University of Minnesota Supercomputer Institute Research Report UMSI 92/230

UMSI 92/230 November 1992

LANGEVIN SIMULATION OF THE
DYNAMICS OF A DENSE HARD
SPHERE LIQUID

Lisa M. Lust, Oriol T. Valls,
and Chandan Dasgupta

- 1200 Washington Avenue South [0 Minneapolis, Minnesota 55415



Langevm Simulation of the Dynamlcs of a De:nse
Hard Sphere quuld

Lisa M. Lust and Oriol T. Valls

" School of Physics and Astronomy
e.nd Minnesota Supercomputer Institute
University of Minn'esota'
Minneapolis, Minnesota.55455-0149

and |

' Chandan Dasgupta

Department of Physics
Indian Institute of Science
Bangalore 560012, India

Abstract

- The dynamicbbehbav,ior of a dense hard-spﬁere liquid is studied byvnumerica.lly in-
tegrating a set of Langevin equations thich ineorporate a free—energy functional of ﬂhe ‘
| ‘Ramakrishnan- Yussouff form. Several interesting features of glassy dynamics, such;as |
- - stretched exponential decay of correlatxons, two-stage relaxation and Vogel»I'\xlcher growth
of r_ela.xatlon times, are reproduced and new results on the wave_numbe_r dependence of the
| kinetics are obtained.
1992 PACS numbers: 64.70Pf 64.70.Dv 64.60.Ht
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The present understanding of the slow non-exponential dynamics of dense liquids
near the glass transition is far from coinplete and there is an obvious need for the develop-
ment of analytic and numerical methods to address various aspects of this problem. In this
letter, we describe a study of the dynamic behavior of a dense hard-sphere liquid which is
based on a method not previously used for this system: direct numerical integration of a
set of Langevin equations which describe the nonlinear fluctuating hydrodynamics (NFH)
1 of the system. Information about the equilibrium structure of the liquid is incorporated
in the Langevin e(iuations via a free-energj functional of the Ramakrishnan-Yussouff (RY)
form 2 . It has been shown recently 3 that this free energy functional provides a correct

~mean-field description of the glass transition in this system in terms of the development
of a large number of ‘glassy’ local minima of the free energy as the density is increased
beyond the value at which equilibrium crystallization occurs. Our study is motivated by
a number of important considerations. By comparing the results of our calculation with
existing molecular dynémics data % , we are able to test the validity of the ‘mesoscopic’
NFH deséription which uses coarse-grained number and current density variables instead
of the coordinates and momenta of individual particles. Since the mode coupling (MC)
description of the kinetics of dense fluids ® can be derived from a perturbative treatment
of the NFH equations we consider, our calculation, being essentially non-perturbative in
nature, provides a test of the validity of the approximations made in the MC approach.
Further, by monitoring which local minima of the free energy are visited during the time
evolution of the system, we are able to determine whether the observed dyna.mic‘behavior
arises from nonlinear couplings of density fluctuations in the liquid or from transitions
between different glass;lr minima ;af the free energy. The efficiency of the coarse-grained
Langevin dynamics enables us to obtain fully equilibrated dynamic correlations over long
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" time scales.

In our study, we have concentrated on the wavevector and time dependence of
equilibrium dynamic density correlation functions, asv deﬁned below. We have studied
reduced the dénsities (n* = ngo®, where ng is the average number density and o is the |
hard sphéte diameter)n* =05 and the range 0.75 - 0.90 at 0.05 intervals, and wavevectors
q well-removed from the upper and lower c@toﬁ's arising respectively from the spatial
discretization scale and the sample size. It was:found in a recent study 3 that the discretized

RY free energy of the hard-sphere system exljibits a crystallization transition near n* =

0.83. Thus, for a part of the density range covered in the present study, the system is in the
‘supercooled’ state. The slowest characteristicitime_t"‘ at constant density, which occurs for
wavevectors close to that of the main peak in th\'e static structure factor, hasa strong density
dependence which is well-described by a Vogel-Fulcher form ¢ with parameters very close
to those obtained from a similar fit to molecular dynamics data 4. This result establishes
the validity of the NFH description and also points out the importance of incorporating

f

detailed information about the liquid structure in the NFH equation because a Vogel-

Fulcher growth of relaxation times was not ob?erved in an earlier study along similé: lines
" which treated the liquid structure in an apﬁroximate way.

We now proceed to describe our calculation. The derivation of the Langevin equa-
tions we use is similar to that in Ref.(7). Details will be given in a lengfhigr work 8 .Thg .

