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Flow past a spinning circular cylinder placed in a uniform stream is investigated via
two-dimensional computations. A stabilized finite element method is utilized to solve
the incompressible Navier–Stokes equations in the primitive variables formulation.
The Reynolds number based on the cylinder diameter and free-stream speed of the
flow is 200. The non-dimensional rotation rate, α (ratio of the surface speed and free-
stream speed), is varied between 0 and 5. The time integration of the flow equations is
carried out for very large dimensionless time. Vortex shedding is observed for α < 1.91.
For higher rotation rates the flow achieves a steady state except for 4.34 < α < 4.70
where the flow is unstable again. In the second region of instability, only one-sided
vortex shedding takes place. To ascertain the instability of flow as a function of α a
stabilized finite element formulation is proposed to carry out a global, non-parallel
stability analysis of the two-dimensional steady-state flow for small disturbances. The
formulation and its implementation are validated by predicting the Hopf bifurcation
for flow past a non-rotating cylinder. The results from the stability analysis for
the rotating cylinder are in very good agreement with those from direct numerical
simulations. For large rotation rates, very large lift coefficients can be obtained via
the Magnus effect. However, the power requirement for rotating the cylinder increases
rapidly with rotation rate.

1. Introduction
Flow past a spinning and translating cylinder has been a subject of numerous inves-

tigations. Interest in this flow arises not only from the point of view of understanding
wake dynamics but also from its applications to flow control. Tokumaru & Dimotakis
(1991, 1993) have demonstrated, via laboratory experiments, that a significant control
of the structure of the wake can be achieved by subjecting the cylinder to rotary
oscillations. Flow control is also possible by placing rotating cylinders, spinning at
constant rate, at appropriate locations in the flow. Modi, Mokhtarian & Fernando
(1991) have demonstrated this by controlling flow past airfoils, resulting in a signifi-
cant increase in the lift. Its application to bluff body flow is useful in drag reduction
and suppression of vortex-induced oscillations (Modi 1997).

One of the earliest experiments on flow past a rotating cylinder was carried out by
Prandtl (1925). He argued that the maximum lift generated by a spinning cylinder in
a uniform flow is limited to 4π (∼ 12.6). He also studied the effect of end conditions
and aspect ratio. An increase in the overall lift coefficient was observed by utilizing
end plates and cylinders of higher aspect ratio. Since then, various studies have been
conducted. A fairly comprehensive summary is by Chew, Cheng & Luo (1995). The
flow is quite complex despite its simple geometry and various issues regarding this
flow remain unresolved even to this date.
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One of the issues that remains unresolved is the maximum lift that can be generated
by a rotating cylinder placed in a uniform flow. The measurement of lift on a rotating
cylinder is quite difficult due to the limitations posed by the rotation of the cylinder.
Tokumaru & Dimotakis (1993) devised a method to estimate the mean lift acting on
a rotating cylinder in uniform flow. It is based on an inviscid point-vortex model and
the transverse velocity that is measured, experimentally, ahead of the cylinder. Their
results for Re = 3.8× 103 show that Prandtl’s limit on lift coefficient (CLmax = 4π)
can be exceeded. For example, for α = 10 and a cylinder with span to diameter ratio
of 18.7, they report an estimated lift coefficient that is more than 20% larger than
this limit. Further, the trend of results suggests that CL can be made larger for higher
rotation rates and by taking cylinders of larger aspect ratio. They have suggested that
perhaps it is the unsteady effects that weaken Prandtl’s hypothesis and that the three-
dimensional/end effects are responsible for the increase in the value of lift coefficient
compared with that achieved in a purely two-dimensional flow. However, Chew et al.
(1995) have reported that their two-dimensional computations are in agreement with
Prandtl’s postulate. They find that for Re = 1000, the estimated mean lift coefficient
approaches asymptotic values with increase in α. At α = 6 they predict a mean lift
coefficient of 9.1. Glauert (1957) proposed a solution for a cylinder spinning at high
rotation rates where the separation is suppressed. The solution of the flow in the
boundary layer is obtained in the form of a power series and an expression for the
circulation on the cylinder is obtained. He found that Prandtl’s limit can be exceeded
and that the circulation increases indefinitely with α. The assumed model for the flow
is valid only for those values of α when the flow separation is suppressed.

Most of the other investigations have been limited to α 6 3.25. Chen, Ou &
Pearlstein (1993) computed flow for Re = 200 and α 6 3.25. Their computation for
α = 3.25 does show CL with instantaneous value exceeding 4π, marginally. However,
they report results only for t 6 24. Computations by Badr et al. (1990) for α = 3 and
Re = 1000 are limited to t 6 22. At t = 22, CL is 8.8, approximately, and the trend
of their results suggest higher CL for larger times. The drag coefficient, CD , reaches
almost a steady state value of 5.2. The mean values for CD and CL for the fully
developed flow reported by Chew et al. (1995), for α = 3, are 2.8 and 8.7, respectively.
Recently, Chou (2000) has also reported computational results for this flow problem.
The time histories of CD and CL from his computations, for Re = 1000 and α = 3,
match quite well with those from Badr et al. (1990) for early times. However, for
t > 5, he reports much larger values of CL and smaller values of CD . It is interesting
to observe that the streamline patterns from all the three sets of computations are
quite similar and are in good agreement with the flow visualization results. Yet, the
discrepancy in the time histories of the aerodynamic coefficients is quite large. Our
results for α = 5 for various Re, reported in earlier articles (Mittal 2001a, b), result in
large values of CL. Recently, Stansby & Rainey (2001) have reported computational
results for Re = 200 and 0 6 α 6 5. They observe an unsteady flow for lower rotation
rates. For high rotation rates a steady flow with very large CL is realized.

Another question that deserves attention is whether the rotation of cylinder can
suppress vortex shedding. Coutanceau & Menard (1985) concluded from their exper-
iments that beyond a critical rotation rate (αL), following an impulsive start, only
one vortex is shed; αL is almost independent of Re and is about 2. Their view is
supported by computations of Badr & Dennis (1985). Diaz et al. (1983) also found,
via experiments for Re = 9000, that the Kármán activity in the wake deteriorates and
disappears for α in excess of 2. Chang & Chern (1991) observed vortex shedding in the
entire range of 0 6 α 6 2. However, the Re for their computations (103 6 Re 6 106)
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is quite high and the wake is expected to be three-dimensional. Badr et al. (1990)
carried out investigations, both numerically and experimentally for 103 6 Re 6 104

and α 6 3.0. Vortex shedding was observed for low α. For larger α, the flow becomes
turbulent shortly after the first vortex is released and the flow achieves a steady
state. Chen et al. (1993) computed flow for Re = 200 and α 6 3.25. Contrary to the
earlier findings, they observed that more than one vortex is shed for α = 2 and 3.25.
They also found that the vortices shed later are much weaker than the one shed in
the beginning. They concluded that the rotation of the cylinder does not suppress
vortex shedding for Re = 200 and α = 3.25. We will show, later in the article, that
they were led to this (erroneous) conclusion because they did not compute the flow
for a long enough time. Chew et al. (1995) found that vortex shedding is suppressed
for the Re = 1000 flow for α > 2. Kang & Choi (1999), from numerical simulations,
found that, for 60 6 Re 6 160, αL is not constant with Re but shows a logarithmic
dependence.

Degani, Walker & Smith (1998) have given a comprehensive account of the work
on asymptotic analysis for high-Re flows that involve unsteady separation. They also
presented their own results for unsteady boundary development over moving walls
using two model problems. One of them is the translating and rotating cylinder.
They observed that unsteady separation is delayed with increasing wall speed and is
eventually suppressed when the speed of the separation singularity approaches the
local mainstream speed. The critical rotation rate, from their computations, at which
the shedding disappears (αL = 1.91) is in excellent agreement with the present results
for Re = 200.

