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Abstract. The haplodiploid genetic system found in all Hymenopterans creates an
asymmetry in genetic relatedness so that full-sisters are more closely related to each other
than a mother is to her daughters. Thus Hymenopteran workers who rear siblings can
obtain higher inclusive fitness compared to individuals who rear offspring. However,
polyandry and polygyny reduce relatedness between workers and their sisters and thus
tend to break down the genetic asymmetry created by haplodiploidy. Since the advent of
electrophoretic analysis of variability at enzyme loci, several estimates of intra-colony
genetic relatedness in the Hymenoptera have been published. To test the role of the genetic
asymmetry created by haplodiploidy in the evolution of eusociality, I assume that workers
are capable of investing in their brothers and sisters in their ratio of relatedness to them.
I then compute a haplodiploidy threshold, which is the threshold relatedness to sisters
required for workers to obtain a weighted mean relatedness of 0-5 to siblings and thus
break even with solitary foundresses. When workers rear mixtures of sisters and brothers
in an outbred population, the value of this threshold is 0-604. An examination of the
distribution of 185 estimates of mean genetic relatedness between sisters in Hymenopteran
colonies shows that the values are well below the expected 0-75 for full sisters, both in higly
eusocial as well as in primitively eusocial species although relatedness values in the latter
are higher than in the former. Of the 177 estimates with standard error, 49 are significantly
lower than the haplodiploidy threshold and 22 are significantly higher. Of the 35 species
studied only 6 have one or more estimates that are significantly higher than the
haplodiploidy threshold. For more than half the estimates, the probability of the
relatedness value being above the haplodiploidy threshold is less than 0-5. Reanalysis of
these data using 0-5 as the threshold does not drastically alter these conclusions. I conclude
that the genetic asymmetry created by haplodiploidy is, in most cases, insufficient by itself
either to promote the origin of eusociality or to maintain the highly eusocial state.

Keywords. Evolution of cusociality; haplodiploidy; genetic relatedness; haplodiploidy
threshold; Hymenoptera.

1. Introduction

The sterile worker castes found in all eusocial insects were often thought to present
an obvious challenge to Darwin’s theory of natural selection (Darwin 1859, pp.
268-273). The seminal work of W. D. Hamilton (Hamilton 1964a, b) constituted the
first serious attempt to meet this challenge. Hamilton developed the concept of
inclusive fitness and showed how fitness can also be gained through aiding close
genetic relatives in addition to or, indeed, instead of producing offspring. An
important reason for the instant appeal of this kin selection theory was the fact that
there have been at least eleven independent origins of eusociality in the insect order
Hymenoptera (Wilson 1971), a group in which haplodiploidy makes full-sisters
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more closely related to each other (coefficient of genetic relatedness, r = 0-75) than a
mother would be to her offspring (r = 0-5). (Although Pamilo and Crozier (1982)
have correctly argued that the appropriate directionality of relatedness is from
beneficiary to altruist, in keeping with common usage in the literature, I shall refer
to the conditional probability that an allele present in individual A is also present
in individual B as the genetic relatedness of A to B). This is in contrast to only two,
or perhaps three, known origins of eusociality outside the order Hymenoptera (the
termites and the naked mole rat and perhaps the aphids) [Wilson (1971); see Jarvis
(1981) and Shermann et al. (1991) for the naked mole rat and Aoki (1982) and Ito
(1989) for aphids]. Thus a Hymenopteran female may gain more inclusive fitness by
helping her mother produce additional female offspring (who would be her sisters)
than by starting a new nest and producing her own offspring. In other words,
haplodiploidy can potentially facilitate selection for worker behaviour through kin
selection. The validity of this so called haplodiploidy hypothesis depends of course
on the realisation of such high levels of relatedness between workers and the brood
they rear.

2. Two problems with the haplodipl'oidy hypothesis

There are, however, two main problems with the haplodiploidy hypothesis. The first
is that although workers may be related to their full-sisters by a coefficient of
genetic relatedness of 0-75, they are related to their brothers by merely 0-25. If
workers are engaged in rearing equal numbers of brothers and sisters, the average
relatedness to the brood they rear would be reduced to 0-5 which is no more than
the relatedness between a mother and her offspring. Trivers and Hare (1976)
suggested a way out of this difficulty by arguing that Hymenopteran workers who
have access to brood consisting of full-sisters and brothers would be selected to
skew investment in the ratio of 3:1 in favour of sisters. Although Alexander and
Sherman (1977) have argued that the data used by Trivers and Hare (1976) do not
support their prediction of such optimal sex investment ratios (see also, Grafen
1986, Nonacs 1986, Pamilo 1987, Boomsma 1989), their idea solves the problem at
least in principse.

The second problem with the haplodiploidy hypothesis is that many
Hymenopteran queens are known to mate multiply and concurrently use sperm
from several males so that workers often rear mixtures of full- and half-sisters
(coefficient of genetic relatedness between half-sisters =025) (reviewed in Starr
1984, Gadagkar 1985b, Page 1986). Because the actual levels of relatedness amongst
the queen’s daughters depend on the number of males she mates with and the -
manner in which she utilises sperm from different males, a solution to this problem,
or even a complete appreciation of it, was not possible without measuring the levels of
intra-colony genetic relatedness.

3. Levels of intra-colony genetic relatedness

With the advent of electrophoretic techniques for the detection of isozyme allele
frequencies (Harris 1966; Hubby and Lewontin 1966; Lewontin and Hubby 1966)
and their application to the measurement of genetic relatedness (Craig and Crozier
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1979; Pamilo and Varvio-Aho 1979; Pamilo and Crozier 1982; Pamilo 1984, 1989;
Queller and Goodnight 1989), a large number of estimates of intra=colony genetic
relatedness have now appeared in the literature. At least 26 publications are known
to me which together provide over 185 estimates of intra-colony genetic relatedness
in colonies of ants, honey bees, vespine wasps, swarm-founding wasps, primitively
eusocial bees and primitively eusocial wasps (appendix 1). Clearly, the time is ripe
for an objective . evaluation of the role of genetic asymmetry created by
haplodiploidy in the origin and maintenance of eusociality.

4. Conceptual difficulties in testing the haplodiploidy hypothesis

There appear to have been at least five conceptual difficulties in testing the
haplodiploidy hypothesis.