NFH equations we consider are:

%th(l/po)y(pj):o_ o @

and:

% - -(1/mo)pv.-%§ ~(1/p0) Y Vi(gi65) = (1/p0) Y 03Vi05 + (1 po)nV: +0; (2
e - j
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In these equations, p(r,t) and j(r,t) are the number and current density fields, mg is the
particle mass, 7 is the ‘bare’ shear viscosity and F is a free-energy functional of the RY

form:

Flp(e)] = Fi(po) + kaTL | drlp()in(o(x)/po) = (o(e) = po)]

~1/2 [ ar [ ar'c(ie = ¥ote) = polla(e") - 3)

In Eq. (3), Fi is the free energy of the uniform liquid with density py and C(|r — r'|) is
- the Ornstein-Zernike direct pair correlation function ® for which we use the Percus-Yevick
form ® appropriate for a hard-sphere liquid. The random Gaussian noise fields Oi(r,t)

obey the statistics!? :
< 0i(r,t)0;(r',t') >= —2kgTnr6; ;V26(r — r')6(t — t'). (4)

Equations (1) and (2) are slightly different from the ones considered in Ref. (7). The
differences arise because in the derivation of these equations we have assumed that the
total kinetic energy of the system is given by (mo/2) [ dr[|j(r)|?/po] while in Ref. (7) the
po in the denominator was replaced by p(r). If that expression for the kinetic energy is
used, functional integration of the variables j(r) produces a In[p(r)] term in the free energy
which already appears in Eq. (3).

In our numerical treatment of these equations, we discretize space by dividing the
sample volume inito cubic cells of dimension & < o, taking o/h incommensurate with N.
The numerical methods used to solve the equations of motion are ess?ntially the same as
were used in Ref.(7). We use a cubic lattice of size N3. The results reported here are for
N = 15 and have been spot checked for size effects by comparing with data at N = 25.
The integral involving C(r) which must be performed at_every time step, is handled by

tabulating this function at the beginning of the computation. Details on these and other
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computational considerations will be given in Ref.(8). We choose ly = h as the unit of
length, mo as the unit of mass, and t, = lo/c, where c is the speed of sound, as the unit of
time 1! We also define dimensionless fields n(r, t) and j(r,t). All quantities mentioned from
now on should be understood to be in these units. The speed §f sound is calculated in terms

of the compressibility derived from the Percus-Yevick C(r) and we use a standard formula

from kinetic theory 12 for 5. The noise variables ©; used in our numerical calculations

satisfy Eq. (4). As explained in Ref.(7) the fa:mtor of A merely sets the overall scale of the

gaussian fluctuations. The precise value of ) is unimportant but it clearly must be small-

since the density must always be positive. {n our calculations, we have used the value
A= 0.001. In the equations of motion writtjen in terms of dimensionless quantities, all
factors of the temperature T drop out as expected énd all the coefficients are determined
as functions of n*. | i

We will focus our analysis on the normalized quantity C(q,t) defined as C{(q,t) =
S(q,t)/S(g,0) *® where S(g, t) is the spherical average of the dimensionless dynamic struc-

ture factor S(q,1):
S(q,t) = / Preit=) < §n(r,0)6n(r' 1) > | (5)

where én denotes the fluctuation of the field n from its average. The angulér average
is performed over values of q in the first Brillouin zone in a shell of radius #n,/N and
thickness \7r/N as explained in Ref.(7). We specify ¢ by the value of n,. Data are collected
with particular care to ensuré that averages computed are true equilibrium averages, that
is, we verify ergodicity in the time scales of concern here. After some transient, which
is largely determined by otherwise unimportant initial ‘conditions., we collect at a large
number of periodic time bins the productsv 6n(r,to)én(r',to +t). Averaging over a number

of time bins n covering a time range tg = Atn; where At is the interval between time bins,
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allows us to monitor S(g,t,1), the spherically averaged Fourier transform of the collected
quantity. For S(g,t,19) to be an adequate approximation to the statistical average S(g,t)
" it is necessary that it be independent of ¢, (nb transient dependence) and also of tp
(ergodicity). We find that the time to measured from the beginning of the computational
run, must be much longer than the time t; at wh1ch the static current cérrelations (which
we also monitor) reach their equilibrium value given by the equipartition theorem. In fact,
both ¢ty and tg must be of the order of several times ¢*, the characteristic decay time in
the system as defined below, in order for the averages to stabilize. In addition to this,
a large number of bins is required for statistically reliable results. The averaged results
presented here correspond to a combined total of between 600 and 1750 bins, depending
on the density. This is a very large number which produces data of very high statistical
quality. We have also checked that the results obtained for S(g,t = 0) are consistent
with those calculated from purely static considerations. Details on this and -on the data
collection procedure will be found in Ref.(8).

We now discuss our main results. We have analyzed our data‘ for C(g,t) in the
range 6 < ny < 15. Our main conclusion is that all of the data can be fitted to the general

form:

Clg,t) = (1= fle" /D" 4 e~/ | (6)

where it is understood that all parameters are functions of n* é.nd g. This form is
quite versatile: in general it represents two successsive exponential decays the first of
which is stretched ' (8 < 1). Vﬂ-’hen 7' is beyond the range studied, it represents a
decay to a ‘quasinonergodic’ regime. If the two time scales are well separated, one has
in the region 7 €« t « 7' a power law decay. If 7 = 7’ then Eq.(6) reduces to a single

stretched exponential decay. We find that this simpler case is all that occurs at the lowest
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densities, for all wavevectors. As the dex;sity increases, the behavior changes, first in the
g region where the static S(q) has its second peak, which in our units this corresponds to
11 < ny, < 15. At the highest dehsity some indications of the onset of this behavior are
seen at the g value of the main peak of S(q) near ny = 8. For these values of ¢ we find,
within the density range studied, that the ratio 7'/7 increases very sharply with density,
reaching values larger than ten at n* = 0.9. The quantity f, while depending on ