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On the existence of automorphisms with simple Lebesgue spectrum
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Abstract. It is shown that if T is a measure preserving automorphism on a proba-
bility space (£2, BB, m) which admits a random variable Xo with mean zero such that the
stochastic sequence Xp o 7%, n € Z is orthonormal and spans L2(€2, B, m), then for any
integer k # 0, the random variables X o T™,n € Z generate B modulo .
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1. Introduction

The purpose of this note is to show that if there is an automorphism with simple Lebesgue
spectrum, then the probability measure of the corresponding stationary processes must be
supported in a small subset of CZ, in some precise sense explained below.

Let C denote the set of complex numbers with its Borel o-algebra. Let Qy = CZ with
the product o-algebra B, and let T be the left shift

T(wﬂ):i-ooz (yn),‘:o:_ooa Yn = Wpy1, nE L.
Suppose there exists a probability measure m on ) invariant under T and such that:

(1) the coordinate functions X,, n € Z, X, (W) = wn, w € Qy, all have mean zero, they
are square integrable and mutually orthogonal,

(i) X, n € Z, span LZ(y, By, m), the linear subspace of functions in L?(Q0, By, m) with
mean zero. ‘

Write:

X= ﬁ Czn.H, Y= ﬁ Can, Con = 62n+1 = C)

n=-—c0 n=—00
and view € as the product X x Y. If w = (w,)°.___ € Qp, then
(= (Wams1)ptooo €X, 1= (w2)2_EY

and we identify (¢,n) with w.
Let m; and m; denote the projections of m on X and ¥ tespectively. Define T} : X— ¥
T, : Y—X as follows: :

k4

T, (w2n+l)::;-oo = (J’Zn):i_ooa Y2n = Wap+t1,
Da(Wan) oo = V2nt1) oo ogs Yontl = Wonsa.
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Then
T(¢,m)=(Tm¢); (¢n) €XxY.

It is shown that m (if one such exists) is supported on a set S in 2y such that the projection
maps onto X and Y, when restricted to S, are one-to-one. It follows that 72, T} o T,
T, o Ty are isomorphic and the o-algebra generated by the variables Xa,, n € Z, is,
modulo m-null sets, equal to the Borel o-algebra of (2.

For the case when Oy = {—1, —{—I}Z, it is shown that such a measure, if it exists, admits
a support which is wandering under the natural action of the subgroup of {Jy consisting of
sequences wy, n € Z, with all but finitely many w, = +1.

2. Orthogonal decompositions

DEFINITION 2.1

Let (X, Bx), (Y, By) be standard Borel spaces in the sense that each is isomorphic to the
unit interval equipped with its Borel o-algebra. We say that a probability measure m on
(X x ¥,Bx ® By) is good, if for every complex valued measurable function f on X X ¥
there exist complex valued measurable functions u on X and v on Y such that

fxy)=ulx) +v(y) m-ae. (1)

The set of measure zero where (1) fails to hold may depend on f.
Let

X xY,my={f € *(X x Y,m): E(f)= 0},

where E(f) = [, yf dm, denotes the expected value of f. We say that m is very good if
every function f € L2(X x Y, m) can be expressed in the form (1) with u € L}(X,m;) and
v € L3(Y, my) satisfying E(u - T) = 0, where m;, m, denote the projections of m on X and
Y respectively (also called marginal measures).

2.2. In this paper we will be concerned with very good measures although good measures
seem relevant for study of measure preserving automorphism whose associated unitary
operators have multiplicity one. Theorem 2.4 gives a necessary and sufficient condition
on m under which it is a very good measure. The second half of the proof of this theorem
is obtained with the assistance of the referee, improving an earlier weaker result.

DEFINITION 2.3

A measurable subset § C X x Y is called a measurable couple, if S = G U H, where G is
the graph of a measurable function g defined on the measurable subset A C X into Y, H is
the graph of a measurable function 4 defined on the measurable subset B C Y into X and

g(A)NB=h(B)NA = 0.

Theorem 2.4. A probability measure m on (X x Y, Bx ® By) is very good if and only if it
is supported on a measurable couple.

