flows past projectiles [23, 24], simple models of aerospace vehicles [14, 15, 23, 24), and
commercial aircraft [14, 15]. These computations also include those involving moving boundaries and
mterfaces., such as air intake of jet engine with adjustable spool [14, 15]. In compressible flow
computations, for time-integration we typically use implicit methods, although we also have the
capability to use, and have in fact used, explicit methods in some problems.
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These new computational capabilities are now allowing us to solve problems which we were not able
to attempt before. Today, essentially all our computations are carried out on the massively parallel
platforms of the Connection Machines, mainly on a CM-5 with 512 processing nodes with computation-
al speeds which are two orders of magnitude higher than what was available tc us two to three years ago
on the traditional vector supercomputers. Today we routinely solve time-dependent, 3D flow problems,
even 3D problems with moving boundaries and interfaces. Among the time-dependent, 3D incompress-
ible flow problems solved are, flow between two concentric cylinders for a range of Reynolds numbers
(with 282 000 + Egs.), sloshing in a container subjected to vertical vibrations (52 000 + Egs.), flow past a
sphere (388000 + Egs.), flow around a submarine (466000 + Eqs.), flow past a rectangular wing
(320000 + Eqgs.), and flow-induced vibrations of a flexible pipe (145000 + Egs.). Among the steady-
state, 3D compressible flow problems solved are, subsonic flow past a sphere (720000 + Egs.),
supersonic flow past a missile (1 100000 + Egs.), supersonic flow past a delta-wing (5000 000 + Egs.),
and inviscid, transonic flow past an aircraft (513 000 + Eqgs.). The delta-wing and submarine problems
were featured, respectively, on the cover pages of the Slide Book of the ARPA High Performance
Computing Software PI Meetings in Norfolk, Virginia, 17-18 March 1993 and in San Diego, California,
27-29 September 1993.

2. Governing equations

In this section, we state the problein in the form of first incompressible, and then compressible,
Navier-Stokes equations. In the following, £, C R" will denote a bounded region at time ¢ € (0, T),
with boundary I, where n, is the number of space dimensions. The time index indicates that the
domain may be deforming. The symbols p(x, t), u(x, t), p(x, ) and e(x, t) will represent the density,
velocity, pressure and the total (internal plus kinetic) energy fields, respectively. The external forces,
such as the gravity, will be represented by f(x, t).

2.1. Incompressible flows

The Navier-Stokes equations for incompressible flows are
p(%+u-Vu—f)—V-a=0 onf, Wte(0,T), (1)

Viu=0 on2, Vte€(0,T), (2)

where p is assumed to be constant. For the Newtonian flows under consideration here, the stress tensor
for a fluid with dynamic viscosity u is defined as follows:

o = —pl +2ueu) . 3)

This equation set is completed by suitable boundary conditions and an initial condition consisting of a
divergence-free velocity field specified over the entire domain:

u(x,0)=u,, V-u,=0 on,. (4)

2.2. Compressible flows

The Navier-Stokes equations for compressible flows can be written in the vector form

oU OF; OE, (5)
ot ax, o, =0 onf), Vt€(0,T),
where U = (p, pu,, pu,, pus, pe), is the vector of conservation variables, F; and E, are, respectively, the
Euler and viscous flux vectors defined as
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u,p
upu, + 8, p
F,=| w;pu, +8,p | (6)
upuy +8;;p
u(pe +p)
0\
Ti1
E = Ti2 , 7
Ti3
—q; t Tyl
T, are the components of the Newtonian viscous stress tensor, and g; are the components of the heat

flux. Here the equation of state is modeled with the ideal gas equation.
Alternatively, Eq. (5) can be written in the quasi-linear form

oU ou 9 U .
¥T3 ‘.E;i-—a—x;(l(,-ja;)=0 on{, Vt€(0,T), (8
where
oF,
A, =30 9)
oU
K, -5;’ =E,. (10)

It is assumed that appropriate sets of boundary and initial conditions are specified with Eq. (8).