4.1 Conceptual difficulty 1 : Prediction of the haplodiploidy hypothesis

The first difficulty appears to be the lack of a clearly stated falsifiable prediction of
the haplodiploidy hypothesis. The main reason for this is that the terms kin
selection and haplodiploidy hypothesis are used interchangeably and the benefits of
altruism due to high genetic relatedness in social groups and those due to higher
productivities in the group mode compared to the solitary mode, are mixed up.
Low intra-colony genetic relatedness’is sometimes interpreted as a “significant
challenge for kin selection theory” (Queller et al. 1988, p. 1155). On other occasions,
low levels of intra-colony relatedness (even values less than 0-5) are not considered a
serious problem because of the fact that “even when r<1/2, altruism can be
favoured when the benefit is sufficiently higher than the cost.” (Strassmann et al.
1989, p. 269). To take one more example, Kukuk (1989, p. 197) concludes her paper
with the statement “The levels of relatedness in D. zephyrus colonies are high enough
for kin selection to be important in the maintenance of worker altruism given
environmentally caused limitations on the reproductive output of solitary females.”
(italics mine). All this is quite correct but does not permit us to test the role of
haplodiploidy in the evolution of worker altruism. What values of relatedness, for
instance, should be considered low enough to be unimportant for kin selection,
given environmentally caused limitations on the reproductive output of solitary
females? The answer is none, because any finite value of relatedness is sufficient for
kin selection provided environmentally caused limitations in the reproductive output
of solitary femaies are strong enough.

A useful way of stating Hamilton’s rule is that an altruistic or worker allele will
be favoured if

Rty > Ry, (1)

where n, is the number of individuals reared by a worker in a colony and r; is the
average genetic relatedness between workers and the brood they rear. Similarly n, is
the number of offspring that a solitary individual can rear and r, is her genetic
relatedness to her offspring (Craig 1979; Gadagkar 1985a). When dealing with social
insects it should be remembered that both n; and n, refer to reproductive
individuals and not to workers; the number of workers produced before producing
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reproductives is irrelevant here. In all theoretical arguments in the rest of this paper,
sisters of workers will mean reproductive sisters, be it while discussing the number
reared or genetic relatedness to them. It is important to realise that inequality (1)

can be achieved in two different ways. The first is if n,>n, even when r;<r,. The

second is if r;>r, even when n;<n,. When inequality (1) is achieved due to the.
second reason mentioned above, the species in question may be said to be
genetically predisposed to the evolution of eusociality (Gadagkar 1985a). Such

genetic predisposition is a prediction of the haplodiploidy hypothesis. In other
words, it is only when inequality (1) is achieved because r;>r, while n;<n, that the

haplodiploidy hypothesis should be considered as being validated. In short, the

question we should be asking is whether asymmetries in genetic relatedness alone

are sufficient to select for worker behaviour in the Hymenoptera. Thus low values

of r; should be regarded as falsifying the prediction of the haplodiploidy hypothesis

although inequality (1) can still be achieved by n; being appropriately greater than

n,. Indeed there is no need to measure levels of genetic relatedness at all if any value

of r, however low, is considered consistent with the hypothesis because inequality

(1) can always be achicved by. n;> n,. Much ambiguity will be eliminated if the terms

kin seléction and haplodiploidy hypothesis are not used interchangeably. Kin

selection is validated as long as inequality (1) is achieved, for whatever reason. Thus

low values of r; by themselves pose no problem for general kin selection theory. T

believe that testing the prediction as stated here is a necessary step towards

understanding the role of haplodiploidy in selecting for worker behaviour. Besides,

r; and r, are known or can be inferred for a large number of species while n; and n,

remain as yet unknown for ncarly all species (but see Queller and Strassmann 1989).

This is not to deny the importance of environmental factors but to test the role of
what can be measured precisely today (genetic relatedness, r; and r,) by not mixing

it up with what cannot be measured precisely today (differential productivities in

the social and solitary modes, n; and n,).

4.2 Conceptual difficulties 2 and 3: What to do about males and what value of
relatedness is sufficient?

Males are peripheral to the social organisation of ‘all Hymenopteran societies.
Colonies consist principally of queens and workers, both of whom are females.
Males may leave their natal nests soon after eclosion and lead a solitary life or may
remain on their natal nests but take virtually no part in its social organisation.
Because of the requirement of large worker forces (who are all females), most
colonies usually consist of many more females than males, even if the latter remain
on their natal nests. For these reasons most estimates of intra-colony genetic
relatedness are for the fernales. Genetic relatedness to males is usually unknown as
is the proportion of males in the brood. This poses a serious problem in estimating
the average genetic relatedness between workers and the brood they rear. It is to be
expected however that the inclusion of males is likely to lower the average worker—
brood genetic relatedness because males among the brood are most likely to be
brothers of the workers and therefore related to them by a coefficient of genetic
relatedness of a mere 0-25. ,

The question of what value of relatedness is sufficient is perhaps the most serious
conceptual difficulty in testing the haplodiploidy hypothesis. When intra-colony
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relatedness among females approaches 075, it is often considered favourable to
Hamilton’s ideas (e.g. Ross and Fletcher 1985, Ross and Matthews 1989a,b) and
when it falls below 0-5, it is often considered unfavourable (e.g. Ward 1983, Ross
1986, Queller et al. 1988). Tt is clear that a value as high as 0-75 is not strictly
necessary and a value below 0-5 will not do. But what, then, is the threshold value?

Workers will get no more fitness than solitary foundresses if they do not skew
investment in favour of sisters over brothers. This is because, when they rear equal
mixtures of full-sisters and brothers, their average relatedness to the brood will be
0-5. A combination of Fisher’s sex ratio theory (Fisher 1930) and Hamilton’s kin
selection theory (Hamilton 1964a,b) shows that if workers control investment, they
would be selected to achieve a ratio of investment between female and male brood
in the ratio of their genetic relatedness to the two classes of brood (Trivers and
Hare 1976; Oster et al. 1977; Macnair 1978; Craig 1980; Uyenoyama and Bengtsson
1981; Charnov 1978, 1982; Joshi and Gadagkar 1985).