Proof. Assume that the measure m is supported on a measurable couple S = G U H. Let
f €L} (XxY,Bx®By,m). Without loss of generality assume that m(H) # 0. Then,
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since m is supported on a measurable couple, m(H) = m(X \ A) = my(B) # 0. Since
E(f) =0, we see that fo+ [y f = 0. Write fG f = a. Define

flxg(x) if x €A,
u(x) = ) -
- 1 O0A) ifxeX \ A,
o) = FrO)Y) + oty fy€EB,
0 ifyeY\B.
(In case G =0, u(x) = 0 for all x € X.) We note that (1) holds for all (x,y) € GU H and
Eu=Ev=E(u-7)=0.
Assume now that m is very good. Let IT;, II, denote the projections of X x ¥ onto X and

Y respectively and let By, By denote also the o-algebras II7! (By) and I1;!(By) respec-
tively. Write

E'f = E(f | Bx), E'f = E(f | By).

If f € I*(X x Y,m) and EXf = 0, then flxy) =v(y) ae.

To see this note that if EX(f) = 0, then E(f) = 0, and since m is very good, we can write

fxy) =u(x) +v(y)m - ae.

with
E(u) = E(v) =E(u-7) = 0.

Since E*(f) = 0 and u is By-measurable
E(@-f) = E@E*(f)) = 0 = E(| u [") + E(@-v),

which implies that u(x) = 0 m; — almost everywhere and then flx,y) =v(y) m-ae.. So
[ is By-measurable. Similarly, if g € L2(X x ¥, m) satisfies EYg = 0, then g(x,y) = u(x)
m — almost everywhere. ‘

Iff,g € L®(X x Y,m) and EX(f) = E¥(g) =0, then f - g = 0 m — a.e.

To see this, let & = f - g. Since E¥g = 0 and f is By-measurable we have

E(h) =E(f-E"(g)) = 0.
Since k is bounded, it is square integrable. Since m is very good we can write
h(x,y) = t(x) +s(y) m - ae.
with E(r) = E(s) = E(¢t-5) = 0.
Again, since EX(f) = 0 and 1, g are By-measurable,
E(-h) = E(t-g- E¥f) =0,
so that E(| ¢ [) = 0. Similarly E(] s |*) = 0 and h(x,y) = 0 m — a.e.
We conclude that f vanishes where g does not and that g vanishes where f does not.
Now take ¢ € L®(Y,my) and € L®(X,m,), identified with ¢oIl; and % oIl;.
Letting f = ¢ — EX(¢), g = 9 — E¥ (%)), it follows that there exists a measurable set K in
X x Y such that
¢(y)=(E*¢)(x) for m - almost all (x,y) €K,
Y(x)=(E¥®)(y) for m - almost all (x,y) eXx Y\K.
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Since m |k is supported on G = {(x,y) : ¢(y) = EX¢(x)} and m lxxy\x is supported on
H = {(x,y) : ¥(x) = E¥4(y)}, if we choose for ¢, 1) one-to-one Borel maps of ¥ and X
onto [0, 1], then G and H are measurable graphs of functions defined on subsets of X and
Y respectively. Thus m is supported by a union of measurable graphs.

Moreover, it is supported by a couple. Indeed, fix a one-to-one bounded function 1 and
consider a sequence of bounded functions ¢,, n € N, which is dense in L*(Y,my). Le@ K
be the intersection of the sets K,, corresponding to the pair é,, . Bach f, = ¢, — EX¢,
satisfies E*f, = 0 and thus is equal a.e. to a function of y. Hence K, ={(x,y) : fu(y) = 0},
(modm) and K= X x B, (modm) with B ={\2,{y :f,(y)=0}. Since ¢,,n € N, are
dense in L2(Y,m,),

o(y) = Ex(qb)(x) for m - almost all (x,y) € X x B

holds for every ¢ € L2(Y,m,).

Let then ¢ be the indicator function of X x B. We find 1 = EX¢m - a.e. on X x B. Let
A= {x € X: (EX¢)(x)=1}. Since EX(¢)= 1 on X x B, we see that the part of m on A x ¥
is concentrated on A x B, whence m(A x (Y \ B))=0. Since for (x, y) € (X\A)x B,
EX$(x) # 1 = ¢(x,y), we see that m((X \ A) x B) = 0. Since the restrictions of m to

A X B(CK) and (X\ A) x (Y\ B)(C X x Y \ K) are supported on graphs, the theorem
follows.