3. Finite element formulations

In a space-time formulation, the space-time domain is first divided into a scquence of space-time
slabs @, and each slab is decomposed into space-time elements Q. A slab Q, is located between the
time levels ¢, and ¢, , . The integration of a functional over a slab will include integration over both the
spatial domain (2, and the temporal one [t,,¢,,,]. Since many of the functions introduced in the
following subsection will be discontinuous across slab interfaces, we will employ the notation (-), and
(*), to indicate the values at ¢, as it is approached from below and above, respectively. The number of
elements in slab n is written as (n,,),.

3.1. Incompressible flows

The finite element formulation begins with choosing appropriatie trial solution ((%"), and (.9":),,) and
weighting function ((¥'), and (‘V::).. =(< ,’;),,) spaces for the velocity and pressure. In our computaiions
we employ piecewise linear functions for all fields.

The stabilized space~time formulation for deforming domains can be written as follows: given (u")
find u" € (), and p" € (1), such that Vw" € (¥'*), and Vq" € )

n

n

n

h
J;) wh. p(-%ut— +u" V" —f) dQ + IQ" ew"):e(p", u")dQ

t], 'Vt ag [ oy e -0
("cl)n

+ zf _1_[ (i‘f_’: h h h
Qf,TMOMp P\ +u W' )-V-a(q",w")

e=]
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. [p(ég-+ u" -Vu" —-f) -V-a(p", u")] dQ
(ney)y,

+ > erTCONTV-w"pV°uth=J; w'-h"dP. (11)

e=1 P,y

Here h" represents the Neumann boundary condition imposed, (P,), is the part of the slab boundary
with such conditions, and 7,y and 7conr are the stabilization parameters. The solution to (11) is
obtained sequentially for all space-time slabs Q,, Q,, ..., Qy_,, and the computations start with

(") =up. (12)

The deformation of the mesh is reflected in the deformation of space-time elements, and is
automatically accounted for when computing the transport terms. In the formulation given by Eq. (11),
the first four integrals, together with the right-hand side, represent the time-discontinuous Galerkin
formulation of (1)-(2). The fourth integral weakly enforces the continuity of the velocity field in time.
The two series of element-level integrals in the formulation are the least-squares stabilization terms.
The reader can refer to [1, 2, 27] for further details regarding the space~time formulation for
incompressible flows, including definitions of the stabilization parameters. For problems not involving
moving boundaries and interfaces, a semi-discrete formulation derived from Eq. (11) can be written by
dropping the fourth integral and the term aw"/dt, and by converting all space-time integrations to
spatial integrations.

3.2. Compressible flows

In finite element formulation of compressible flows, we define the function spaces &" and V!
corresponding to the trial solutions and weighting functions, respectivcly. Again, we use first-order
polynomials as interpolation functions. Globally, these functions are continuous in space but discontinu-
ous in time. :

The DE;;D/ SST formulation of (8) can be written as follows: given (U");, find U" € $! such that
wre v,

h ] h h
Jow (e ari)ag+ [ (5) (k%) g+ [, ovyi-@h; - whian

at foax; o
gy h h h h
ow oU alU ad U
h\T . h . h 7Y
* e=1 JQ¢ A ( ax,, ) [ ot T4, ox; ox; (K” ax; )] d0
ey, h h
: aw"\ (U ) N - 13
* e;l *(axi} (axi 0= (P..)hw H7aP. (1)

The solution to (13) is obtained sequentially for Q,, Q,, . .., Qy_,, commencing with
©"; =, -

where U, is the initial value of the vector U. '

In the formulation (13), the first three integrals, together with the right-hand side, represent the
time-discontinuous Galerkin formulation of (8). The third integral weakly enforces the continuity of fhe
conservation variables in time. The first series of element-level integrals are the SUPG stal?i.lizatlon
terms, and the second series are the shock-capturing terms added to the formulation. The deﬁn.ltlc'm of r
and & are given in [13]. For problems not involving moving boundaries and interfaces, a seml-dx'screte
formulation derived from Eq. (13) can be written by dropping the third integral, and by converting all
space—time integrations to spatial integrations.
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4. Parallel implementation

With the advent of parallel computing, a new degree of difficulty has been added to the numerical
code development. New algorithms not only have to be efficient from the scalar and vector point of
view, but must also exhibit scalable performance when executing in parallel on hundreds or thousands
of interconnected processors. In this section, we provide an overview of our data parallel approach to
implementing finite element methods on the Connection Machine range of supercompuicis. “The details
of the implementation can be found in [19, 29].