There is admittedly some controversy about whether workers control investment
and whether they are actually able to achieve the optimum ratio of investment. In
order to be able to perform a test of the haplodiploidy hypothesis, however, I will

“assume that workers are capable of skewing investment in their brothers and sisters
in the ratio of their relatedness to them. This assumption may somewhat bias my
test in favour of haplodiploidy but it will at least permit an objective test under a
set of well-defined assumptions. Besides, a falsification of the haplodiploidy
hypothesis in spite of a bias in its favour would be more convincing than that of
one which contains a bias against it.

Consider an outbred population where the queens are singly mated and workers
rear full-sisters and brothers by successfully investing in their sisters and brothers in
the ratio of their relatedness to them (3:1 in favour of sisters) (Trivers and Hare
1976). The weighted mean relatedness between workers and the brood they rear will
be [(0-75 % 3)+(0-25 x 1)]/4=0-625. This value is greater than 0-5 which is the mean
relatedness between a solitary female and her offspring. Under these conditions
worker behaviour will be favoured. Clearly, workers have an advantage over
solitary females even if the weighted mean relatedness between the workers and the
brood they rear is less than 0625 but greater that 0-5. The problem then is to find
that value of relatedness between workers and their sisters which will make the
weighted mean relatedness to their brood equal to 0-5. In other words, given that
workers are investing in their brothers and sisters in the ratio of their relatedness to
them and that they are contributing as many individuals to the next generation as
the solitary foundress (n; = 1), what is the average degree of relatedness between a
worker and her sisters above which helping will pay and below which it will not?

If r, is the mean genetic relatedness between workers in a Hymenopteran colony
and their sisters, the optimum number of sisters that they should rear relative to
every brother reared is given by:

rp/0:25, @

where 0-25 is the expected mean genetic relatedness between the workers and their
brothers (Charnov 1982, p. 126). Of course workers may sometimes produce some
male offspring of their own. This and other factors that may alter worker—male
brood genetic relatedness are dealt with below, in § 6. When workers successfully
skew investment between sisters and brothers in the ratio r,/0-25: 1, their weighted
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mean genetic relatedness to siblings is given by:
F= [ (r}/0-25)+0-251/[ (r,/025)+ 1], (3)

where 0-25 is the expected genetic relatedness between workers and their brothers
and 7 is the weighted mean genetic relatedness to the brood they rear. Equation (3)
needs to be solved for 7/=0'5 and may be rewritten as

[ (F/0-25)+0-251/[ (F,/0-25)+ 1]=05, 4)

where 7 is the threshold relatedness between workers and their sisters which gives a
weighted mean relatedness of 0-5 between workers and the. brood they rear,
provided workers can skew investment in their sisters and brothers in the ratio of
their relatcdness to them. Equation (4) may be rewritten as

16f%~87,—1=0 ©)

and yields a value of 0-604 for 7. This means that a minimum genetic relatedness of
0-604 between worl-ers and their sisters is required if workers are to gain at least as
much fitness as solitary individuals, in spite of skewing investment between sisters
and brothers in the ratio of their relatedness to them. I will call this number,
fr=0604, as the haplodiploidy threshold. The haplodiploidy threshold is thus that
value of genetic relatedness between workers and the female brood they rear so
that, upon skewing investment between sisters and brothers in the ratio of their
relatedness to them, their weighted mean relatedness to the brood they rear is equal
to 05, the value expected for solitary individuals (Gadagkar 1990b). The
haplodiploidy threshold thus simultaneously provides solutions to conceptual
difficulties 2 and 3, namely, what to do about males and what value of genetic
relatedness is sufficient? Note that I have defined the haplodiploidy threshold in
terms of the relatedness required between workers and their sisters merely because
data on genetic relatedness between sisters are most readily available and need to
be evaluated. I also show the derivation of the haplodiploidy threshold graphically
in figure 1.

4.3 Conceptual difficulty 4: How to deal with primitively eusocial and highly eusocial
species?

There is considerable ambiguity in the literature about whether or not to interpret
low intra-colony relatedness in highly eusocial species (those with morphological
castes) as evidence against the role of genetic asymmetries created by haplodiploidy
in social evolution. The reason for this ambiguity is that one can always argue that
highly eusocial species with morphologically specialised castes have been locked
into sociality and the workers, having no way of obtaining any direct fitness, will be
selected to work even if their inclusive fitness is significantly lower than would be
expected for a solitary individual.

True, one may argue that worker—brood relatedness in highly eusocial species
need not be high because workers have no direct reproductive options and that,
being locked into sociality, they cannot revert to a solitary life. However, the
example of the Cape Honey Bee shows that even in a highly eusocial species,
workers can potentially regain reproductive capacity (Anderson 1963; Moritz 1986,
1989). I therefore propose that the question we should be asking with highly
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Figure 1. A graphic illustration of the haplodiploidy threshold. Workers are assumed to
be capable of skewing investment between their sisters and brothers in their ratio of
relatedness to them. Assuming that workers are related to their brothers by 025, I plot the
weighted mean relatedness to siblings obtained for different values of relatedness to sisters.
The haplodiploidy threshold is that value of relatedness to sisters that yiclds a weighted
mean relatedness to siblings of 0-5 so that workers break even with solitary foundresses. In
an outbrad population, the haplodiploidy threshold is equal to 0-604.

eusocial species is whether genetic asymmetries created by haplodiploidy are
responsible for the maintenance of eusociality. In other words, is the mean worker—
brood relatedness higher than expected for a solitary individual so that it can act as
a barrier for workers to revert to a reproductive or solitary state? So long as we show
that genetic asymmetries created by haplodiploidy are not sufficient to select for a
mutant that reverts back to the reproductive or solitary state, it is a satisfactory
falsification of the haplodiploidy hypothesis. I will therefore use data on highly
eusocial species to test the hypothesis that asymmetries created by haplodiploidy
alone are sufficient to maintain the eusocial state.

In most primitively eusocial species, workers are capable of mating and
reproducing and often have opportunities to leave their nests and initiate their own
solitary foundress nests. The problem of why most individuals under these
circumstances accept sterile worker roles may be thought of as the problem of the
origin of eusociality as opposed to its maintenance. I will therefore use data on
primitively eusocial species to ask if the genetic asymmetries created by
haplodiploidy are sufficient to promate the origin of eusociality. In other words, are
workers in primitively eusocial species accepting sterility merely because they have
an opportunity to rear brood that is more closely related to them than their own
offspring would be?

