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molecules have orientations similar to the dibenzyl orientation, and the
other two can approximately be derived from them by a rotation of 180°
about the g axis, and a translation of ¢. The resulting structure explains
the pseudo-orthorhombic properties, the approximate halvings, and the
principal X-ray intensities. It is contrary to a structure previously deduced
from magnetic measurements by Krishnan, Guha, and Banerjee, who
predicted a twisted and distorted molecule; but it is shown that the new
structure is equally capable of explaining the magnetic data. Detailed
measurements have not yet been made on tolane and azobenzene, but the
preliminary data are sufficient to show that they are both closely similar
to the stilbene structure.

The Scattering of Positrons by Electrons with Exchange
on Dirac’s Theory of the Positron

By H. J. BHABHA, Ph.D., Gonville and Caius College
(Communicated by R. H. Fowler, F.R.S.—Received October 20, 1935)

It has been shown by Mottt that exchange effects play a considerable
part in the collision and consequent scattering of one electron by another.
Mott’s original calculation was non-relativistic, and there the exchange
effect vanishes when the two electrons have their spins pointing in opposite
directions. Moller} later developed relativistically invariant expressions
for the collision of two charged particles with spin, and it may be seen
directly from Megller’s general formula for the collision cross-section
that, in the collision of two identical particles, the effect of exchange does
not in general vanish even when the two colliding particles initially have
their spins pointing in opposite directions. It tends however to zero
in this case as the relative velocity of the particles becomes small compared
to ¢, the velocity of light, in agreement with the calculation of Mott.

The effect of exchange in the general relativistic case will still be con-
siderable if one of the two electrons be initially (and therefore finally)
in a state of negative energy. (If one of the electrons be initially in a
negative energy state, then it follows from the conservation of energy

t ¢ Proc. Roy. Soc.,” A, vol. 126, p. 259 (1930).
1 ¢ Ann. Physik,’ vol. 14, p. 531 (1932).
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and momentum that one of them must be finally in a state of negative
energy.) This at once leads to the conclusion that in the collision of an
electron with a positron, the calculation of this process on the Dirac
theory of the positron, where the positron is considered as an unoccupied
state of negative energy, would lead to a result different from that which
we should get if we did the calculation considering the positron as an
independent positively charged particle in a state of positive energy whose
behaviour is descibed by the Dirac equation.f The difference would be
due to the effect of exchange between the electron we observe initially
and the virtual electrons in states of negative energy. As we shall show,
the effect of this exchange is considerable. It tends to zero, however,
when the relative velocity of the electron and positron becomes small
compared to ¢, as we should expect from what has been said in the last
paragraph.

The process which we are considering is one which can be calculated
on the theory of the positron in its primitive form. The effect on the
collision of the polarization of the vacuum by a charge, and the effect of
the infinite distribution of electrons in negative energy states in general
would only affect the scattering in a higher approximation than the one
considered here, and to calculate these we should have to treat the process
on the basis of a more refined theory of the positron. Such theories
have been put forward by Dirac,} and Heisenberg,§ where methods are
given for treating the infinities of charge density and current which exist
on the old theory of the positron. The existence of the exchange effect
even in our approximation, however, is of particular interest, since it
shows that considerable error may result from the fact that in the later
theories mentioned above the effect of the exclusion principle has not
been considered.

Since the exchange takes place between the electron we observe and
one of the virtual electrons in states of negative energy which do not
come directly under our observation, one might be inclined to suppose
that the existence of this additional term in the scattering due to exchange
is one of the incorrect predictions of the theory which does not correspond
to any physical reality. We believe, however, that this is not so, since

+ As will appear presently, it is important to realize that on the latter picture of
the process electrons and positrons cannot be annihilated and created in pairs.
Professor Wenzel has pointed out to me that, more conveniently for our purpose,
we might define the independence of two kinds of particles as their inability to be
annihilated and created in pairs.

1 ¢ Proc. Camb. Phil. Soc.,” vol. 30, p. 150 (1934).

§ ¢ Z. Physik,” vol. 90, p. 209 (1934).
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there is another way of looking at this exchange effect which is probably
the more significant one, and which shows that additional terms must
exist in the mutual scattering of two particles on any theory in which the
particles can be annihilated and created in pairs.