A common starting point for the design of a brand-new parallel implementation of a finite element
code on a distributed memory machine like the CM-5 is the decision regarding distribution of the
variables among the processing nodes. One of the natural data storage modes is an element-level mode
in which one element and all of its associated variables and parameters reside in the local memory of a
single processing node. This necessarily leads to duplication of certain quantities, such as nodal
coordinates, which would be stored at a node-level in a conventional implementation. However, this
kind of data distribution will allow a majority of operations in a finite element program to proceed in
parallel without any inter-processor communication whatsoever. The phase of the program which deals
with GMRES iterations [30] to solve the linear equation system obtained from the finite element
discretization, will require another data structure, either node-level or an equation-level one. Although
the differences between these two alternatives are minor, our implementations employ the equation-
level structures. Here, all data associated with a single entry of the equation system resides on a single
processing node, again rendering many steps of the GMRES iterations communication-free.

The two kinds of data structures will interact mainly in GMRES iterations, and it is here that the
communication issues become important. The mapping between the two data sets is determined by the
clement connectivity and the numbering of global degrees-of-freedom, or equations. Note that this
numbering, as well as the numbering of elements, are not unique and can be adjusted to produce the
best data locality. Although the preceding approach is applicable to any machine which supports data
parallel programming model, such as Cray T3D or MasPar, it highly benefits from the features included
in the Connection Machine Scientific Software Library (CMSSL) available on the Connection Machine
computers. The communication between the element-level and equation-level data can be performed
using the highly optimized CMSSL gather and scatter routines. These routines have the ability to save
various communication trace information in order to achieve much faster subsequent gathers and
scatters if the communication pattern is unchanged. Equally important are the CMSSL. utilities for
partitioning the finite element mesh into subdomains, grouping elements belonging to each subdomain
on a single processing node, and suitably aligning the equation-level data with the reordered element-
Ie‘:ve_l data. The CMSSL communication routines can exploit the resulting data locality, and perform
sngmﬁca_m portion of the gather and scatter operations referencing only the local memory of the
processing noaes.

5. Examples

In this section, we describe our numerical examples in two parts: incompressible and compressible
flows. Except for the first problem in each part, all examples presented here are 3D simulations. In all
prob}llemcs we employ a GMRES iterative solver. Except where noted, these problems were computed
on the CM-5.

5.1. Incompressible flows

Dynamics of a falling airfoil

. In this 2D simulation we study the dynamics of a NACA 0012 airfoil falling in a viscous fluid. Of
interest here is the effect of the location of the center of gravity of the airfoil on its pitch stability. The
motion pf the airfoil is governed by Newton’s laws of motion. The mass and the polar moment of inertia
of the airfoil are 4.07 and 0.22, respectively. The center of gravity of the airfoil is located on the chord
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line, at 0.42 chord-lengths from the leading edge. The finite element mesh consists of 8446 nodes and
8304 quadrilateral elements. At every time step 49 992 non-linear equations are solved to update the
flow field. Zero velocity is specified at the inflow boundaries and traction-free conditions are imposed at
the outflow boundaries. The entire mesh is moved with the velocity of the mid-chord point of the
airfoil.

At t=0, the airfoil is released from rest at 10° angle with the line of gravity. Results from this
simulation were reported in Mittal and Tezduyar [20]; after a while the airfoil reaches a temporally
periodic motion. In addition to having a translatory motion, there is a superimposed pitching motion.
The first four frames in Fig. 1 show the vorticity field for this simulation during one period of the pitch
motion of the airfoil. The average Reynolds number for this periodic solution (based on the
translational velocity of the airfoil and its chord length) is approximately 225.