‘4.4  Conceptual difficulty 5. What constitutes a test of the haplodiploidy hypothesis?

Given that 0604 is the threshold relatedness required between workers and their
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sisters for them to obtain the same mean relatedness to brood as is expected for
solitary individuals and given several estimates of intra-colony genetic relatedness
among females, there still remains the question of what constitutes a test of the
haplodiploidy hypothesis.

In appendix 1, I list 185 published estimates of intra-colony genetic relatedness in
various species of social Hymenoptera. These estimates are of genetic relatedness
among the workers of a colony, among female alates eclosing from a colony, among
the daughters in a colony, among female nestmates of a colony, among female
foundresses of a colony and, in four cases, refer to relatedness between workers and
the female brood they rear. All of these estimates pertain to relatedness between
sisters and T will therefore use these estimates as approximations of the genetic
relatedness between workers and the female reproductive brood they rear. Most
estimates of genetic relatedness are accompanied by estimates of standard errors. I
have therefore computed the 95% confidence limits of the relatedness values as
mean =+ 1-96 x SE,

While a single estimate is available for some species, a number of estimates are
available for others."The estimates for different loci, from different populations and
those obtained by different methods of averaging, are all given. However, a single
overall or consensus estimate with mean and standard error is not available for
many of the latter species. This makes the use of these estimates in evaluating the
role of haplodiploidy difficult. But, for the present, I will use all values that have
been provided in the literature and draw what conclusions I can.

I will use four methods in my attempt to evaluate the published estimates of
relatedness. (a) First, I will examine the distribution of the mean values of
relatedness. (b) Second, T will use the 95% confidence intervals computed from the
mean and the standard error and count the number of estimates significantly less
than the haplodiploidy threshold of 0-604 (those whose upper confidence limit is
less than the threshold), the number indistinguishable from the haplodiploidy
threshold (those whose confidence intervals overlap with the threshold) and the
number that are significantly higher than the haplodiploidy threshold (those whose
lower confidence limits are higher than the threshold). The level of statistical
‘significance here corresponds to p<0-025 as I am using the 95% confidence limits
but T am interested in a one-tailed test. Here, T will consider the estimates
significantly lower than the threshold as providing evidence against the role of
haplodiploidy, the estimates significantly higher than the threshold as providing
evidence for the role of haplodiploidy and the estimates overlapping with the
threshold as being incapable of providing evidence one way or 'the other. (¢) Third,
to correct for the problem of multiple estimates per species in a small way, I will
count the number of species that have at least one estimate significantly higher than
the threshold and treat this as strong evidence in support of the role of
haplodiploidy. Conversely, I will treat the absence of even a single estimate (when
more than one is available) being significantly higher than the threshold as strong
evidence against the role of haplodiploidy. (d) Fourth, I will use the normal
approximation to compute the probability that a randomly picked value from the
observed distribution is above the threshold by computing the area under the curve
that is above the threshold. T will then examine the distribution of such probability
values. In each case, T shall first consider all species simultaneously and then
separately deal with highly eusocial and primitively eusocial species.
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5. A test of the haplodiploidy hypothesis

5.1 Distribution of mean relatedness values

In figure 2A 1 have plotted the frequency distribution of the 185 mean values of
genetic relatedness from appendix 1 and from figure 3 (below). This distribution has a
mean of 0-50 and a median of 0-57. These values are strikingly lower than 0-75, the
expected genetic relatedness among full-sisters in the Hymenoptera. Low as they
are, even these values are overestimates. This is because a single species,
Microstigmus comes, which has consistently high values of intra-colony genetic
relatedness is represented by 42 estimates whereas many other species which have
low values of intra-colony relatedness are represented by one or a small number of
estimates. In figure 2B I plot the resultant distribution after replacing the 42
estimates for M. comes with a single consensus estimate of 0-63 (Ross and Matthews
1989b). This distribution has a mean of 0-45 and a median of 0-48. The 90 estimates
for highly eusocial species are even lower with a mean of 0-37 and a median of
0-30 (figure 2C). The remaining 95 estimates for primitively eusocial species appear,
at first sight, to be high, with a mean of 0-62 and a median of 0-64 (figure 2D). But
this again is due to those 42 estimates for M. comes! When replaced with the single
consensus estimate, the distribution for primitively eusocial species also appears to
be far below expectation with a mean of 0-58, a standard deviation of 0-15 and a
median of 0-57 (figure 2E). One solution to the problem of multiple estimates per
species is to take the arithmetic mean of all values for a species and examine the
distribution of these means. When all species are taken together, this distribution
has a mean of 04279, a standard deviation of 0-1963 and a median of 0-387. For
highly eusocial species, the corresponding values are 0-3422, 0-1952 and 0-316, and
similarly for primitively eusocial species, 0-5316, 01395 and 0-539. We may there-
fore conclude from this survey of the distribution of mean values of genetic rela-
tedness that the expected value of 075 is rarely achieved and that the genetic asy-
mmetry potentially created by haplodiploidy is broken down to a considerable
extent. This appears to be the case both for highly eusocial and primitively eusocial
species although the values for primitively eusocial species are considerably higher
than those for highly eusocial species.

5.2 Estimates significantly lower, overlapping with, and significantly higher than the
haplodiploidy threshold

Eight of the 185 estimates of genetic relatedness listed in the appendix 1 are without
standard errors and I cannot therefore use them in the following three methods of
evaluation. Of the remaining 177 estimates, 49 are significantly lower than the
haplodiploidy threshold and thus provide evidence against the role of haplodiploidy
(figure 3 and table 1). Of these, 31 pertain to ants, 2 to vespine wasps, 10 to swarm-
founding wasps, 3 to primitively eusocial bees and 3 to primitively eusocial wasps.
106 estimates do not provide evidence one way or the other because they overlap
with the haplodiploidy threshold. Only 22 estimates are significantly higher than
the haplodiploidy threshold. Of these, 5 pertain to ants, none to vespine wasps and
swarm-founding wasps, 4 to primitively eusocial bees and 13 to primitively eusocial
wasps. Taken together these numbers can by no means be said to. provide strong
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Figure 2. Distribution of the mean values of intra-colony genetic relatedness
corresponding to the estimates in appendix 1 and figure 3 (below). (A) All 185 estimates.
(B) The 42 estimates for M. comes are replaced with a single consensus estimate of 0-63. (C)
All estimates for highly eusocial species. (D) All estimates for primitively eusocial species.
(E) All estimates for primitively eusocial species excluding those for M. comes. The
numbers on the right side of cach distribution are the mean and standard deviation in the
first row and the median and sample size in the second row.
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support for the role of haplodiploidy either in the origin or the maintenance of
eusociality in the Hymenoptera.