The variation of Strouhal number for vortex shedding, St, with rotation rate for
α < αL is another point of disagreement among the various results in the literature.
The results of Chew et al. (1995), Diaz et al. (1983), Kimura & Tsutahara (1991) and
Jaminet & Van Atta (1969) show that St increases with α. However, Hu et al. (1996)
and Kang & Choi (1999) report that St reduces with α.

The present work is an attempt to resolve some of the issues related to flow past
a spinning cylinder in a uniform flow. Most of the results in the literature are for
Re = 200 and 1000. It is well known that the flow for Re = 1000 is highly three-
dimensional even for α = 0. Therefore, in the present work, the Reynolds number
considered is 200. Various spin rates are considered (0 6 α 6 5). One of the objectives
of the study is to find out the effect of rotation of the cylinder on vortex shedding.
This includes finding the αL for which vortex shedding is completely suppressed. We
also investigate the flow for α > αL to find if there exists a certain range of α where
vortex shedding re-occurs. This is motivated by our observations of the changes
in the vorticity field as α increases. Perhaps for the first time, it has been found
that the cylinder resumes vortex shedding at α ∼ 4.4 and continues till α ∼ 4.8. The
flow remains stable for higher α. This is confirmed by carrying out a linear stability
analysis of the flow. This is another advantage of choosing Re = 200. As Re becomes
larger, it becomes more difficult to compute a steady-state solution by dropping the
unsteady terms from the flow equations, thereby making it increasingly difficult to
carry out the linear stability analysis. The modes of shedding for the two regions
of instabilities are qualitatively different. In the second region, one-sided shedding is
observed. The flows for various α are analysed and a possible cause for the instabilities
is proposed.

Results for the mean and fluctuating aerodynamic coefficients for various α are
presented. These results also address the issue of whether there exists a CLmax that
can be generated via the Magnus effect. Results on the power required to sustain
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the translatory and rotational motion of the cylinder are presented, as well. This
information is useful for designing flow control strategies using rotating cylinders.

Preliminary computations have also been carried out for three-dimensional flow
past a finite cylinder for various aspect ratios and with different end conditions. It
has been observed in experiments that the use of end plates can lead to a substantial
increase in lift generated by the cylinder. Our computations show that for Re = 200
and α = 5 the flow is associated with centrifugal instabilities that exist along the span
of the spinning cylinder. Further, in the presence of a ‘no-slip’ sidewall the flow near
the wall separates leading to unsteadiness in the wake. As expected, the effect is more
drastic for low-aspect-ratio cylinders. It is the endwall and aspect-ratio effects that
limit the lift generated via the Magnus effect. These results will be presented in a
future article.

The outline of the rest of this article is as follows. We begin by reviewing the
governing equations for incompressible fluid flow in § 2. The problem set-up is defined
along with the boundary and initial conditions. Next, the equations for the global,
linear stability analysis for the flow equations are presented. The SUPG (streamline-
upwind/Petrov–Galerkin) and PSPG (pressure-stabilizing/Petrov–Galerkin) stabiliza-
tion technique (Tezduyar et al. 1992) is employed to stabilize our computations against
spurious numerical oscillations and to enable us to use equal-order-interpolation
velocity–pressure elements. Section 3 describes the finite element formulation incor-
porating these stabilizing terms. Also described in the same section is the formulation
to carry out the linear stability analysis. This is, perhaps, the first time that a SUPG
and PSPG-based stabilized method has been proposed and utilized for conducting
computations to assess flow stability. In § 4 computational results for flows involv-
ing a rotating cylinder are presented and discussed. First, to validate the present
methodology, results are compared with existing results. The results for various α are
presented next. The formulation for the stability analysis is checked by determining
the point of Hopf bifurcation for flow past a stationary cylinder. This is followed by
results from a linear stability analysis for a rotating cylinder. In § 5 a few concluding
remarks are made.

2. The governing equations
2.1. The incompressible flow equations

Let Ω ⊂ Rnsd and (0, T ) be the spatial and temporal domains respectively, where nsd is
the number of space dimensions, and let Γ denote the boundary of Ω. The spatial and
temporal coordinates are denoted by x and t. The Navier–Stokes equations governing
incompressible fluid flow are

ρ

(
∂u

∂t
+ u · ∇u− f

)
− ∇ · σ = 0 on Ω for (0, T ), (1)

∇ · u = 0 on Ω for (0, T ). (2)

Here ρ, u, f and σ are the density, velocity, body force and stress tensor, respectively.
The stress tensor is written as the sum of its isotropic and deviatoric parts:

σ = −pI + T , T = 2µε(u), ε(u) = 1
2
((∇u) + (∇u)T ), (3)

where p and µ are the pressure and coefficient of dynamic viscosity. Both the Dirichlet
and Neumann-type boundary conditions are accounted for, represented as

u = g on Γg, n · σ = h on Γh, (4)
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where Γg and Γh are complementary subsets of the boundary Γ . The initial condition
on the velocity is specified on Ω:

u(x, 0) = u0 on Ω, (5)

where u0 is divergence free.

2.2. Force and moment coefficients

The force and moment coefficients are computed by carrying out an integration, that
involves the pressure and viscous stresses, around the circumference of the cylinder:

CD =
1

1
2
ρU22a

∫
Γcyl

(σn) · nx dΓ , (6)

CL =
1

1
2
ρU22a

∫
Γcyl

(σn) · ny dΓ , (7)

CM =
1

1
2
ρU22a2

∫
Γcyl

(σn)× (r − r0) dΓ , (8)

Here nx and ny are the Cartesian components of the unit vector n that is normal to
the cylinder boundary Γcyl , a is the radius of the cylinder, r is the position vector of
a point lying on the cylinder surface, r0 is the location of the centre of the cylinder
and U the free-stream speed. CD , CL and CM represent the drag, lift and moment
coefficient respectively. The contribution of the drag to the power coefficient (CP ) is
CD and that of the moment coefficient is CMωa/U where ω is the rate of rotation of
the cylinder.

2.3. The parameters

There are two parameters that influence this flow problem: Re and α. The Reynolds
number is defined as Re = 2Ua/ν where a is the radius of cylinder, U the free-stream
speed and ν the coefficient of kinematic viscosity of the fluid. The rotation rate of
the cylinder is non-dimensionalized with respect to the free-stream speed and is given
as α = aω/U where ω is the angular velocity of the cylinder about its own axis.
All the results presented in this article are with respect to the non-dimensional time
τ = Ut/a, where t is the dimensional time.

2.4. Boundary and initial conditions

The cylinder resides in a rectangular domain and a flow velocity corresponding to
the rotation rate α is specified on the cylinder surface. The rotation is in the counter
clockwise direction. The free-stream value is assigned for the velocity at the upstream
boundary while at the downstream boundary, a Neumann-type boundary condition
for the velocity is specified that corresponds to zero viscous stress vector. On the upper
and lower boundaries, the component of velocity normal to and the component of
stress vector along these boundaries are prescribed a zero value. The initial condition
for all the computations is an impulsive start, i.e. at t = 0 the velocity is assigned the
value that corresponds to potential flow past a stationary cylinder.