Fig. 1. 2D incompressible flow simulation of the dynamics of an airfoil falling in a viscous fluid. In the first part of the simulation
the center of gravity is located at 0.42 chord-lengths from the leading edge: in the second part it is moved to 0.30 chord-lengths.
This change results in higher pitch stability for the airfoil. The first four images show the vorticity field for the first part of the
simulation, and the last two images for the second part. Tt
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In the next part of this simulation, the center of gravity of the airfoil is moved to 0.30 chord-lengths
from the leading edge. This change results in a higher pitch stability for the airfoil. The last two frames
in Fig. 1 show the vorticity field for this part of the simulation. We observe that in this case, the motion
of the airfoil is primarily translational. The glide angle of the airfoil is approximately 80° with the line of
gravity; the Reynolds number is approximately 320. More details about this simulation can be found in
Mittal and Tezduyar [22]. This simulation was carried out on the CM-5 and CM-200.

Flow between two concentric cylinders (Taylor—Couette flow)

The purpose of this set of computations is to simulate the instabilities that develop between two
concentric cylinders in relative rotation. The Reynolds number is based on the gap size between the two
cylinders and the speed of the inner cylinder; the outer cylinder is at rest. Beyond a certain critical
Reynolds number, the regular Couette flow becomes unstable and one sees the development of Taylor
vortices. Further increase in the Reynolds number leads to an unsteady flow pattern, the wavy vortex
flow [31]. In Tezduyar et al. [24] we presented our results for various Reynolds numbers. Here, we
review two of those cases: Reynolds number 150 and 250.

The finite element mesh employed consists of 38400 hexahedral elements and 45 024 nodes. The
mesh contains 6 elements in the radial direction, 32 elements in the circumferential direction and 200
elements in the axial direction. At every time step, a set of 282 366 non-linear equations resulting from
the finite element discretization are solved iteratively.

As boundary conditions at the upper and lower boundaries, the axial component of the velocity and
the x and y components of the stress vector are set to zero (the z axis lies in the axial direction).

In the first case considered here, the Reynolds number is 150. This value is greater than the critical
Reynolds number, and therefore, for certain disturbances, one would expect the Couette flow to
develop instabilities. We have an interesting observation related to this flow. When the solution is
computed with no external disturbances, a stable Couette flow is observed. On the other hand, if the
solution is obtained with an initial condition that corresponds to an unsteady solution from a higher
Reynolds number, a Taylor vortex flow is realized. Fig. 2 shows the axial velocity at the vertical,
cylindrical and horizontal sections. The cylindrical section lies midway between the inner and outer
cylinders. We observe that the solution at this Reynolds number is axisymmetric.

Axial Velocity

VYertical and Cylindrical Sections

009 0 +0.09
B W

Horizontal Section

Fig. 2. 3D incompressible flow between two concentric cylinders. The outer cylinder is fixed, and the inner one is spinning at
Reynolds number 150. At this Reynolds number the flow is axisymmetric. The images show the axial velocity at vertical,
cylindrical and horizontal sections. Number of non-linear equations solved at every time step is 282 000+.
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Axial Velocity

Vertical and Cylindrical Sections

08 0 +08
= O

Horizontal Section

Fig. 3. 3D incompressible flow between two concentric cylinders. The outer cylinder is fixed, and the inner onc is spinning at
Reynolds number 250. At this Reynolds number the flow is 3D and involves four waves traveling in azimuthal direction. The
images show the axial velocity at vertical, cylindrical and horizontal sections. Number of non-linear equations solved at every time
step is 282 000+.

At Reynolds number 250, our computations reveal the presence of wavy vortex flow. At this
Reynolds number the solution is no longer axisymmetric and involves 3D instabilities. Fig. 3 shows the
axial velocity at the vertical, cylindrical and horizontal sections for a nearly temporally periodic
solution. We observe that, in addition to the cells in the axial direction, there are four waves traveling in
the azimuthal direction.

Sloshing in a container subjected to vertical vibrations

Here we perform a 3D study of sloshing in a container subjected to vertical vibrations. The
experimental and theoretical evidence [32] indicates the existence of multiple solution branches when
the horizontal cross-section of the container is nearly square. Depending on the frequency of the
vibrations, the competing wave modes interact generating complex periodic, as well as chaotic, wave
behavior. The particular case considered here is based on the experiment performed by Feng and
Sethna [32]. :