5.3 Species that have at least one estimate significantly higher than the huplodiploidy
threshold

Since there are often several estimates for a given species, I will now count species
rather than estimates (table 1). Of the 15 species of ants that have estimates with
standard errors, only 3 have at least one estimate which is significantly higher than
the haplodiploidy threshold. These are Solenopsis geminata for which 3 out of 5
estimates are significantly higher than the threshold, Solenopsis invicta for which 1
out of the 4 estimates is significantly higher and Solenopsis richteri for which the
only estimate available is significantly higher than the haplodiploidy threshold. The
single species of honey bee does not have an estimate with standard error but it is
expected to have a value close to 0-25. The 2 species of vespine wasps do not have
values significantly higher than the haplodiploidy threshold. Of the 3 species of
swarm-founding wasps studied, none has even one estimate which is significantly
higher than the haplodiploidy threshold. Thus out of 20 species of highly eusocial
Hymenopterans studied, only 3 have at least one estimate higher than the
haplodiploidy threshold. These results suggest that the genetic asymmetry created
by haplodiploidy by itself cannot maintain the eusocial state in most highly eusocial
Hymenoptera. In other words, barring a few exceptions, workers in highly eusocial
Hymenoptera are not prevented from reverting to the solitary state merely because
they are rearing brood more closely related to them than solitary individuals would
do. Clearly, there must be other forces which prevent such species from turning
solitary.

Of the 2 primitively eusocial bees studied, Lasioglossum zephyrum has only 4 out
of 26 estimates significantly higher than the haplodiploidy threshold. It should also
be noted that all four estimates which are significantly higher than the
haplodiploidy threshold are from Kansas; none from New York is significantly
higher. Of the 8 estimates available for the other primitively eusocial bee, Exoneura
bicolor, none is significantly higher than the haplodiploidy threshold. Of the 17
species of primitively eusocial wasps studied, only 2 have estimates higher than the
haplodiploidy threshold. One is Microstigmus comes in which only 12 out of 42
estimates are higher than the haplodiploidy threshold. The other is Mischocyttarus
* immarginatus in which the only estimate available is higher than the haplodiploidy
threshold. Thus, out of 13 species of primitively eusocial Hymenopterans which
have estimates of intra-colony genetic relatedness with standard errors, only 3 have
at least one estimate significantly higher than the haplodiploidy threshold although
it must be mentioned that most species of primitively eusocial wasps have only one
or two estimates. It seems reasonable to conclude from these numbers that the
genetic asymmetry potentially created by haplodiploidy cannot by itself promote
the origin of eusociality either. In other words, even in species where workers have
reproductive options, barring a few exceptions, they do not appear to assume
worker roles and behave altruistically merely because they are rearing brood to
whom they are more closely related than a solitary female is to her brood. Clearly,
there must be other factors which select for such worker behaviour.

An important assumption made in performing this test of the haplodiploidy
hypothesis is that workers can skew investment in their sisters and brothers in the
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Table 1. A test of the haplodiploidy hypothesis using the threshold of 0-604 ~Summary.

No. of species
No. of species  for which at

No. of esti- No. of No. of esti- for which least one esti-
No. of mates signifi- estimates mates signi- estimates mate is signi-
estimates cantly low-  overlapping  ficantly grea- with ficantly gre-
No. of without er than the with the ter than the standard ater than the
estimates standard  haplodiploidy haplodiploidy haplodiploidy  errors are haplodiploidy
Group available error threshold threshold threshold available threshold
Ants 74 3 31 35 5 15 3
Honey bee 1 i 0 0 0 0 0
Vespine
wasps 2 0 2 0 0 2 0
Swarm-
founding '
wasps 13 0 10 3 0 3 0
Primitively
eusocial
bees 34 0 3 27 4 2 1
Primitively
cusocial
wasps 61 4 3 41 13 13 2
Total 185 8 49 106 22 35 6

ratio of their relatedness to them. Haplodiploidy cannot select for worker behaviour
if workers are incapable of effecting this bias. Our conclusion that haplodiploidy by
itself cannot promote the origin or maintenance of eusociality thus remains valid
even if this assumption does not hold. If workers invest equally in brothers and
sisters, their weighted average relatedness to brood will be 05 and thus r;=r,. It is
however possible that workers can skew investment only partially and thus
somewhat less than what is optimal for them. For instance, Boomsma (1989) has
argued that female bias in sex-investment ratios has been systematically over-
estimated and that, in monogynous ants, it is only about 1-82:1 rather than the
expected 3:1. When such values for investment ratios are used, the haplodiploidy
threshold goes up. For instance, the haplodiploidy threshold would go up to 0-638
and only 9 instead of 22 out of 177 values would be significantly greater than the
threshold if I were to use the female-to-male investment ratio of 1-82:1 after
Boomsma (1989). Similarly, one could use the investment ratio empirically
determined for the primitively eusocial wasp Microstigmus comes (Ross and
Matthews 1989b). The only problem here is that the estimated female-to-male
investment ratio is a conservative approximation based on several assumptions
which “...should be regarded as a minimum value for the extent of female-biased
investment” (Ross and Matthews 1989b, p. 587). If T were to use the value of 1-78: 1
(females: males) estimated by them and use-their consensus estimate of 0-63 for

Figure 3. A test of the haplodiploidy hypothesis. 185 estimates of genetic relatedness
between sisters in Hymenopteran colonies are shown. The dots are the mean values and
the bars indicate 95% confidence limits. In 8 cases, only the means are shown as there are
no estimates of standard errors. The vertical solid line is the haplodiploidy threshold
(0-604). All estimates that are significantly greater than the haplodiploidy threshold and
thus lie entirely to the right of the vertical line are shown by dotted lines. For comparison
1 have shown a vertical broken line corresponding to a threshold of 0-5.
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relatedness to sisters and 0-21, the higher of their two estimates, for relatedness to
brothers, the weighted mean relatedness to siblings would be only 0-479. If these
values are accurate, haplodiploidy alone cannot select for worker behaviour even in
M. comes.