The physical process we are considering is the following. Initially we
have an electron in a state a_,° of positive energy and a positron in a state
b.° also of positive energy. After the scattering process the electron
is to be found in a state @', and the positron in a state b’,. On the Dirac
theory of the positron the process is considered in the following way.
The two states of the positron 5,°and &', correspond to two unoccupied
states of negative energy which we call a’_ and a_° respectively. We then
have, initially, an electron, which we shall denote by the suffix 1, in the
state a.° another electron, which we shall denote by the suffix 2, in the
state of negative energy a_° and an unoccupied state of negative energy
a’_ representing the positron. After the scattering, the electron 1 goes
over to the final state a’,, and the electron 2 jumps into the unoccupied
state @’_, leaving the state a_° unoccupied, which then appears as the
scattered positron. This is the normal scattering process. The effect
of exchange arises in this, that we should get to the same physically
observable final state if the electron 1 jumped into the unoccupied state
a’_, and the electron 2 jumped to the final state a’,. But we may clearly
consider this process as one in which the original electron and positron
have annihilated one another with the simultaneous creation of a new
pair. It appears then that we should expect extra terms in the mutual
scattering of any two particles which can be annihilated and created in
pairs. For example, this extra scattering exists on a recent theory put
forward by Pauli and Weisskopft in which particles without spin and of
opposite charge can be created and annihilated in pairs. Here the particles
do not even satisfy the exclusion principle, as in the Dirac theory, but
obey the Einstein-Bose statistics instead.

We shall carry out the calculation of the collision cross-section in § 1,
and in § 2 we shall discuss the results.

1—CALCULATION OF THE SCATTERING

We consider the scattering process in a system L in which one of the
particles, say the positron, is initially at rest, and the electron moves
along the z-axis with an energy E and momentum p. We wish to
know the differential effective cross-section dQ for the scattering of the

1 ¢ Helv. Phys. Acta,’ vol. 7, p. 709 (1934).
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electron through an angle between 6 and 6 4 d6 about its initial direction
of motion. We now consider the same elementary process as seen from
a system L* in which the electron and positron move in opposite directions
along the z-axis with equal velocity. The energy of either particle in
this system is E*, which is connected with E by the relativistic formula

— E* _ v+ 1
R

~ mc?
where . 1
E

T mc
In the system L* the electron moves initially with a momentum p* along
the z-axis, and the positron with a momentum p* in the opposite direction.
After the scattering the electron moves in a direction making an angle
between 6* and 0* 4 d0* with the initial direction of motion. 0* is
connected with 0 by the formula

tan 0 = . tan 0" 9
2

The differential effective cross-section dQ is most simply calculated if
we notice that it is an area perpendicular to the direction of relative
motion of the systems L and L*, and consequently is an invariant for a
Lorentz transformation from one system to the other. We therefore
calculate the differential effective cross-section dQ* for the scattering of
the electron through an angle between 0* and 0* 4 d6*. This will
then just be equal to dQ, the cross-section for the scattering of the electron
in the system L through an angle between 6 and 0 4+ d0. The angle
0 is connected with 6* by the relation (2).
- We write the Dirac equation for a free particle in the system L* in
the formt '

{E* + c(a, D*) + aymc}* =0,

where m is the mass of the electron, and the «’s are the four anticom-
muting matrices given by Dirac. The solutions are of the form

a (E*, p*, 5) ei{o®xn)—trei/n,

where the a’s are matrices] of one column and four rows satisfying the

equation A
{E* 4 ¢ (a, p¥*) + agmc®} a (E*, p*, 5) = 0. 3)

1 Letters in Clarendon type denote vectors.
1 To be consistent with our notation, we should write these as a*. The asterisk
will be omitted here for convenience, as no confusion arises thereby.
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For each value of the energy and momentum there are two independent
orthogonal solutions of (3), which we shall denote by a (E*, p*, s,) and
a (E*, p*, s,) respectively, or in short just by a(s) and a(sy). We
normalize our solutions so that

(a (E*, p*, 5) . a (E*, p*, 5)) = 24, (E*, p* ) a, (E*, p*, 5) =1, (4)

where a bar over a symbol denotes the conjugate complex. The a’s
then satisfy the orthogonality and normalization relations

@(E*, 1%, 5,) . a (E*, D%, 5)) = 3, »
@E* %, 5).a(—E* p%,5))=0 qr=12)

This normalization represents a density of one particle per unit volume.