A fuller description of this simulation is given in [27], with only the most significant facts outlined
here. The horizontal cross section of the tank is a W X H rectangle, where W=10.178 m and H =
0.180 m. The water level, initially flat, is at D = 0.127 m. Side and bottom boundaries allow slip in the
direction tangent to the surface. The open surface of the water is assumed to be free from normal and
shear stresses, and it moves consistently with the normal component of the fluid velocity at the surface.
The external forces acting on the fluid consist of a constant gravitational acceleration of magnitude
g=9.81 ms "~ and of a sinusoidal vertical excitation Ag sin wt with w = 27f, f=4.00 Hz and A such that
the amplitude of the oscillations remains at 1 mm. The spatial mesh for each time slab consists of 7056
nodes and 6000 quadrilinear brick elements which result in 52 878 equations being solved using the
GMRES solver. Fig. 4 shows, at 9 equally-spaced instants during the simulation, the free-surface
displacement and the pressure field. This simulation was carried out on the CM-200.

Flow around a submarine
Here we simulate three-dimensional flow around a Los Angeles-class submarine. We use the
stabilized space—time method. The Reynolds number based on the free-stream velocity and the hull
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Fig. 4. 3D simulation of sloshing in a container partially filled with water and subjected to vertical vibrations. The images show
the free surface and the pressure field. Number of non-linear equations solved at every time step is 52 000+.

length is 1 X 10°. A Smagorinsky turbulence model [33] was used in this unsteady computation, which
was restarted from a steady-state solution at Reynolds number 1 x 10°. A similar problem is described
in more detail in [29]. We employed a spatial mesh consisting of 71 035 nodes and 345 129 tetrahedral
elements. This has resulted in 466 688 equations solved using GMRES iterations. Fig. 5 shows the
pressure field on the submarine surface, as well as a set of streamlines at a single instant during the
unsteady computation.

With the Krylov space dimension of 40, and 5 outer iterations, a single non-linear iteration took
approximately 30 seconds on a CM-5 with 512 processing nodes, and the computations proceeded at an
overall rate of 7.0 GigaFLOPS.
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Fig. 5. Flow around a Los Angeles-class submarine. Number of non-linear equations solved at every time step is 466 000+. The
top image shows the streamlines and the pressure distribution on the surface of the submarine. The second image shows the
stream ribbons color-coded with the axial velocity. These images appeared on the cover page of the Slide Book of the ARPA
High Performance Computing Software PT Meeting, San Diego, California, 27-29 September 1993.

3D flow past a rectangular wing

This 3D computation involves flow past a fixed rectangular wing at an angle of attack of 15°. The
wing has an aspect ratio of 3 and its cross section is a NACA 0015 airfoil. The Reynolds number, based
on the inflow velocity and the chord-length of the wing, is 10 000. The finite element mesh consists of
84 058 nodes and 79 104 hexahedral elements. At every time step 320 563 non-linear equations are
solved to update the flow field.

Figure 6 shows the flow field at the wing surface and a cross-section at a certain time instant, from a
preliminary computation [21]. The top image shows the pressure distribution on the wing surface and
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Fig. 6. 3D incompressible flow past a rectangular wing at Reynolds number 10 000. The top image shows the pressure distribution
on the wing surface and the streamlines at two different cross-sections. The second image shows the pressure field and the velocity
vectors at a cross-section. Number of non-linear equations solved at every time step is 320 000+.

the streamlines at two cross-sections. As expected, these streamlines suggest the presence of wing-tip
vortices. The second image shows the pressure field and the velocity vectors at a cross-section.
Interested readers are referred to Mittal and Tezduyar [22] for more details.

Flow-induced vibrations of a cantilevered, flexible pipe

In this fluid-structure interaction problem, we simulate the 3D flow in a cantilevered, flexible pipe
and the response of the pipe to this flow. The deformation of the pipe, assumed to be planar, is
governed by the Bernoulli-Euler beam theory and this limits the reliability of our results to small
deformations of the pipe. It is known that beyond a certain critical inflow velocity, the pipe exhibits
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flow-induced oscillations [34]. In this simulation the Reynolds number, based on the pipe diameter and
the inflow velocity at the pipe centerline, is 1000. The length of the pipe is 20 times its diameter.

The finite element mesh consists of 20 449 nodes and 18 720 hexahedral elements. At every time step
145298 non-linear equations are solved to update the flow field. The structural part of the problem
involves solution of 240 equations at every time step.