54 Probability of relatedness value being above the haplodiploidy threshold

As mentioned in §4.4, T use the normal approximation to compute for each
estimate the area under the curve that is above the haplodiploidy threshold and
interpret it as the probability that the relatedness is greater than the threshold.
In figure 4A, T plot the distribution of such probability values for the 177 estimates
for which standard errors are available. This is a clearly bimodal distribution with a
mean of 046 and a median of 0:45. This means that for more than half the
estimates, the probability of being above the haplodiploidy threshold is less than
0-5. Even so, this value is an overestimate because of the inclusion of a large
number of high values for the single species M. comes. This time I cannot replace
the 42 values for this species with the consensus estimate because the consensus
estimate has no standard error associated with it. If I simply delete the 42 values for
M. comes the resultant distribution has a mean of 0-33 and a median of 0-13.
Indeed, for nearly half the estimates, the probability of being above the
haplodiploidy threshold is 0:13 or less (figure 4B). As in the previous methods,
separating out highly eusocial and primitively eusocial species yields similar results.
The values for the highly eusocial species have a mean probability of being above
the haplodiploidy threshold of 0-26 and a median probability of 0-02 (figure 4C).
This means that for half the estimates, the probability of being above the
haplodiploidy threshold is less than 0-02. The probability values appear high for
primitively eusocial species (figure 4D; mean & SD =064 +0-34, median=074). But
this again is due to the large number of values for M. comes. Upon deleting these
we have a mean of (-44 and a median of 0-43 (figure 4E). This means that even for
primitively eusocinl species the probability of being above the haplodiploidy
threshold is less than half for more than half the estimates. Taken together, these
numbers once again fail to provide strong support for the role of haplodiploidy and
in fact suggest that for most species, most of the time, workers are not being selected
to be altruistic because of higher genetic relatedness to the brood they rear
compared to what they may have obtained if they had been solitary individuals.

6. The effects of polygyny and worker reproduction

Workers in Hymenopteran colonies sometimes lay their own haploid eggs instead
of, or in addition to, rearing the queen’s haploid male offspring (Fletcher and Ross
1985; Bourke 1988). This may increase relatedness between a worker and the male
brood on the nest (r=05 if she lays the haploid eggs and r=0-375 if the haploid
eggs are laid by other workers who may be her full-sisters). Worker reproduction
may also decrease relatedness to male brood if the haploid eggs are laid by their
half-sisters (r=0-125). Polygyny (cither the simultaneous egg-laying by more than
one female or frequent queen replacements) leads to considerable reduction in
genetic relatedness between workers and the brood they rear. There is evidence in
the primitively eusocial wasp R. marginata that workers rear brood which may be
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Figure 4. Probability of relatedness estimates being higher than the haplodiploidy
threshold of 0-604. Using the normal approximation, the area under the curve which is
above the haplodiploidy threshold of 0-604 has been computed for each estimate using its
mean and standard error shown in figure 3 and appendix 1. This area is interpreted as the
probability that a randomly picked value from the distribution will be higher than the
haplodiploidy threshold. The distribution of such probability values is shown here. (A) All
177 estimates. (B) All estimates excluding those for M. comes. (C) All estimates for hlghly
eusocial species. (D) All estimates for primitively eusocial species. (E) All estimates for pri-
mitively eusocial species excluding those for M. comes.
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complex mixtures of their full-sisters, half-sisters, brothers, nieces, nephews and
cousins and sometimes rear brood as distantly related to them as their mother’s half-
sister’s offspring (r=0-0625) (Gadagkar et al. 1990; Gadagkar 1991). Let us
therefore consider a more general situation where relatedness of workers to male
brood can vary between 0 and 0-5 and that to fermnale brood between 0 and 0-75.
Assuming once again that workers can skew investment between the female and -
male brood in the ratio of their relatedness to them, the equation required to
calculate the haplodiploidy threshoid can now be written as

F=[(r}/r,,,)+r,,,]/[(rf/r,,,)+1], (6)

where r ; is the genetic relatedness between workers and the female brood, r,, is the
genetic relatedness between workers and the male brood and 7 is the weighted mean
relatedness to brood. I thus compute (numerically) pairs of values of relatedness of
workers to female and male brood where the weighted mean relatedness to brood (if
they invest in the ratio of their relatedness to them, ie., r ;/r,: 1), is equal to or
greater than 0-5. The results of this are shown in figure 5 where the unhatched
region represents the set of values where haplodiploidy by itself cannot select for
worker behaviour (7<0-5) and the hatched region represents the set of values where

it can (7> 0-5). There are three main points of interest in this figure.

(1) All regions where relatedness to female brood is greater than 0:75 and that to
male brood is greater than 05, are considered not allowed because these values are
unlikely to be obtained except through inbreeding. The region where haplodiploidy
will select for worker behaviour is small and represents only about 24% of
the allowed relatedness space (i.c., where relatedness to female brood is between 0
and 0-75 and that to male brood is between 0 and 0-5).

(2) There-is a small region where the haplodiploidy threshold is less than 0-604 (the
hatched region to the left of the dotted line in figure 5). This is because, by rearing
mixtures of sons and sisters, workers can gain relatively more fitness than they
would by rearing mixtures of brothers and sisters. Production of a colony’s male
offspring by workers should therefore promote social evolution by haplodiploidy.
This may appear to invalidate the test of the haplodiploidy hypothesis performed in
§5. There are, however, at least three reasons why the test may still be valid. First,
there is little evidence of male production by workers in the species used here to
test the haplodiploidy hypothesis. Second, recent theoretical work indicates that
the efforts of workers to lay eggs are unlikely to succeed because, when queens
mate multiply (as they often do), workers cannot “agree” on which one of them
should lay the eggs. This is expected to lead to worker policing that results in the
destruction of worker-laid eggs (Ratnicks 1988). Observations on the honeybee
Apis mellifera show that such theoretical expectations are borne out (Ratnieks
and Visscher 1989; Visscher 1989). Third, the haplodiploidy threshold is
only marginally lowered for moderate levels of male production by workers. The
value of 0-604 when workers lay no eggs reduces only to 0601 when workers
produce 20% of a colony’s haploid eggs and only to 0582 when workers lay 50%
of a colony’s haploid eggs (figure 6). My test of the haplodiploidy hypothesis thus
appears to be quite robust.