2.5. Computation of the stream function and vorticity fields

The present formulation is based on the primitive variables. Once the velocity field
is computed, the stream function and vorticity fields are derived from it as post-
processing. A finite element formulation based on the least-squares procedure is
utilized for the computation.
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2.6. The linear stability flow equations

To conduct a global, linear stability analysis of a non-parallel flow the unsteady
solution is expressed as a combination of the steady solution and the disturbance:

u = U + u′, p = P + p′. (9)

Here, U and P represent the steady-state solution whose stability is to be determined
while u′ and p′ are the velocity and pressure perturbations, respectively. Substituting
(9) in (1)–(2) and subtracting the equations for steady flow, one obtains

ρ

(
∂u′

∂t
+ u′ · ∇U +U · ∇u′

)
− ∇ · σ′ = 0 on Ω for (0, T ), (10)

∇ · u′ = 0 on Ω for (0, T ). (11)

Here, σ′ is the stress tensor for the perturbed solution computed using (3). We further
assume that the disturbances are small and of the following form:

u′(x, t) = û(x) eλt, (12)

p′(x, t) = p̂(x) eλt. (13)

Substituting (12)–(13) in (10)–(11) gives

ρ(λû+ û · ∇U +U · ∇û)− ∇ · σ̂ = 0 on Ω, (14)

∇ · û = 0 on Ω. (15)

Here, λ is the eigenvalue of the fluid system and governs its stability. In general,
λ = λr + iλi where, λr and λi are its real and imaginary parts, respectively. The
steady-state solution (U , P ) is associated with an unstable mode if the corresponding
eigenvalue has a positive real part. The boundary conditions for û and p̂ are the
homogeneous versions of those for U and p as specified by (4).

3. Finite element formulations
Most of the computations reported earlier, for this flow problem, have been carried

out using the vorticity/stream-function formulations (Badr et al. 1990; Chew et al.
1995) or the vorticity/velocity formulations (Chen et al. 1993). The present effort
employs the finite element formulation of the Navier–Stokes equations in the primitive
variables.

3.1. The incompressible flow equations

Consider a finite element discretization of Ω into subdomains Ωe, e = 1, 2, . . . , nel ,
where nel is the number of elements. Based on this discretization, for velocity and
pressure we define the finite element trial function spaces Sh

u and Sh
p, and weight-

ing function spaces Vh
u and Vh

p. These function spaces are selected by taking the

Dirichlet boundary conditions into account, as subsets of [H1h(Ω)]nsd and H1h(Ω),
where H1h(Ω) is the finite-dimensional function space over Ω. The stabilized finite
element formulation of (1)–(2) is written as follows: find uh ∈ Sh

u and ph ∈ Sh
p such
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that ∀wh ∈ Vh
u, q

h ∈ Vh
p∫

Ω

wh · ρ
(
∂uh

∂t
+ uh · ∇uh − f

)
dΩ +

∫
Ω

ε(wh) : σ(ph, uh) dΩ +

∫
Ω

qh∇ · uh dΩ

+

nel∑
e=1

∫
Ωe

1

ρ

(
τSUPGρu

h · ∇wh + τPSPG∇qh) [ρ(∂uh
∂t

+ uh · ∇uh − f
)
− ∇ · σ(ph, uh)

]
dΩe

+

nel∑
e=1

∫
Ωe

τLSIC∇ · whρ∇ · uh dΩe =

∫
Γh

wh · hh dΓ . (16)

In the variational formulation given by (16), the first three terms and the right-hand
side constitute the Galerkin formulation of the problem. It is well known that the
Galerkin formulation is unstable with respect to the advection operator as the cell
Reynolds number (based on the local flow velocity and mesh size) becomes larger.
Also, not all combinations of the velocity and pressure interpolations are admissible in
the Galerkin formulation. Elements that do not satisfy the Babuska–Brezzi condition
lead to oscillatory solutions and, sometimes, no solution at all. To give stability to
the basic formulation, a series of element-level integrals are added. The first series
of element-level integrals are the SUPG and PSPG stabilization terms added to the
variational formulations (Tezduyar et al. 1992; Mittal 1992). The terms with τSUPG

as the coefficient render the formulation stable in the presence of advection operator.
The term involving τPSPG allows one to use any combination of velocity and pressure
interpolation, including equal-order interpolation. In the current formulation τPSPG is
the same as τSUPG and is

τSUPG = τPSPG =

(
1

τ2
ADV

+
1

τ2
DIF

)−1/2

, (17)

where

τADV =
hUGN

2‖uh‖ , τDIF =
h2

RGN

12ν
, (18)

hUGN = 2 ‖uh‖
(

nen∑
a=1

|uh · ∇Na|
)−1

, (19)

hRGN = 2 ‖(∇‖uh‖)‖
(

nen∑
a=1

|(∇‖uh‖) · ∇Na|
)−1

. (20)

Here, Na is the finite element interpolation function and nen is the number of nodes
that make up an element. The second series of element-level integrals are added to the
formulation for numerical stability at high Reynolds numbers. This is a least-squares
term based on the continuity equation. The coefficient τLSIC is defined as

τLSIC =

(
1

δ2
ADV

+
1

δ2
DIF

)−1/2

, (21)

where

δADV =
hUGN‖uh‖

2
, δDIF =

h2
RGN(‖uh‖)2

12ν
. (22)

Both stabilization terms are weighted residuals, and therefore maintain the consis-
tency of the formulation; h is the element length and various definitions have been
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used by researchers in the past. Mittal (2000) conducted a systematic numerical study
to investigate the effect of high-aspect-ratio elements on the performance of the finite
element formulation for three commonly used definitions of h. More details on the
finite element formulation can be found in the article by Tezduyar et al. (1992). In the
present work equal-in-order, bilinear, interpolation functions for velocity and pressure
have been employed.

The nonlinear equation systems resulting from the finite element discretization of
the flow equations are solved using the Generalized Minimal RESidual (GMRES)
technique (Saad & Schultz 1986) in conjunction with diagonal preconditioners. The
implicit method used in the present work allows us to seek steady-state solutions by
simply dropping the unsteady terms in the governing equations.

3.2. The linear stability flow equations

Application of the stabilized formulation, as described above, to the equations gov-
erning the linear stability results in the following discrete equation:∫

Ω

ŵh · ρ (λûh +U h · ∇ûh + ûh · ∇U h
)

dΩ +

∫
Ω

ε(ŵh) : σ(p̂h, ûh) dΩ

+

∫
Ω

q̂h∇ · ûh dΩ +

nel∑
e=1

∫
Ωe

1

ρ
(τSUPGρû

h · ∇ŵh

+ τPSPG∇q̂h) · [ρ(λûh +U h · ∇ûh + ûh · ∇U h)− ∇ · σ(p̂h, ûh)
]

dΩe

+

nel∑
e=1

∫
Ωe

τLSIC∇ · ŵhρ∇ · ûhdΩe = 0. (23)

The formulation given by (23) leads to a generalized eigenvalue problem of the form
AX − λBX = 0. Both, A and B are sparse matrices. However, B is singular despite
the stabilization terms added to the finite element formulation. To overcome this
difficulty, the problem is transformed to CX − (1/λ)X = 0, where, C = A−1B . As a
result of this transformation we are able to track 1/λ instead of λ. To check the
stability of a steady-state solution we look for the rightmost eigenvalue (having the
largest real part), using the subspace iteration method (Stewart 1975). Any flow whose
rightmost eigenvalue is negative is stable.