3. Connection with dynamics, twisted Joining

3.1. Let T1 be a Borel isomorphism from X onto ¥ and let T, be a Borel isomorphism
from Y onto X. Define the Borel automorphism T of X x Y by

T(x,y)=(Toy, T1x), (x,y)€XxY.

We assume that T preserves the measure m on By ® By and that T2 is ergodic. It follows
that my o Ty = m; and m; o T» = m,. Further T; o Ty : X—X preserves the measure m;
and T7 o T, : Y—Y preserves the measure ms.

It is obvious that

Tz(xay) = (T2 oTy (x)1T1 o Tz(y)), (x7y) € X x Y:

and the automorphisms T, Tj o T, T, o Ty are ergodic on the respective spaces.

Theorem 3.2. Let (X, Bx) and (Y, By) be standard Borel spaces in the sense that each is
Borel isomorphic to the unit interval with its Borel o-algebra. Let (,B)=(X x Y,
Bx ® By) and m be a probability measure on B. Let Ty : X—Y, T, : Y——X be Borel
automorphisms such that T : (x,y)—(Tyy, T1x) is measure preserving and T? is ergodic.

Assume that m is very good. Then m is supported on the graph of a one-to-one
measurable function on a subset of X (and hence also on a subset of Y). The automor-
phisms T2, Ty o T and T o Ty are isomorphic.

Proof. Since m is very good, it is supported on a measurable couple, say § = GUH,
where G is the graph of a measurable function g defined on a measurable subset A C X,
and H is the graph of a measurable function & defined on a measurable subset B cY.
Without loss of generality assume that m(G)> 0. Let P:(-),x € X, denote the regular
conditional probability measure with respect the o-algebra IT71(By), also written as Bx
(by abuse of notation). For each x € X, P.(-) is a probability measure supported on
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{x} x ¥, such that for any A € By ® By, P(y(A) is Bx-measurable and
m(A) = / P.(A) dm,.
X

From the construction of P,(-),x € X, it is easy to see that the G;={(x,y):
P A{(x,y)} =1} is T? invariant. It is also the graph of a measurable function on IT;G;.
Clearly, G C Gy and m(G) > 0 by assumption, so, by ergodicity of T2, m(G;) = 1.
Moreover m(TG;) = 1 and TG, is the graph of a measurable function on a measurable
subset Y. Clearly m is supported on G, N TGy, the graph of a one-to-one measurable
function on a measurable subset of X (hence also the graph of a measurable function on
measurable subset of ¥). The projection map II; is a measure preserving isomorphism of
(Xx Y,Bx ® By, m) and (X, B, m,). Further T2 = 7! o T; o Tyo ;. Similarly, T2 and
Ty o T are isomorphic. The theorem is proved.

4. Application to the problem of simple Lebesgue spectrum

4.1. Now we apply Theorem 3.2 to the problem stated in the introduction. With the
notation therein, every function in L%(Q9,m) is an orthogonal sum of functions in
L3(X,my) and L2(Y, m,). Indeed, if f€L(Qp, m) has the expansion =0 cnXn,
then we cansetu =3 ° cy,y1 X9, 1 and v = Y e —00 C2nXon- S0 M is very good. By
Theorem 3.2 m is supported on a set S in )y on which the projections maps in X and Y’

are one-to-one and so 72, T} o Ty, T o T} are isomorphic.

F Parreau has asked if o-algebra generated by Xi,n € Z, is equal to the Borel o-
algebra of Qy (modulo m-null sets). This is indeed the case, as Theorem 3.2 has the
following generalisation (Theorem 4.3), proved by a similar method.