(3} The third point of interest in figure 5 is the rather unexpected region, shown by
the double-headed arrow. When relatedness to female brood is 0-55 and that to
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Figure 5. Regions in the relatedness space where haplodiploidy by itself can select for
worker behaviour. Assuming that workers can skew investment between male and female
brood in the ratio of their relatedness to them, the resultant weighted mean relatedness to
brood 7 is computed from (6). When 7>0-5, workers gain more fitness than solitary
foundresses and therefore haplodiploidy by itself can select for worker behaviour (hatched
region). The unhatched region is that where haplodiploidy by itself cannot select for
worker behaviour because 7<0'5. Note that in an outbred population, relatedness to male
brood is not likely to be greater than 05 (sons) and to female brood is not likely to be
greater than 075 (full-sisters). The region where haplodiploidy can select for worker
behaviour is therefore restricted to the small hatched region which corresponds to about
24% of the allowed relatedness space. The hatched region to the left of the dotted line is
where the haplodiploidy threshold is less than 0-604 because workers are assumed to rear
sons instead of, or in addition, to some brothers. The region shown by the double-headed
arrow illustrates that a simple mean of relatedness to male and female brood does not
always predict the consequences for social evolution. For example, when relatedness to
female brood is 0:55 and that to male brood is 0-05 (lower arrow-head), haplodiploidy will
select for worker behaviour. If relatedness to female brood remains at 0-55, but that to
male brood is increased to 0-1 {upper arrow-head), haplodiploidy will no longer select for
worker behaviour (see also table 2).

male brood is 005, the simple average relatedness to brood is 0-3. But the optimum
sex-investment ratio from the point of view of workers is 11:1 (in favour of female
brood) and this gives a weighted_mean relatedness of 0-508 when haplodiploidy will
select for worker behaviour. When relatedness to female brood remains at 0-55 but
that to male brood is increased to 0-1, the simple average relatedness to brood is
0-325 and thus higher than before. But the optimum sek-investment ratio now is
55:1 (computed from equation r,/r,:1 in parenthesis on p. 16, line 14) and the
weighted mean relatedness to brood becomes 0-480 (from (6)). Consequently, haplodi-
ploidy will no longer select for worker behaviour (see table 2). A simple mean of the
relatedness to female and male brood is therefore not a good indicator of whether
or not haplodiploidy can select for worker behaviour.



18 Raghavendra Gadagkar

0-60 -

0-58

0-56

0-54 -

0.52+

Haplodiploidy threshold

0.50 T T T T
0 0-2 0-4 0.6 0.8 1.0

Proportion of a colony's male offspring
contributed by workers

T

Figure 6. Effect of male production by workers on the haplodiploidy threshold. When a
worker contributes a certain proportion of a colony's male offspring (by laying haploid
eggs), the weighted mean relatedness between it and the colony's male brood is given by
[0-5w+0-25(1 — w)] where, w is the proportion of a colony’s male brood contributed by a
worker and (l—w) that contributed by the queen. For different values of w, the
haplodiploidy threshold is now computed as in figure 3 by using the appropriate weighted
mean relatedness to male brood in place of r,. As expected, the haplodiploidy threshold
decreases as the proportion of haploid eggs laid by a worker increases. However, for
moderate levels of haploid egg production by workers, the reduction in the haplodiploidy
threshold is marginal. When a worker lays 20% of a colony’s haploid eggs, for example,
the haplodiploidy threshold drops only to 0:601 and when it produces 50% of a colony’s
haploid eggs, the haplodiploidy threshold drops only to 0-582. For simplicity, I have not
considered the effect of haploid eggs laid by other workers on the [itness of a given worker,
Besides, that is likely to have less effect than its own haploid egg production.

7. A threshold of 0-5?

Two arguments may possibly be made against my method of computation of the
haplodiploidy threshold. These arguments are different for the origin and for the
maintenance of eusociality and both suggest a threshold of 0-5 instead of 0-604. As I
have already emphasized, the most important assumption in my analysis is that
workers are capable of biasing investment in the ratio of their genetic relatedness to
brood. During the origin of eusociality, however, it may be argued that workers may
be selected to rear an all-female brood. If this happens of course any value of
relatedness among sisters greater than 05 is sufficient to select for worker
behaviour. During the maintenance of eusociality, if all individuals in the population
are eusocial and if everybody produces the same female-biased sex-ratio, the value
of males increases. In fact the life-for-life coefficients of genetic relatedness of
Hamilton (1972) show that this is equivalent to an increased relatedness to males
such that they become as related to the workers as female brood would be. This
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Table 2. An example to illustrate that a simple
average of the relatedness to female and male brood
does not always predict the consequences for social
evolution through haplodiploidy.

Examgple 1 Example 2
Relatedness to
female brood 055 0-55
Relatedness to .
male brood 0-05 010

Simple average
relatedness to
brood 0-300 0-325

Expected female

to male sex ratio

based on ratio of

relatedness 11:1 55:1

Weighted mean
relatedness to

brood 0-508 0-480
Haplodiploidy

by itself can

select for

worker behaviour Yes No

would again suggest that any relatedness among sisters greater than 0-5 will be
sufficient to select for worker behaviour. Much depends therefore on what ratios of
sex-biased-investment-will-be possible and will be selected among incipient workers
and among highly eusocial workers. Pending the resolution of this question, T will
in the meantime, re-examine the data in appendix 1 using a threshold of 0-5.