With this normalization we have initially in the system L* one electron
per unit volume in a state of energy E* and momentum p* along the
z-axis, which we shall denote by (E*, 0,0, p*). We have also one
unoccupied state (—E*, 0, 0, p*) of negative energy representing one
positron per unit volume. This unoccupied state represents one of the
final states of one of the electrons. It then follows at once from the
conservation of momentum that if (E'*, p'*) be the final state of one of
the electrons, where (p'*)=(p’'*sin 6* cos ¢*, p'*sin 0*sin ¢*,
p'* cos 0%), the other initial state must be (—E’*, p'*). It will follow
presently from the conservation of energy that E'* = E*. We have
therefore to calculate the total number of transitions per unit volume per
unit time of a system of two electrons from their initial states (E*, 0, 0, p*),
(—E’*, p’*) to their final states (E'*, p'*), (—E, 0, 0, p*), and divide this
number by J.* to get the differential effective cross-section dQ*. Here
J.* represents the number of electrons in the system L* which cross a
unit area round each positron perpendicular to the direction of their
relative motion per second. It is given by

@)

Jz*=20*= (];‘f‘ s (5)

where v* is the initial velocity of either particle in the system L*. We then
find that dQ* is given according to Mgllert by

8met

aQr =%

#9) 8 (B,* + Ey"* —E,"* — E,"¥) p,/*2 dp,'* sin 0% d0*. (6)

t ¢ Ann. Physik,” vol. 14, p. 531 (1932). The formula (6) differs from formula
(70) of Mgller’s paper by certain constant factors. This is due to our a’s being
normalized differently from Mgller’s.
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The suffixes 1 and 2 refer to the two electrons, one of which is initially.
in a state of negative energy, and the affixes ® and ’ refer to their initial and
final states respectively. S is defined in (8) below. In our problem one
of the initial and one of the final states (the vacant state representing the
positron) are fixed, and we have E,°* = — E,’* = E*. Further, since
we have conservation of momentum in the collision, the momentum
p."* of the electron initially in the state of negative energy is connected
with the final momentum p,"* of the electron in the state of positive
energy by the relation p,°* = p,"*. We therefore have E,°* = — E,'*
and the 3 function in (6) reduces to 3 (2E,"* — 2E*). The p,"* integration
in (6) may then be carried out, remembering that

o E/*d QB

dpl 202p1/ ¥

Using (5), we then get
4
dQ* — %’;i E*2 (1S) sin 0% do*, M
S is given by
S—3 @5 . a) (@ . a") — (ayaay’ . ay/aa,’)

0F . L /*\2
| 0% — p/*[2 — <E1 - E, >

(@’ .a) (ay .a,°) — (a)aay’ . as'aa,’) |?
— o el E,F — B, "
% — pyH — (B

®

a,° here stands for a (E,°*, p,°*, s), with a similar meaning for the other
a’s. The summation extends over the two independent states of spin of
each initial and final state. The first term in (8) represents the direct
scattering, the second term being the exchange term.

The summation over the spins can be carried out in the usual way.}
We take a specimen term from (8), say

(as'o,a5) (ay' 0,a,°) (@2’ w,a5°) (a4 @,a,°),
in which we shall carry out the summation over the two spin directions
a'y (s1), @'y (s2). We get

T (away) (@ way’) (a’w.a (5)) (ar (s) way”)
8 =185 -
I . = a20“ua2,) (‘_12’0("/‘120) (aloauplla'valo)’
where p,’ is a matrix defined by

(p1)or = a1 (8)s - @y (sD); + @' (52)5 - @y ($2)-- )
t Casimir, ¢ Helv. Phys. Acta,’ vol. 6, p. 287 (1933).
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From (4) we see that it satisfies the equations
eaES* % )= @) (5) =a (5) for s=sy, szl
eia(— E/* p/*, 5) =0, )

The equations (10) define p’; completely. It then follows from (3) that
if we take

(10)

’ 1 ! ?
P = 3E,* {E)* — c(a, p'*) — aymc?}, (11)

the equations (10) are satisfied. Similarly summing over a,° (s,), @;° (s5)
gives
(@’o,as) (a5’ o,a,) spur (e, ®,0:°),

where p,° defined in a similar way to ¢, in (9) is given by an expression
like (11). The summation over the two directions of spin of the other
states can be carried out in a similar manner.