4.2. Let (X;,B;), 1 <4 < k be, as before, standard Borel spaces. Let
k
.Qo :—“HX,', 3281 ®Bz®®Bk
i=1

Call a probability measure m on B k — very good, if every f € L3(X,m) can be written in
the form

f(xhxfln s 7xk) = ul(xl) +u2(x2) +oeee +uk(Xk)

with E(u;) =0 for all 1 < <k and E(u; - ) = 0 for all i # .
Let T; : X;«—X;.1, 1 < i <k, be Borel automorphisms, where X;.; = X;. Define T
on X by

T(x1,x2, . 20) = (Texe, Tony, Toxa, - -, Tro 13—y

Theorem 4.3. Assume that m is a T-invariant and k-very good probability measure on B

such that T* is ergodic with respect to m. Then m is supported on a set S C Q on which
the projection maps 111,11y, . . ., II; into X1,X,, ..., Xy respectively are one-to-one.

Remark 4.4. 1t is also clear that if A and B are disjoint subsets of Z, AUB = Z and if
X =[lica Ci,Y = [I;c5 Ci, where C; = C for all i € Z, then m, if one such exists, is
supported on a measurable couple in X x Y. It seems plausible that such an m is
supported on a.set in {2 on which projections into the coordinate spaces is one-to-one, in
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which case the projection of m on any of the coordinate spaces of o cannot be discrete,
or even admit a discrete component.

5. Walsh functions

5.1. Let (Q, F, P) be a non-atomic probability space. Does there exist a one-to—olne and
onto measure preserving transformation T : Q—) and an event A € F, P(A) = 5, such
that if

_j+1l ifweA,
X(“’)‘"{—1 if weQ\4,

then the random variables X o T, n¢€ Z, are pairwise independent and span L3(Q2, F, P)?

5.2. Let us reformulate the above question differently breaking it into two parts.

Let O = [[ep{-1,+1}, {-1,+1}, = {~1,+1}, equipped with the usual product
topology and the resulting Borel structure B3; an element @ € € is a bilateral sequence
{wi}iez of +1 and —1. )

Does there exist a probability measure u on B such that:

(i) the coordinates Xy, k € Z, are pairwise independent and they span Lﬁ(ﬁ, B, w)?
(ii) moreover, can we choose the measure y to be invariant under the left shift in Q2

5.3. The first question has a positive answer provided by the family of Walsh functions
defined below.

Expand a real number x € [0, 1] in its binary form x = 0.x;x ... X ..., which is made
unique by insisting that if there are two such expansions, we choose the one with
infinitely many ones. Define

Ri(x)=2x—1, ke Z,
equivalently

N +1 ika=1,
Rk(")‘{—l if x = 0.

These are called Rademacher functions. They are independent, and since fol Re(x)dx =0,

they are also orthogonal, but they do not span L3[0, 1]. However, the collection of all
distinct finite products

Wi,,z‘z,...,ik=Ri1Riz ‘e 'Rz'k; << < ir,

called the Walsh functions, is mutually orthogonal and span L2[0,1]. Since they assume
only two distinct values, they are also pairwise independent.

5.4. There is another way of viewing Walsh functions. Consider ) as a compact group
with coordinatewise multiplication and let h denote the normalised Haar measure on ¢). If
to each coordinate space {—1,+1} we give uniform probability distribution, then A is the
product of these measures. With respect to the measure h, the coordinate functions
Xk, k € Z, correspond to the Rademacher functions.

The finite products X; X;, -+ Xy, 01 <ip < --- < iy, which is the collection of non-
trivial continuous characters of 2, correspond to the Walsh functions.
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Let fr, k € Z, be an enumeration of Walsh functions Wi ia,...ie 01 [0, 1]. Write:
b)) = {fi®)}eez, x € 0,1].

The unit interval is mapped by 1 in a one-to-one Borel manner into (). Let pw(A) =
Aot '(A), Ac B, where \ denotes the Lebesgue measure on [0,1]. The coordinate
functions X, k € Z, are pairwise independent and span L£5(Q, B, uw). This gives the
affirmative answer to the first question. We shall call uw the measure induced by an
enumeration of Walsh functions. It was pointed out by F Parreau to one of us that such a
pw is not invariant under the shift. In the sequel we will give a description of uw, from
which this will follow.

5.5. The second question remains unsolved. A positive answer to it will solve the
problem of the simple Lebesgue spectrum affirmatively. At this point we mention that an
example (or rather a family of examples) of mixing rank one transformation, due to D
Omnstein ([1]), allows us to construct a strictly stationary processes { fr}rez such that
Js frfodm—s0 as k — oo, while { f; k € Z} span Lg(fl, F,m). Ornstein’s example is
deep and has not so far been modified or improved to yield a transformation with simple
Lebesgue spectrum.