Now we have 38 of the 177 estimates significantly lower than 0-5, which thus
continue to provide evidence against haplodiploidy, 63 estimates significantly above
0-5 providing evidence in favour of haplodiploidy and 76 values overlapping with
0-5 (table 3). Of the 35 species studied, only 11 have at least one estimate which is
significantly greater than the threshold (0-5) (table 3). In figure 7A, 1 plot the
distribution of the probabilities of being above 0-5 for the 177 estimates. In spite of
using a threshold of 0+, the mean of this distribution is only 0-58 and the median is
0:74. Moreover this again is an overestimate because of the inclusion of the 42
estimates for M. comes. On deleting these, the distribution has a mean of 0-45 and a
median of 0-40 (figure 7B). This means that even if we use the threshold of 0'5, the
probability of being above the threshold {0-5) is less than half for more than half the
estimates. Separating out the highly eusocial and primitively eusocial species yields
similar results as before. For the highly eusocial species the distribution has a mean
of 033 and a median of 0-1 (figure 7C). For the primitively eusocial species the
distribution has a mean of 0-82 and a median of 099 (figure 7D). But this is
because of the M. comes estimates which are almost all significantly greater than
0-5. Deleting them as before, yields a more modest mean of 0-66 and median of 0-75
(figure 7E). This still means that half the estimates for primitively eusocial species
have a one in four chance of being less than 0-5. T believe therefore that our
conclusions have not changed in any major way by using a threshold of O-5 rather
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Table 3. A test of the haplodiploidy hypothesis using the threshold of 0-5—Summary.

No. of
species for
No. of which at
No. of No. of species for least one
No. of estimates No. of estimates which esti- estimate is
estimates significantly estimates significantly  mates with  significantly
No. of without lower overlapping greater standard greater
estimates standard than the with the than the €rrors are than the
Group available error threshold threshold threshold available threshold
Ants 74 3 25 35 i 15 6
Honey bee 1 1 0 0 0 0 0
Vespine
wasps 2 0 1 1 0 2 0
Swarm-
Founding
wasps 13 0 10 3 0 3 0
Primitively
cusocial
bees 34 0 1 26 7 2 1
Primitively ’
eusocial
wasps 61 4 1 11 45 13 4
Total 185 8 38 76 63 35 i1

than one of 0-604. The genetic asymmetry potentially created by haplodiploidy is
insufficient by itself to promote the origin or the maintenance of eusociality.

8. Conclusion

A review of the literature shows that a fairly large number of estimates of intra-
colony genetic relatedness among females is available for social Hymenoptera.
However, these estimates cannot at present be used very effectively because a
number of different estimates per species are sometimes provided in the literature
without a single summarising or consensus estimate with standard error. However
the analysis presented here shows that a test of the role of genetic asymmetries
created by haplodiploidy in selecting for worker behaviour in the Hymenoptera is
possible provided some assumptions are made. The main assumption is that
workers are capable of discriminating between male and female brood and skewing
investment in proportion to their genetic relatedness to brood of the two sexes. A
second asssumption is that of outbreeding which appears to be valid; no significant
level of inbreeding has been reported in all but two of the populations studied. The
main conclusion that emerges from this analysis is that the genetic asymmetry
created by haplodiploidy by itself is unlikely to be responsible either for the origin
or the maintenance of eusociality in the Hymenoptera. To the extent that relatively
few populations of few species have been studied so far, the test of the
haplodiploidy hypothesis presented here may be considered preliminary. However,
as it becomes available, the methodology developed here can be readily used to
incorporate new information concerning genetic relatedness and the ability or
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otherwise of workers to skew investment between brood of the two sexes. Since the
haplodiploidy threshold computed here depends on the as yet poorly tested
assumption that workers invest in brood of the two sexes in the ratio of their
relatedness to them, the possibility remains that the threshold relatedness to sisters
required for the evolution of eusociality is a mere 0-5. But using 0-5 as the threshold
does not alter these conclusions drastically.

Even before this test was performed, the inability of haplodiploidy by itself to
promote social evolution has been suggested for a variety of reasons by a number of
investigators (Lin and Michener 1972; Alexander 1974; West-Eberhard 1978;
Crozier 1982; Andersson 1984; Stubblefield and Charnov 1986; Venkataraman et
al. 1988; Gadagkar 1990a, 1991; Gadagkar et al. 1990). However, the analysis
presented here should not be thought of as demolishing a straw man. It is possible
in principle for haplodiploidy by itself to promote the origin and maintenance of
eusociality. Indeed, in species of the fire ant genus Solenopsis and in such species as
Lasioglossum  zephyrum, Microstigmus comes, and Mischocyttarus immarginatus,
sufficiently high levels of genetic relatedness between sisters are obtained, for
haplodiploidy by itself to make worker behaviour more advantageous than direct
reproduction (without the need for any limitations on the reproductive output of
workers). It is therefore essential that the haplodiploidy hypothesis be put to
tests of the kind proposed here. Besides, the differences between different species
that will be discovered from such an exercise may be illuminating,

If, as argued here, haplodiploidy by itself cannot select for worker behaviour, the
evolution of eusociality remains an essentially unsolved problem in evolutionary
biology. One course of action then is to explore factors that might potentially act in
conjunction with haplodiploidy and predispose the Hymenoptera to the evolution
of eusociality (Seger 1983; Godfrey and Grafen 1988; Frank and Crespi 1989). One -
such factor is kin recognition. If workers can discriminate between full- and half-
sisters among the brood and give preferential aid to the former, this will restore the
genetic asymmetry created by haplodiploidy and thus select for worker behaviour
(Gadagkar 1985b). The available evidence indicates, however, that primitively
eusocial species are incapable of such kin recognition (Gadagkar 1985b, 1991;
Gamboa et al. 1986; Venkataraman et al. 1988). On the other hand, at least
some species of highly eusocial insects such as honey bees and some ants appear to
have the potential for discriminating full-sisters from half-sisters within their colony
(reviewed in Gadagkar 1985b, but see for more recent controversy over this issue,
Page et al. 1989, 1990; Carlin and Frumhoff 1990; Oldroyd and Rinderer 1990;
Page and Robinson 1990). A second course would be to explore factors
unconnected with haplodiploidy that might potentially select for worker behaviour.
This has been pursued concurrently with investigations of the role of haplodiploidy,
albeit at a rather slow pace (Lin and Michener 1972; Alexander 1974; West-
Eberhard 1975, 1978; Andersson 1984; Gadagkar 1990a, c, d).
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