The denominator of the first term in (8) is equal to (2p* sin $0%), since
| p°*| = |py*| = p*, and E,°* = E,* = E*. The denominator of
the second term gives — (2E*/c)?, since p,°* = p,’'*, and

Elo* - - Ez’* = E*.
We finally get for S

1 g ' : :
S = [m* {Mzsocucv spur (e,p1'%,p1°) SPUT (%2 “vao)}

A 3 , ,
+ 16E*4 { I cue, spur (a,pe o,p,") spur (,py “.,920)}
Mmyv =0 :

C2 ‘ 3 ’ ’
- 16E*%p*Z sin? 10% { z G spur (%P2 %02 001" %,01°)

sy v =0
+ conj. complex}], (12)
where the ¢,’s are defined by
c.=1, for p=1,23;and ¢ = — 1. (13)

«, denotes the unit matrix. The ¢’s are given by

1
910 = E'E—*-{E* —_ Cazp* _ 0C4mC2}
Py = QL*' {E* — c(a, '*) — aymc?}
, 4
b1 e o . Y 14
po” = 5rx {B* + ¢ (a, D'*) + aymc®}
0q' = ZE—I* {E* + ca,p* + %mcz}
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where we have inserted in expressions like (11) the values of E,'*, p,'*,
etc., in terms of E*, p*, p’*. The spurs in (14) are easily evaluated if we
remember that the spurs of all the Dirac matrices and their products are
zero, excepting that of the unit matrix.

- We get finally for the differential effective cross-section dQ* for the
scattering of the electron through an angle between 6* and 0* 4 46* in
the system L* the expression

x_T_¢e 1
9Q* = 3 ppc [(y“ —TyFsmigoe

+ 4 (y* — 1) cos® 36*
. +2(y* —1)*(1 + cos* 36%)}
+ ;iq {3+ 4(y*2— 1)+ (v** — 1)*(1 + cos? 6%)}

Y = Dt

4 (v* — 1) (1 - cos 6*)2}1 .sin 0% do*. (15)

5% {3+4(y**—1)(1 + cos 6*y

This is just dQ. We may, if we choose, express it in terms of ©
and y by using the relations (1) and (2). This would only lead to very
complicated expressions, and it is more convenient to leave it in its present
form. dQ is the differential effective cross-section for the scattering of
the electron through an angle between 6 and 6 4 d0 in the system in
which the positron is initially at rest. But (15) is clearly quite symmetrical
between the positron and electron, so that dQ also gives the effective
cross-section for the scattering of the positron through an angle between
0 and 0 4 d6 in the system in which the electron is initially at rest. We
shall henceforth use L to denote any system in which either the electron
or the positron is initially at rest.

 For many purposes it is more convenient to express the scattering in
terms of the number of particles initially at rest which after the collision
receive a certain fraction ¢ of the kinetic energy of the colliding particle.
Let E'g denote in the system L the energy after the collision of the particle
which was initially at rest. (It may be either an electron or a positron.)
Then E'’; is connected with 6 by the usual relativistic formulat

Ex=3im{y +1— (v — 1) cos 6*}. (16)
If € be the ratio of the kinetic energy of this particle after the collision to

+ Moller, ¢ Ann. Physik,” vol. 14, p. 531 (1932), formula (70).
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the initial kinetic energy of the colliding particle in the system L, then
by (1) and (16)

—E'yx — mc? . .
e==f —— =1 (1 — cos 6¥) = sin® $6* :
ond E —mc? : a7n
= % sin 6* d6*

Using (1) and (17), dQ given by (15) can at once be expressed in terms of
e and y. We write it in the form

4Q = 2n oo s F (1, 9.ds (8
where
F(r 9= ——p [ (1 +2(r= D=9+ (y= D1 < + 39}
(y—1p¢ ___‘ ._ 2(1 ¢ g2
+—('—W{3+2(Y D+Gx—172G + &)}
U DB - DU =9+ (=120 — ).

(19)

In the limit of very high energies, E* > mc?, we may neglect terms of
the order unity compared to y*2 and using (1) write 4Q in the form

dQ=" et 12(1 4 cos* 36%) (1 + cos? 6%)

2 14
4 mPcty . sin* 10%*

— (L cos 7 :{ngiseg*)z] sin 0% 46%, (154)

2—DISCUSSION ‘AND RESULTS

The first term in square brackets in (15) or (19) is the ordinary scattering
term. We should have got just this term if we had considered the positron
as an independent positively charged particle in a state of positive energy.
The other two terms represent the effects of exchange. From what has
already been said in the introduction, we may look upon the second term
as the one due to the annihilation of the initial pair and the simultaneous
creation of a new one. The third term then represents the interference
between the direct scattering and the latter process.