5.6. Let Q) be the subset of () consisting of those w € Q, which have only finitely many
—1; it is a countable dense subgroup of 2. The action of € on 2, w— Wy, W € §,
wy € (, is uniquely ergodic, the Haar measure h being the only probability measure
invariant under the €2y action. Other product measures are quasi-invariant and ergodic
under this action and there are many other measures with respect to which this action is
non-singular and ergodic. The theorem below shows that all these measures are singular
to any measure 1 for which the coordinate functions are orthogonal and span Lg(Q, B, ).

Theorem 5.7. If p is a probability measure on Q such that the coordinate functions are
pairwise independent and span L3 (@, B, 1), then there is a Borel set E which supports [
and which is wandering under the Q action, i.e., woE, wy € Qo, are pairwise disjoint. In
the case when . is given by an enumeration of Walsh functions, w is the Haar measure on
a closed subgroup of Q.

Proof. We begin with an observation of J B Robertson~[2]~. If the coordinate functions
Xk, k € Z, are pairwise independent, then they span L%(S2, B, ) if and only if for all i,

o0

XiX; = i X, D | P=1.

k=—00 . k=—c0

Further
c;;’j = /fz XXXy dp—>0,

if any one of i, j, k, tends to +oo.
(Note that X;X; is of absolute value one, hence its L[?-norm is 1, and the sum over
of the squares of ¢’ is one.) '
The sum Z,f?___oo ¢’ Xy, converges in L2, hence (by diagonal method) there exists an
increasing sequence N, [ € N, of natural numbers such that for all i, J,
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XiX;(w) = Jim E b X (W)
k——-Nl

for almost all w € {2 with respect to . Let

Ei,j-.:{  XiXj(w) = lim Z X ( w)}
k—-—N,
ﬂ Ei,j:

—o0<i, j<oo

E

Il

which is a support of u. Let wp € Qo with —1 at places i1,i3,...,lp and +1 at the
remaining places. Take an i¢ {i1, i, . ..,ip} and j € {i1, 2., ip}» then forallwe€ E

*

XiX;(w) = cfX;, () + .. + /X, (w) + Jim Y ixw),
[=o0 —N;<k<N;

where ¥ indicates that the terms c; ’JX,17 RN “JX, are deleted from the sum. Assume

that for some wp € (o, WoENE # (D Then there exists w = {wy }1ez € E, such that
wow € E. We have

X(w)=w, Xiww)=w, Xjw=w, Xww)=—w

so that
* Y
wiwj = c w,] + - +c”w,p + hm Z ¢ wi,
Fmoo —NtSkSNl
* s .
- wiwj = —C ”w,1 e c wlp + hm Z cplwi,
oo _piken,
whence,
i i,J

wiwj = ¢;rwiy e + ci’wip.

This holds for all i¢ {i1,i2,. .., i }. Letting i—00, since c G hJ__,0, the right hand

side of the above equality tends to zero, while the left hand 51de remains one in absolute
value. The contradiction shows that wow¢ E, whence woENE = 0.

Suppose now that uw is obtained by an enumeration of Walsh functions. In this case
X;Xj, i j, is some X;. Write I = g(i, j). Then

XiX; = Xo(ij)»

so that in the expansion
X.X;= Z chix;

all ¢y hi— () except for k = g(i, j), in which case &l =1.

Now E;; = {w: wiwj = wy(;,j)}- The sets E; ; are closed subgroups of Q). The same is
true for the set E=()_,,; j<co Ei,j- The characters X; X;,...,X; of Q are also the
characters of E, but they need not be distinct characters. In parucular XiX; and X, j)
agree on E. Further X; X;,, ..., X;, is either equal to some X, or equal to one. We have




i
:
|

Simple Lebesgue spectrum 55

af £ Xi,Xiy, - - ., X, duw equal to O in the first case and equal to 1 in the second, which also
holds if pw is replaced by the normalised Haar measure on E. Thus Uw 18 the normalised
Haar measure on E and the theorem is proved.
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