4. Results and discussion
4.1. Results from two-dimensional computations

4.1.1. Comparison with other results

Flow at Re = 1000 past a cylinder with α = 3.0 with an impulsive start was
computed and instantaneous streamlines for the same parameters were compared with
the flow visualization and computational results from Badr et al. (1990). These are
shown in figure 1. Excellent agreement is observed between the computational results
for all times. However, there is some difference between the experimental results
and those obtained from computations at larger times (t = 4 and 6). In the flow
visualization pictures the vortex on the windward side of the cylinder appears to be
more fuzzy and located at a smaller angle to the free-stream direction. This discrepancy
is perhaps because of the three-dimensionality of the flow and the wake starting to
become turbulent. The development of the closed streamlines around the cylinder, with
time, can be observed. Flows at Re = 200 past a cylinder with α = 2.07 and 3.25 with
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t=1

t=2

t=3

t=4

t=6

Present Badr et al. (1990)

Figure 1. Re = 1000, α = 3.0 flow past a rotating cylinder: comparison of the instantaneous
streamline patterns at various time instants from the present computations and those from Badr
et al. (1990).

an impulsive start were computed and streamlines have been compared with those
reported by Chen et al. (1993) for the same parameters. All the vortical structures in the
flows and their time evolution from the two computations are in very good agreement
with each other. The time histories of the lift coefficient for the Re = 200 flow are
shown in figure 2. The results from the computations of Chen et al. (1993) are shown in
the same plot. Again, the two results are in very good agreement. This serves as a good
check of the present formulation and its implementation for computing flows past
rotating cylinders. More comparisons between results from the present formulation
and the flow visualization and computational results from Badr et al. (1990) for
Re = 1000 and α = 0.5 and 2.0 can be found in our earlier articles (Mittal 2001a, b).
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Figure 2. Re = 200 flow past a rotating cylinder: time histories of CL for various values of α.
Solid symbols (•) are the computational results from Chen et al. (1993).

4.1.2. The finite element mesh

The mesh used for all the two-dimensional computations consists of 31 800 quadri-
lateral elements and 32 190 nodes. The cylinder (of diameter D) resides in a com-
putational domain whose outer boundary is a square with edges each located at a
distance of L from the centre of the cylinder. There are Nt points in the circum-
ferential direction on the cylinder surface and the radial thickness of the first layer
of elements is h1

r . A close-up view of a typical mesh is shown in figure 3. It can be
observed that the mesh is very fine close to the cylinder and the elements become
larger with increasing distance from the cylinder. The location of the outer boundary
of the domain is expected to become more crucial for larger values of α. It is observed
that for Re = 200 the flow achieves a steady state for α = 5.0. However, α = 4.5 is
associated with an unsteady solution (see figure 2). To investigate the effect of the
location of the outer boundaries of the computational domain a systematic study for
various values of L is carried out for the Re = 200, α = 4.5 flow. Table 1 lists the
details for the various meshes that are employed. All the meshes, A1 to A8, have the
same distribution of nodes close to the cylinder. The same value of the time step is
utilized for computations with all eight meshes. These computations are used to study
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Mesh Nodes Elements L/D h1
r /D Nt ∆t

Mesh A1 14 895 14 650 15 0.0025 160 0.025
Mesh A2 16 318 16 056 25 0.0025 160 0.025
Mesh A3 17 880 17 600 37.5 0.0025 160 0.025
Mesh A4 21 512 21 200 50 0.0025 160 0.025
Mesh A5 26 350 26 000 75 0.0025 160 0.025
Mesh A6 32 190 31 800 100 0.0025 160 0.025
Mesh A7 40 440 40 000 125 0.0025 160 0.025
Mesh A8 45 447 44 980 150 0.0025 160 0.025
Mesh A− 19 100 18 800 100 0.005 120 0.025
Mesh A+ 64 360 63 800 100 0.0015 200 0.0125

Table 1. Details of the various finite element meshes.

Figure 3. Re = 200 flow past a rotating cylinder: close-up view of the finite element mesh with
32 190 nodes and 31 800 elements.

the effect of the location of the external boundary by keeping the same spatial and
temporal resolutions. The effect of the spatial and temporal resolutions is investigated
via computations with meshes A−, A+ and A6 which have the same domain size
(L/D = 100).

Figure 4 summarizes the results from the convergence study. In all the cases, ir-
respective of the location of the outer boundary, vortex shedding is observed and
the solutions are qualitatively the same. It can be observed that the lift coefficient
is fairly insensitive to changes in the mesh or time step. The drag coefficient and
the Strouhal number show some dependence on the location of the outer bound-
aries of the computational domain for L/D < 75. However, not much change is
observed for L/D larger than 75. The effect of the spatial resolution and time step
is also presented in figure 4 for L/D = 100. Meshes A6 and A+ produce virtu-
ally indistinguishable results. This establishes that the mesh A6 with ∆t = 0.025 and
L/D = 100 is adequate for computing flows for the present range of α and Re. It
was, therefore, decided to carry out the computations in this work with mesh A6 and
∆t = 0.025.

4.1.3. Overview of the two-dimensional results for various values of α

For all values of α the flow either achieves a steady state or reaches a temporally
periodic solution. Figure 2 shows the time histories of the lift coefficient for the
flow past a rotating cylinder for various values of α. The phase diagrams of CL
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Figure 4. Re = 200 flow past a rotating cylinder: effect of the location of the outer boundary of
the domain with respect to the centre of the cylinder non-dimensionalized with its diameter. Also
shown is the effect of mesh refinement for the case when the outer boundary is located at 100D.
Mesh A consists of 32 190 nodes and 31 800 elements while the number of nodes for meshes A+
and A− are 64 360 and 19 100, respectively.

and CD for the fully developed solution are shown in figure 5. The unsteadiness
in the aerodynamic coefficients for the fully developed solution is caused by vortex
shedding. While the flow is unsteady for lower values of α, it achieves a steady
state for α > 1.91. The vorticity fields for the fully developed solutions are shown
in figures 6 and 7. The time instant corresponds to the maximum negative value
of the lift coefficient. For the cases that achieve a steady state, the figure shows
the fully developed solution. The usual Kármán vortex street is observed for low
values of α (6 1.9). A pair of vortices is shed alternately during each cycle of shed-
ding. A clockwise rotating (negative) vortex is shed from the upper surface while
a vortex of opposite sense (positive) is released from the lower surface. The flow
achieves a temporally periodic state. An increase in the rotation rate is accompa-
nied by an increased upward deflection of the wake and a reduction in its lateral
width.

At α = 1.91 the vortex shedding ceases and the flow achieves a steady state. This
observation is in line with those of other researchers. For example, Kang & Choi
(1999) found, via numerical computations, that the critical rotation rate (αL) at which
the shedding disappears is 1.4 for Re = 60, 1.8 for Re = 100 and 1.9 for Re = 160.
Diaz et al. (1983) observed in their laboratory experiments that the Kármán activity
disappears for α > 2. The Reynolds number for their experiments is 9000. Chew
et al. (1995) also observed no shedding beyond α = 2 from their computations at
Re = 1000. Degani et al. (1998) carried out an analysis for unsteady boundary layer
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Figure 5. Re = 200 flow past a rotating cylinder: phase diagrams of CL and CD
for various values of α.

development over moving walls in the limit of infinite Reynolds numbers. In their
study, no unsteady separation was detected for α beyond 1.91.

Most researchers in the past have not investigated the flow for values of α much
larger than αL (the critical value beyond which the vortex shedding ceases). In the
present work α is varied between 0 and 5 for Re = 200. It is seen that the flow remains
steady for 1.91 6 α 6 4.35. However, the flow is unstable again for 4.34 < α < 4.75.
This second instability appears to be stronger than the first one from the point of
view of the amplitude of the unsteady component of aerodynamic forces acting on the
cylinder. This is, perhaps, the first time that a small window of α has been observed
in this regime where this flow exhibits an instability. Beyond α > 4.75 the flow is
steady, but multiple solutions are observed. The set of solutions obtained by initiating
the computations with an impulsive start result in stable flow. These solutions are
identical to those obtained by starting from a stable flow for α = 5 and then by
decreasing α. The solutions computed by increasing α and starting from a solution for
α 6 4.7 are unstable. This is expected to have significant implications for flow control
using rotation of cylinders.
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Figure 6. Re = 200 flow past a rotating cylinder: close up view of the vorticity field for the fully
developed solution at various values of α. For the cases that exhibit a temporally periodic solution,
the time instant at which the picture is shown corresponds to the lift coefficient having the largest
magnitude. Solid lines denote positive while broken lines show negative vorticity.
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Figure 7. Re = 200 flow past a rotating cylinder: global view of the vorticity field for the fully
developed solution at various values of α. For the cases that exhibit a temporally periodic solution,
the time instant at which the picture is shown corresponds to the lift coefficient having the largest
magnitude.
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4.1.4. Flow for α 6 2

The inviscid analysis for α < 2 predicts a steady flow with two stagnation points
that lie on the surface of the cylinder. The viscous flow is quite different from the
inviscid one. Neither the flow is steady, nor do the stagnation points lie on the surface
of the cylinder. Since the speed on the cylinder surface is constant, unlike potential
flow, closed streamlines are observed near the surface even for low values of α.

The phase plot of CL vs. CD resembles a figure of 8 for α = 0. A vortex is released
from each of the upper and lower surfaces of the cylinder during every cycle of
shedding. The two vortices are of equal strength and the frequency of drag variation
is twice that of the variation of lift. The clockwise rotating vortex is more or less
restricted to the upper portion of the cylinder in the near wake. Similarly, the counter-
clockwise rotating vortex occupies the lower half of the cylinder. The computations
result in St = 0.1934 and CD = 1.316. (Here, Strouhal number St = f2a/U, where
f is the vortex shedding frequency.) These values are in excellent agreement with
the experimental and numerical data reported by other researchers. For example,
measurements by Williamson (1991) show St = 0.196 for this flow.

Rotation of the cylinder introduces asymmetry in the strength and location of the
positive and negative vortices. Additionally, some of the vorticity generated on the
rotating cylinder appears to be wrapped around it. It can be seen from figures 6 and 7
that the clockwise vorticity generated on the windward side of the spinning cylinder
protrudes beyond the x-axis like a ‘tongue’. Similarly, on the leeward side, the region
of counter-clockwise vorticity extends a ‘tongue’ upwards, along the cylinder. The
length of these vortical structures increases with spin rate. At very high spin rates (for
example, α = 5) these two regions of vorticity go around the cylinder as tightly wound
spirals. Similar results are obtained from the plots of steady-state flows. These are
obtained by dropping the unsteady terms from the governing flow equations. Vorticity
fields for these solutions are shown in figure 8. Multiple steady states are observed
for α > 4.8. One set of solutions shown in figure 8(a) are obtained by increasing α.
The solution obtained this way is observed to be different from that computed
via unsteady computations following an impulsive start. The α = 5 flow, obtained
via unsteady computations, is utilized to compute flows for lower rotation rates by
decreasing α. The solutions obtained in this manner are shown in figure 8(b). Note
that the steady-state solutions computed by the two methods are identical for α 6 4.7.

Figure 9 shows the vorticity distribution on the cylinder surface for the steady-state
solutions. The changes in the variation of surface vorticity with spin rate are more
drastic on the upper surface of the cylinder than on the lower surface. Compared to
α = 0 the maximum value of the vorticity, both positive and negative, first decreases
and then increases. The peak value of the positive vorticity, for all rotation rates,
is roughly at the same location on the lower surface of the cylinder. However, the
location of the peak value of negative vorticity varies very significantly with α. For
zero spin the maximum value is observed on the windward side (at θ ∼ 130◦). For
α = 1.0 a new peak starts to form at a location on the leeward side which is almost
diametrically opposite (θ ∼ −50◦). The maximum value is still at about the same
location, although its magnitude reduces. At α = 2.0 this new local peak becomes
a global maximum and is located at θ ∼ −20◦. It is, perhaps, this redistribution of
surface vorticity that gives stability to the flow for α larger than 1.9. More will be
said on this later.

Shown in figure 10 is the coefficient of pressure distribution on the cylinder surface
for the steady-state solutions for various α. For α = 0, the Cp distributions on the
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Figure 8. Re = 200 flow past a rotating cylinder: vorticity field for the steady-state solution
at various values of α computed by dropping the unsteady terms in the governing equations.
(a) Increasing α and with computations initiated with α = 0. (b) Decreasing α and with computations
initiated with the solution obtained from two-dimensional DNS for α = 5.
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Figure 9. Re = 200 flow past a rotating cylinder for various α: variation of vorticity on the surface
of the cylinder for the steady-state solution.

leeward side of the cylinder for the inviscid and Re = 200 flows are qualitatively
different. In the viscous case, the flow separates and an almost constant pressure
is observed on the rear of the cylinder. For higher spin rates, the Cp distribution is
qualitatively similar to that observed in the inviscid flow. For example, in figure 10, the
Cp distribution from the potential flow theory is shown for α = 4. Although the peak
suction generated in the inviscid flow is significantly higher, the general behaviour
in the two cases is very similar. It is also interesting to observe from the figure that
the Cp distribution for the inviscid flow is symmetric about θ = π/2. This results in
zero drag. However, this is not the case for the Re = 200 flow. For higher rotation
rates, the Cp on the windward side is larger than that on the leeward side of the
cylinder and this results in generation of thrust. This is also seen from figure 11. The
viscous effects contribute to the drag force and result in a net drag on the cylinder for
most values of α. For 3.2 < α < 4.3 the cylinder experiences a very small net thrust.
However, the power needed to rotate the cylinder is still fairly large.

Figure 11 shows a summary of the variation with α of the aerodynamic coefficients
for the cylinder. It is interesting to observe that the mean values of the lift and
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Figure 10. Re = 200 flow past a rotating cylinder for various α: variation of pressure coefficient on
the surface of cylinder for the steady-state solution. The thick broken line shows the Cp distribution
for potential flow for α = 4.0.

drag coefficients from the unsteady flows are different from the values obtained from
the steady-state computations. Compared to CL, CD appears to be more sensitive to
unsteadiness. Perhaps this is because the drag coefficient is substantially smaller in
magnitude than the lift coefficient. Therefore, unlike CL, small changes in CD may
appear as large percentage changes. The power coefficient, CP , increases rapidly with α.
This suggests that lift generation by the Magnus effect is an expensive proposition,
especially, for large values of CL. The unsteadiness in the flow, as suggested by the
r.m.s. values of CL and CD are maximum at α = 1.5, approximately.

Also shown in figure 11 is the mean lift generated by the cylinder for various
rotation rates from the potential flow theory and that due to Glauert (1957). The
present results clearly indicate that Prandtl’s limit of (CL)max = 4π is exceeded for large
α. The results from the present computations compare quite well with the high-α theory
proposed by Glauert (1957). Also, the variation of CL with α is closer to the potential
flow results for large α. This is consistent with our earlier observation about the
similarity of pressure distributions for the viscous and inviscid flows for large α. Our
computations indicate that the lift generation is primarily due to pressure variations.
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Figure 11. Re = 200 flow past a rotating cylinder: variation of the time-averaged and r.m.s. values
of the lift and drag coefficients, power coefficient and Strouhal number with rotation rate. The plots
on the left show the time-averaged quantities for the unsteady simulations as well as the values
obtained with the steady-state computations by dropping the unsteady terms in the governing
equations. Also shown is the Strouhal number for the most unstable mode obtained with the linear
stability analysis at the onset of shedding.

The contribution from the viscous forces is negligible. It should be pointed out that
the velocity profiles, close to the cylinder surface, from the present computations and
from the theory proposed by Glauert (1957) do not match very well. This might be
because the Reynolds number in the present computations is not high enough to be
compared with the asymptotic analysis at high Re. The lift coefficients result in a good
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match because the main contribution is from the pressure variation; contributions
due to shear stresses are negligible.

The flow goes through a qualitative change as α passes through the value of 1. This
has also been pointed out by Diaz et al. (1983). For α = 0 the speeds on the lower
and upper surfaces of the cylinder are same. For α < 1 the speed on the lower surface
of the cylinder is smaller than the free-stream speed. It matches the free-stream speed
for α = 1. For α > 1 the surface speed on the lower part of the cylinder exceeds the
free-stream speed. The disparity between the flows on the upper and lower surfaces
of the cylinder increases with α.