Fig. 7 shows the flow field in the pipe section in its plane of motion during a full period of oscillations.
The images in the left column show the pressure field, and the ones in the right column show the lateral
component of velocity. From these pictures we observe that the pipe exhibits the second mode of
cantilevered beam oscillations. More details about these computations can be found in Mittal and
Tezduyar [22]. This simulation was carried out on the CM-200.

5.2. Compressible flows

Air intake of a jet engine at Mach 2 and Reynolds number 0.8 million

This axisymmetric computation demonstrates the potential of the DSD/SST formulation to model
intricate compressible flows involving interactions between boundary layers, shocks and moving
surfaces. This type of flow is encountered in the air intake of a jet engine with adjustable spool. The
efficiency of these engines at supersonic speeds can be improved by moving the spool back and forth
and thus adapting the outstanding shock. The free-stream Mach number is 2, and the Reynolds number
based on the free-stream values and the gap size is 0.8 million. We use 48 450 quadrilateral elements
and 49091 nodes. At each time step, 386974 non-linear equations are solved simultaneously.
Computation starts with the free-stream values as initial condition, and after a prescribed period of time
the spool starts to move forward.

The mesh moving strategy used for this problem is such that the connectivity of the mesh remains
unchanged throughout the simulation. This eliminates the projection errors associated with remeshing
and also eliminates the parallelization overhead associated with remeshing. The images in Fig. 8 show
the Mach number at six different instants during the motion of the spool. A full problem description
and discussion can be found in [15]. This simulation was carried out on the CM-200.

3D flow past a sphere at Mach 0.1

We solved this 3D problem for a set of Reynolds numbers ranging from 30 to 200 to demonstrate the
reliability of our method at low Mach number flows. Here the Reynolds number is based on the
free-stream values and the diameter of the sphere. The free-stream Mach number is 0.1. At this low
Mach number, the variations in density are less than 0.5%. This allows us to compare our steady-state
results with incompressible flow data from Schlichting [35].

The mesh used to solve this problem consists of 148 969 nodes and 142 364 hexahedral elements. For
the time integration, an explicit method is used, and 720657 non-linear equations are solved at each
time step. Computed and experimental drag coefficients compare very well. Fig. 9 shows the pressure
distribution on the surface of the sphere and in the symmetry plane. See [15] for more details.

3D flow past a delta-wing at Mach 3 and Reynolds number 1.1 million

In this problem, we consider the flow of air past a delta-wing model of an aerospace vehicle at Mach
3. The Reynolds number based on free-stream values and the maximum chord length (along the plane
of symmetry) is 1.1 million. Due to the assumed symmetry of the solution, only half of the flow over the
delta-wing is computed.

The delta-wing has a wedge type cross section as an underbody in which its corners merge smoothly
to the flat surface on the top. The delta-wing has unit length in the chordwise direction and is tapered
from 0.0 to §.69 units in the spanwise direction. The surface geometry of the delta-wing was provided to
us by Dr. Chien Li from NASA-JSC. Our preliminary steady-state solution of this problem was
obtained on a relatively coarse mesh, with 152397 nodes and 143 920 hexahedral elements (see [24.]).
This solution is presented in Fig. 10 with two images showing the side and front views oi the.delta-wmg
together with the Mach number distribution around it. Later, we solved this problem with a t:nesh
consisting of 1032328 nodes and 1002684 hexahedral elements. In this case, 5001 031 non-linear
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Fig. 7. Flow-induced vibrations of a cantilevered, flexible pipe with 3D incompressible flow at Reynolds number 1000. The
images show the pressure (left column) and lateral velocity (right column) in the pipe section in its plane of motion during a full
period of oscillations. Number of non-linear equations solved to update the flow field at every time step is 145000+. The
structural part of the problem, governed by a 1D model, involves solution of 240 equations at every time step.
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Fig. 8. Axisymmetric simulation of air intake of a jet engine with adjustable spool at Mach 2 and Reynolds number 0.8 million.
The images show the Mach number at six different instants during the motion of the spool. Number of non-linear equations
solved at every time step is 386 000+.
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Fig. 9. 3D steady-state, subsonic flow past a sphere at Mach 0.1 and Reynolds number 100. The image shows the pressure
distribution on the surface of the sphere and in the symmetry plane. Number of non-linear equations solved at every time step is
720000+,

equations are solved simultaneously using matrix-free iterations. This computation was carried out on a
CM-5 with 512 processing nodes at a sustained speed of 9.8 GigaFLOPS. The cost of a single non-linear
iteration with 1 GMRES outer iteration and a Krylov space dimension of 10 is 14.9 seconds. The top
image in Fig. 11 shows the pressure distribution on the wing surface and at a cross section. The second
image shows the top view of the delta-wing together with the pressure field around it. We refer the
reader to [15] for more details about this problem.

3D flow past an aircraft at Mach 0.768

In this problem, we compute steady-state solution of the Euler equations which govern approximately
the flow field at very high Reynolds numbers around an aircraft. In this inviscid, transonic simulation,
the free-stream Mach number is 0.768, and the angle of attack is 1.116°. We use a finite element mesh
made of tetrahedral elements. This mesh has 106 064 nodes and 575 986 elements, and was provided to
us by Professor Dimitri Mavripilis of Princeton University.

The computation starts with the free-stream values as initial condition, and by using our explicit, local
time stepping algorithm, 513 365 equations are solved at each non-linear iteration. In Fig. 12, the top
image shows the mesh in the symmetry plane and the Mach number distribution on the aircraft surface.
The second image shows the streamlines and surface pressure distribution near the engine. For more
details see [15].

6. Concluding remarks

We have reviewed our work on parallel finite element computation of compressible and incompress-
ible flows. These computations were carried out on the Connection Machines CM-5 and CM-200, and
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Fig. 10. 3D steady-state, supersonic flow past a delta-wing at Mach 3 and Reynolds number 1.1 million. The images show the side
and front views of the delta-wing together with the Mach number distribution around it. Number of non-linear equations solved at
every time step is 725000+. These images appeared on the cover page of the Slide Book of the ARPA High Performance
Computing Software PI Meeting, Norfolk, Virginia, 17-18 March 1993.

were based mostly on implicit methods. The parallel implementations are always based on the
assumption that the finite mesh is unstructured. We summarize the parallel 3D computation per-
formance on the CM-5 with 512 processing nodes for selected problems in Tables 1 and 2. We note a
large disparity between the times required for a single non-linear iteration for these two problems. This
is because in the submarine problem, we use a space—time formulation, and a greater number of inner
and outer GMRES iterations are needed for convergence in incompressible flows.

Table 1
Flow around a submarine: performance for implicit incompressible flow implementation. Total number of GMRES iterations per
non-linear iteration is 200

Computation rate (GigaFLOPS) 7.0
Non-linear iteration cost (s/iteration) 29.3
Non-linear iteration cost (ws/iteration/node) 206.5
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Fig. 11. 3D steady-state, supersonic flow past a delta-wing at Mach 3 and Reynolds number 1.1 million. The top image shows the
pressure distribution on the wing surface and at a cross-section. The second image shows the top view of the delta-wing together
with the pressure field around it. Number of non-linear equations solved at every time step is 5 000 000+,

We have demonstrated that today we are at a point where we have the capability to solve a large class
of practical problems, including those involving moving boundaries and interfaces and those in 3D,
using implicit formulations with problem sizes over 5000 000 equations and computational speeds at 12
GigaFLOPS. We believe this new capability has pushed large-scale finite element computation of flow
problems to a new era in numerical simulation.

Table 2
Flow past a delta-wing at Mach 3 and Reynolds number 1.1 million: performance for implicit compressible flow implementation.
Total number of GMRES iterations per non-linear iteration is 10.

Computation rate (GigaFLOPS) 9.8
Non-linear iteration cost (s/iteration) 14.9
Non-linear iteration cost (ws/iteration/node) 14.5
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Fig. 12. Steady-state, inviscid, transonic flow past an aircraft at Mach 0.768. The top image shows the mesh in the symmetry
plane and the Mach number distribution on the aircraft surface. The second image shows the streamlines and surface pressure
distribution near the engine. Number of non-linear equations solved at every time step is 513 000+
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