The three expressions in curly brackets in (15) or (19) are of the same
order of magnitude for all values of the energy. The relative order of
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magnitude of the three terms in square brackets in (15) or (19) is then
determined by the expressions outside the curly brackets. These are
proportional to 1/p**sin®10*, ¢*/E*4, and c2/E*?p*?sin®10* respec-
tively. The ratio of the third term to the first term in square brackets is
then of the order ‘

(Y;T?S - ”_c_";z e — 2; sin? 10%, (204)

and the ratio of the second term to the first is of the order

—_— l 2 -2 %4 *4
(%Y——I-_)ﬁ; = UCT e? = ELI sin® 10*, (20B)

The extra terms in the scattering are then smaller than the normal terms
in the ratio v*2 sin%? $0*/c2. Their effect on the scattering therefore tends
to zero in the limit of low velocities, v* < ¢, as was stated in the intro-
duction.

Even in the limit of large velocities, v* ~ ¢, the first term will be very
much larger than the other two if 0* or € be small enough. This is due
to the appearance of the factor sin?0* in the denominator of the first
term in (15) only. Itfollows at once from (20) that for those scattering
processes in which the initially stationary particle receives a large fraction
of the kinetic energy of the colliding particle (¢ ~ 1) the extra scattering
is considerable. For those processes where the stationary particle receives
but a small fraction of the kinetic energy of the colliding particle (¢ < 1),
the extra scattering is less than the normal scattering by a factor of the
order «.

In fig. 1 we have plotted F (v, ¢) as a function of ¢ for different values
of y. We have also plotted F, (v, €) for the same values of vy, where
F, (v, ©) is given by

1

Fo (v, €)=—Ym_——l-) B+2H—-DA -9+ -1 - s+%€z)2]i)

F, (v, ©) is just the first term of F (v, ) and gives what we have called
the ““ normal ” scattering, i.e., the scattering in the absence of exchange
effects. In other words, it gives the scattering we should get if the positron
were an independent particle which with an electron could not be
annihilated and created in pairs.

There is just one more point we must consider before we apply our
theory to the passage of positrons through matter. We have considered
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the electron which was initially at rest as free, whereas all the electrons are
bound in atoms. We should, however, expect the effect of binding to be
negligible in all those cases where the electron and the positron after the
collision both have energies large compared to the binding energy of the
electron in the atom. But these are just the collisions for which the extra
scattering is important. For those cases where the electron after the

\\ ~
. SN
S —
=
\ ~<
F ~—_

\W‘

0 05 10

—> €

Fic. 1—The continuous lines represent F (v, ) as a function of ¢, the broken lines
represent F, (v, ¢).

collision has energy comparable with its binding energy, the effect of ex-
change is in any case small, and we may use the cross-sections calculated by
Mgller, Bethe, and Bloch. Lastly we have cases where the energy of the
positron after the collision is comparable with the binding energy of the
electron in the atom. Here the extra scattering is considerable, and it is
also not legitimate to treat the particles as free. The total number of
such collisions is, however, small.
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We may then sum up roughly by saying that when positrons pass
through matter, the number of slow secondary and ionization electrons
produced will be the same as on the usual theory, whereas the number of
fast secondary electrons ejected will be considerably changed. The
number of fast secondaries is considerably increased for high energies of
the positron. It should be possible to observe the difference experi-
mentally.

SUMMARY

The ordinary collision of an electron with a positron, and the consequent
scattering is considered on the Dirac theory of the positron. It is shown
that exchange may take place between the electron we initially observe,
and one of the virtual electrons in states of negative energy, and that this
exchange very considerably modifies the scattering. It is further shown
that an alternative way of looking at this exchange is to consider the
process as one in which the initial electron and positron have been
annihilated, giving rise simultaneously to a new pair. The ordinary
scattering must then be modified 6n any theory in which the electron and
positron can be created and annihilated in pairs.

The practical result of the extra scattering is that when positrons pass
through matter, the number of slow secondary and ionization electrons
produced is not changed, but the number of fast secondary electrons is
considerably increased for high initial energies of the positron.
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