Figure 5 indicates that the vortex shedding ceases beyond α ∼ 1.9. For α < 1.9 the
Strouhal number decreases with increase in α. All the earlier computational studies,
except the results of Chew et al. (1995), report a similar trend. Computational results
from Kang & Choi (1999) for Re = 160 show a decrease in St with increasing α. The
same trend is reported by Hu et al. (1996) via a low-dimensional Galerkin method
for Re = 60. On the other hand, Chew et al. (1995) find that St increases with α
for Re = 1000. The experiments of Diaz et al. (1983) for Re = 9000 and Kimura &
Tsutahara (1991) for Re = 280 and 370 show an increase in the Strouhal number
with rotation rate. Van Atta (1997) has pointed out that Hu’s (1996) results are
in conflict with earlier experimental results (Jaminet & Van Atta 1969). It appears
that the experiments and computations show an exactly opposite trend in the St
vs. α relationship. This difference remains unresolved and is, perhaps, related to the
interaction between the vortex-shedding and centrifugal instabilities that might exist
for such flows. It would be interesting to carry out three-dimensional computations
for this flow for α < 2. What adds credibility to the present set of results is the fact
that for α = 1.91 the value of St matches that obtained from the global, linear stability
analysis of the flow. This is also shown in figure 11. For α = 0, the St matches very
well with the data from Williamson (1991). In addition, the trend of variation of
St with α is consistent with the observation that the wake narrows with increase in
rotation rate. The reduction in the lateral width of the wake implies that the shear
layers are closer to each other. A shorter characteristic length, from simple physical
arguments, suggests larger time scales for shedding.

4.1.5. Flow for α = 3.07

One of the objectives of the present work is to address the question of whether
or not cylinder rotation can suppress vortex shedding. Chen et al. (1993) carried out
computations for Re = 200 and α = 3.25. They continued their computations with the
base mesh till t = 24 and then with the stretched grid till t = 54. The time histories
for lift and drag have been reported for t 6 24. Based on their observations they
concluded that vortex shedding persists for α = 3.25. This is in contrast to the earlier
conclusion by Coutanceau & Menard (1985) based on flow-visualization studies. No
other long time results for these flow parameters exist in the literature to allow a
definite conclusion.

Our computational results are in agreement with those of Chen et al. (1993) for
the duration of their computations. This can be seen from the time histories for lift
coefficient shown in figure 2. As far as the fully developed solution is concerned, it
is clear from figure 2 that the flow takes a long time to achieve a fully developed
state. Chen et al. (1993) did not compute the flow for long enough and concluded,
incorrectly, that the flow does not reach a steady state. The vorticity fields at various
time instants for the simulation are shown in figure 12. Clearly, vortical activity is
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Figure 12. Re = 200, α = 3.25 flow past a rotating cylinder: vorticity field at various time instants.

observed for t as large as 50. However, at later time no new vortices are shed and the
older ones are advected away from the cylinder.

4.1.6. The second region of instability

With an increase in spin rate the vorticity distribution near the cylinder shows very
interesting patterns. This can be observed in figures 6, 7 and 8. For low rotation rates
(for example, α = 0.5) the vorticity distribution is quite similar to that for flow past
a non-rotating cylinder. Negative (clockwise) vorticity is released in the wake from
the upper surface while positive vorticity is released from the lower surface of the
cylinder. For higher rotation rates, the vorticity is dragged with the cylinder and the
positive and negative vorticity are wrapped around each other giving the appearance
of tightly wound spirals. For α = 4.0, in the near wake, the positive vorticity lies
above the negative vorticity. To an observer who is far away from the cylinder, it may
appear as if the upper surface releases positive vorticity in the wake while negative
vorticity is released from the lower surface.

For α ∼ 4.4 the flow becomes unstable again and vortex shedding resumes. This is
evident from the time histories of CL, and the phase diagrams of CL vs. CD shown in
figures 2 and 5. Only counter-clockwise rotating (positive) vortices are shed. This is
quite different from the shedding for α = 0 where both positive and negative vortices
are shed, alternately. Figure 13 shows the vorticity fields at five instants during one
vortex shedding cycle for α = 0 and α = 4.5. For α = 0 the positive vortex grows
in size pushing the negative vortex further away from the cylinder. Eventually, the
vortex sheet that feeds the negative vortex pinches off and it is shed in the wake
to be advected by the flow. Later, the negative vortex, fed by the vorticity from the
upper surface of the cylinder grows in size while a positive vortex from the lower
surface is shed. The alternate shedding of the two vortices forms one cycle of the
variation of the lift force experienced by the cylinder. For α = 4.5, the regions of
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Figure 13. Re = 200 flow past a rotating cylinder: vorticity field for the fully developed solution at
five instants during one vortex shedding cycle for α = 0 (a) and α = 4.5 (b).
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positive and negative vorticity are wound around the cylinder surface. A positive
vortex starts to develop close to the upper surface of the cylinder. As it grows in size
it moves outward, away from the cylinder. This blocks the movement of the negative
vortex around the cylinder surface, causing it to grow as well. Eventually, the positive
vortex is shed and a new one starts to grow close to the cylinder. Unlike the positive
vorticity, the negative vorticity is quite weak by the time it reaches the outer flow.
Only one vortex is shed during each cycle of the time variation of the lift coefficient.
This instability is limited to a very narrow region of α and the flow is stable, again,
for α > 4.8. The Strouhal number during this second region of instability is quite
small compared to that seen for α < 2. However, the r.m.s. values of the unsteady
components of the aerodynamic coefficients are quite high.

4.1.7. Multiple solutions for α > 4.8

All the solutions reported in the present article have been carried out using either
the unsteady or steady Navier–Stokes equations. The computations with the steady
Navier–Stokes equations require a good initial guess from the point of view of
convergence of the nonlinear iterations. First, the steady-state solution for Re = 200
and α = 0 is computed. This is used as an initial guess for computing the flow for
α = 0.5, which is used, in turn, to calculate the solution for α = 1.0, and so on. Some
of the solutions computed with the steady-state equations (increasing α) are shown in
figure 8(a).

The computations with the unsteady Navier–Stokes equations begin with an initial
condition that corresponds to an impulsive start. It is observed that for certain values
of α, the flow achieves a steady state. The vorticity fields for some of the solutions
are shown in figures 6 and 7. It is observed from figures 6 and 8(a) that the solutions
for the α = 5 flow from the steady (computations with increasing α) and unsteady
(computations following an impulsive start) computations are qualitatively different.
Using the solution for α = 5 from the unsteady computations steady-state flows are
computed for lower α. The vorticity fields for these solutions computed via decreasing
α are shown in figure 8(b). It is observed that the steady-state solutions for increasing
and decreasing α are different for α > 4.8. This is also reflected in the plots for the
variation of the mean values of CD and CL with α as shown in figure 11. It will
be shown, later in the article, that the solutions corresponding to increasing α for
α > 4.8 are unstable while the solutions for decreasing α are stable with respect to
small disturbances.

4.2. Linear stability analysis

To add further confidence to the computations presented in the previous section, a
global non-parallel flow stability analysis is carried out for the steady-state solutions.
This is, perhaps, the first attempt to set up a finite element formulation with the SUPG
and PSPG stabilizations to look at the stability of flows. To test the formulation and
its implementation we first try to determine the Hopf bifurcation point for flow past
a non-rotating cylinder.

4.2.1. Stability analysis for α = 0

Steady-state results for various Reynolds numbers (Re < 50) are obtained for three
different finite element meshes. Mesh I consists of 5224 nodes while Mesh II is more
refined with 14 805 nodes. Mesh III, the finest in the present study, consists of 24 840
nodes and 24 500 elements. The point of onset of instability of the flow is marked by
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Researcher(s) Rec Stc Method Grid size

Berger & Wille (1972) 50.00 0.12 Experiments
Gresho et al. (1984) 50.00 0.14 Two-dimensional simulation, FEM 1825
Jackson (1987) 45.403 0.13 626 FEM with inverse iteration method 3056
Zebib (1987) 39–43 0.11–0.13 Standard eigenvalue method
Williamson (1989) 47.90 0.1220 Experiments
Morzynski & Thiele (1991) 46.270 0.13 451 FDM 3200
Norberg (1994) 47.4± 0.5 0.1177 Experiments
Morzynski et al. (1999) 47.00 0.1320 FEM with subspace iteration method 15 838
Ding & Kawahara (1999) 46.389 0.12 619 FEM with Arnoldi’s method 9870
Present paper (Mesh I) 48.2 0.1202 FEM with subspace iteration method 5224
Present paper (Mesh II) 47.5 0.1189 FEM with subspace iteration method 14 805
Present paper (Mesh III) 47.4 0.1169 FEM with subspace iteration method 24 840

Table 2. Hopf bifurcation for uniform flow past a non-rotating cylinder:
comparison of the critical parameters.

the real part of the eigenvalue λr becoming positive. Results from the present method
are compared with those reported by other researchers in table 2.

From table 2 it is seen that the results from the present formulation are in very good
agreement with the experiments of Williamson (1989) and Norberg (1994). Further,
of all those listed in the table, the present results with Mesh III give the closest match
with the critical Reynolds and Strouhal numbers found from their experiments. The
vorticity and pressure fields for the steady-state solution along with the vorticity
fields for the real and imaginary parts of the unstable eigenmode close to the onset
of instability, computed with Mesh III, are shown in figure 14. Also shown in the
same figure are the vorticity fields for an instantaneous solution from the 2D DNS
(two-dimensional direct numerical simulation) and by combining the steady-state
solution and the most unstable eigenmode. The two solutions look very similar, at
least, in the near wake. To obtain a closer match to the two-dimensional DNS results,
one should include a larger number of eigenmodes. This method will work only for
Re ∼ Rec when the perturbations to the steady-state solution are relatively small.
These pictures are very similar to the ones reported by Ding & Kawahara (1999). The
wake of the perturbed solution, as expected, consists of alternately rotating vortices.
It is interesting to observe that although both the real and imaginary eigenmodes
are symmetric about the cylinder axis the unsteady solution is not. This is because
the vorticity field for the basic steady solution is anti-symmetric while that for the
eigenmodes is symmetric. The combination of the basic solution and the perturbations
due to the eigenmodes, therefore, results in a solution that is made up of alternately
rotating vortices. It is also observed that the pressure and x-component of velocity
fields for the steady-state solution are symmetric, while those for the eigenmodes are
anti-symmetric. In addition, the y-component of velocity for the steady-state solution
is anti-symmetric while it is symmetric for the eigenmodes.

4.2.2. Stability analysis for the rotating cylinder

The steady-state solutions obtained for Re = 200 and various values of α are
analysed for their stability. The vorticity fields for some of the steady-state solutions
were shown in figure 8. Recall that to investigate the stability of the fluid system
we need to track the rightmost eigenvalue (λ). If the real part of this eigenvalue
is positive, any perturbations to the flow will amplify, rendering the flow unstable.
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Figure 14. Re = 48.1 flow past a stationary cylinder: the steady and unsteady solutions and the
most unstable eigenmode. (a) Steady-state solution, (b) real (left) and imaginary (right) parts of
the vorticity field for the most unstable eigenmode, (c) vorticity fields for the unsteady solution
obtained via two-dimensional DNS (left) and combining the steady-state solution and the most
unstable eigenmode (right).

Because of a singularity in one of the coefficient matrices, we are restricted to tracking
1/λ (see § 3.2). Since the real parts of both λ and 1/λ have the same sign for assessing
the onset of instability of a flow it suffices to track the rightmost value of either λ or
1/λ. However, for α that is farther from the onset of instability a significantly larger
effort is required to find the most unstable mode.

Figure 15 shows the variation, with α, of the real part of the rightmost λ. It is
seen that λr is positive for 0 6 α 6 1.90 which implies that the steady flow is unstable
in this regime. This observation is consistent with the one from the direct numerical
simulations, presented earlier. The flow is stable for 1.91 6 α 6 4.34, signified by
negative value of λr in this range. The flow becomes unstable again for α = 4.35. The
imaginary part of the most unstable eigenvalue is related to the Strouhal number of
the flow, especially at the onset of instability. Figure 11 shows that for α = 1.91 and
4.35 the St values from both the unsteady computations and linear stability analysis
are identical. The vorticity fields for the real and imaginary parts of the most unstable
eigenmode for α = 1.91 and α = 4.37 are shown in figure 16. For α = 1.91 the wake



Flow past a rotating cylinder 329

0 1 2 3 4 5
α

0

0.1

0.2

–0.1

λr

Increasing α
Decreasing α

Figure 15. Re = 200 flow past a rotating cylinder: real part of the eigenvalue corresponding to the
most unstable mode for the steady-state solutions.
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Figure 16. Re = 200 flow past a rotating cylinder: real and imaginary parts of the vorticity field
for the most unstable mode for α = 1.91 (a) and α = 4.37 (b).

consists of a train of alternate positive and negative vortices which are of comparable
strengths. This wake structure is quite similar to that observed for the non-rotating
cylinder except for an upward deflection caused by the rotation of the cylinder. The
tail of each vortex is engulfed by the one downstream of it. At α = 4.37, there are
fewer vortices in the wake. Some similarities can be observed between this figure and
figure 13(b) for α = 4.5 at t = 2T/5 and 3T/5.

As pointed out in the previous section, multiple steady-state solutions are obtained
for α > 4.8. Depending on the initial guess/initial conditions for the computations,
one of the two solutions can be realized. Solution 1 is obtained by increasing α by
using the steady-state solution from lower α as an initial guess. Solution 2 results from
unsteady computations that are initiated with an impulsive start. This is identical to
the solution obtained using steady-state computations via decreasing α and starting
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with the solution obtained for α = 5 following an impulsive start. As can be seen
from figure 15, solutions on the branch with decreasing α are stable while those on
the branch with increasing α are unstable. When the unstable steady-state solution for
α = 5 is used as an initial condition to continue the unsteady computations a vortex is
shed and the solution settles to the stable one. This is also in line with the observation
made in Mittal (2001b) where the stability of the flow for α = 5 was checked by
introducing eccentricity/wobble in the motion of the cylinder. It was found that the
mean solution for the eccentrically rotating cylinder is quite similar to that when the
centre of rotation lies at the geometric centre of the cylinder. It is interesting to note
that the solutions on the increasing α branch are similar to the steady-state solutions
for lower α (for example, α = 4.7) which are also unstable.

4.2.3. A possible cause for the second instability

The vorticity is created on the surface of the cylinder because of the no-slip
condition on velocity. It is transported to other locations in the flow via advection
and diffusion. Closed streamlines are formed around the cylinder surface for α > 2.
The strength of vorticity generated on the cylinder surface increases with increase in
α. This increase is accompanied by a thicker region of closed streamlines around the
cylinder surface. In such a situation, in steady flow, it is the diffusion mechanism that
is responsible for transporting the vorticity to the outer flow. Vortex shedding cannot
occur if vorticity of sufficient strength is unable to diffuse to the flow outside the
closed streamlines.

Figure 17 shows the streamlines for the steady-state solutions for α = 4, 4.5 and
5.0. Both the stable (decreasing α) and unstable (increasing α) solutions for α = 5 are
shown. The thick solid lines represent the set of points where the negative vorticity is
maximum at a given radial distance from the centre of the cylinder. The thick broken
lines show the same for positive vorticity. The cross symbols show the location of
the stagnation point in the flow. The vorticity decreases as one moves away from
the cylinder along the solid line. For α = 5, in the case of stable flow, the vorticity
decays to a very low level (thick lines are plotted only for magnitude of vorticity
exceeding 0.2) before it can reach the outer flow beyond the closed streamlines. For
α = 4.0, the vorticity does diffuse to the outer flow. However, most of it is advected
by high-speed flow. On the other hand, for α = 4.5, while the negative vorticity is
again advected by the high-speed flow, the positive vorticity is fed to a region close
to the stagnation point. In an unsteady situation, in the event of a perturbation
to the steady flow, the balance between the advection and diffusion of vorticity is
disturbed. Since the flow, close to the stagnation point, moves quite slowly vorticity
may build up with time. Eventually, this leads to vortex shedding. This is consistent
with the observation that for α = 4.5, only positive vortices are shed. The steady-state
unstable flow for α = 5 is also associated with the feeding of positive vorticity of
significant strength to fluid close to the stagnation point. When this flow is used as
an initial condition for unsteady computations and round-off errors perturb the flow,
it is observed that a positive vortex is shed from the cylinder and the flow settles to
the stable state.

We have observed that the wake region, consisting of slowly moving fluid, behind
a stationary cylinder is quite large. It shrinks in size as the spin rate of the cylinder
increases. Close to α = 4.4 the region of slowly moving fluid starts to increase again.
Vortex shedding occurs only if vorticity of large enough strength is released in a
region of slowly moving, preferably, recirculating fluid.
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Figure 17. Re = 200, α = 4.0, 4.5 and 5.0 flow past a rotating cylinder: streamlines for the
steady-state flow. The thick solid lines show the points which have maximum value of nega-
tive vorticity (magnitude larger than 0.2) at each radial location while the thick broken ones denote
the same for positive vorticity. The cross denotes the location of the stagnation point.

4.2.4. CL for large rotation rates

Very high lift coefficients are observed for high rotation rates of the cylinder.
Researchers in the past have reported varied results on the magnitude of lift that can
be generated via the Magnus effect. Goldstein (1938), based on intuitive arguments by
Prandtl, suggests that the maximum value of the lift coefficient that can be generated
by a spinning cylinder is 4π (∼ 12.6). Chew et al. (1995) have reported that their
computations are in agreement with Prandtl’s postulate. They find that for Re = 1000,
the estimated mean lift coefficient approaches asymptotic values with increase in α.
However, Tokumaru & Dimotakis (1993) have reported values of lift coefficient, from
their laboratory experiments, that have exceeded this limit. According to them, the
unsteady effects weaken Prandtl’s hypothesis and the three-dimensional/end effects
are responsible for lowering the value of lift coefficient that could be achieved in a
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purely two-dimensional flow. The present results are in good agreement with those
from the high-α theory proposed by Glauert (1957). Recently, Stansby & Rainey
(2001) have reported two-dimensional computational results for flow past a spinning
cylinder for Re = 200. They also find that as the rotation rate increases, CL approaches
the value predicted by potential flow theory (CL = 2πα). The present results support
the observation by Tokumaru & Dimotakis (1993) that Prandtl’s limit may not hold
for large aspect ratio cylinders. It certainly does not hold for the two-dimensional
flows.

Our preliminary computations for three-dimensional flows show that the aspect
ratio of the cylinder and its end conditions (spanwise length/diameter) play an
important role in determining the amount of lift generated by the rotating cylinder.
A no-slip sidewall (no end plates) results in flow separation. In addition, the entire
span is associated with centrifugal instabilities. Both these effects contribute to loss
of lift and increased drag compared to a purely two-dimensional flow. These results
will be presented in a future paper.

5. Concluding remarks
Flow past a cylinder, rotating in the counter-clockwise sense, and placed in uniform

stream (Re = 200) has been analysed for various spin rates (0 6 α 6 5). A stabilized
finite element method is utilized to solve the incompressible Navier–Stokes equations
in the primitive variables formulation. The flow is extremely complex and is associated
with both two- and three-dimensional instabilities.

For 0 6 α 6 1.9 a von Kármán street is seen in the wake behind the cylinder. For
non-zero α the vortex street is deflected away from the centre line. The wake becomes
narrower and the Strouhal number for vortex shedding decreases with increase in
rotation rate. Vortex shedding ceases beyond α ∼ 1.9. However, it takes quite a long
time for the flow to develop to the final solution following an impulsive start. It is
for this reason that some researchers, in the past, concluded from their simulations
that the flow at α = 3.25 is associated with vortex shedding. The present results show
that the flow achieves a steady state for α = 3.25. At high rotation rates it is seen
that the lift for purely two-dimensional flows can be very large. The values of the
lift coefficient obtained in the present work exceed the maximum limit based on the
arguments of Prandtl.

The vorticity distribution around the cylinder goes through certain interesting
changes with increase in α. For high α the vorticity generated on the cylinder surface
is dragged along with it. The positive and negative vorticity appear as tightly wound
spirals. The flow remains stable for 1.91 6 α 6 4.34 but loses its stability again for
α ∼ 4.35. For this rotation rate, unlike the shedding for lower α, the cylinder sheds
vortices of counter-clockwise sense only from its lower surface. Vortex shedding
continues for higher spin rates and the flow becomes stable, yet again, for α > 4.8.

Solutions are also computed for various α by dropping the unsteady terms from
the governing equations. The stability of these solutions is analysed by conducting a
global, non-parallel linear stability analysis. The implementation of the formulation is
validated by locating the Hopf bifurcation for flow past a non-rotating cylinder. The
results are in very good agreement with those from other studies. Next, the stability
of the steady flows for a spinning cylinder is analysed. The regions of stability (and
instability) from this study are in excellent agreement with those from the two-
dimensional direct numerical simulations. The Strouhal numbers, corresponding to
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the vortex shedding frequency, for α = 1.91 and 4.35 where the flow is barely unstable
also match with the DNS.

A possible cause for this interesting behaviour of flow stability (or instability) is
proposed. The strength of vorticity generated on the cylinder surface increases with
the increase in spin rate. This is accompanied by an increase in the thickness of the
region with closed streamlines around the cylinder. For vortex shedding to occur,
vorticity of large enough strength must be carried to the outer flow, outside closed
streamlines, via diffusion. This region of vorticity, in the outer flow, must also be a
sufficiently large area of slowly moving, preferably recirculating, fluid. Under these
conditions the vorticity can pile up in a certain region of the flow and vortex shedding
can take place. For α = 0 a large region behind the cylinder is associated with slowly
moving fluid. The size of this region reduces, rapidly, with increase in spin rate. This
explains the disappearance of vortex shedding for α ∼ 2.0. However, for α ∼ 4.5, the
region of slowly moving fluid increases again and this region is also associated with
significantly high positive vorticity. Vortex shedding re-occurs in a narrow range of α.
For larger rotation rates (for example, α ∼ 5) the vorticity is restricted to the region
of flow around the cylinder with closed streamlines, resulting in a stable flow.

Two steady-state solutions are seen for α > 4.8: one is unstable while the other is
stable. The solution obtained via unsteady computations following an impulsive start
is stable. The unstable solution resembles the steady-state solution for α = 4.7 which
is itself unstable.

The present work has significant implications for the flow control strategies that uti-
lize rotating cylinder elements. It would be undesirable to use α < 2 and 4.3 < α < 4.8
because the flow is unstable. For other spin rates, even though vortex shedding does
not occur, one can expect centrifugal instabilities along the entire span of the rotating
cylinder. In addition, the end effects are expected to be important for low-aspect-ratio
cylinders.

Partial support for this work has come from the Department of Science and
Technology, India.
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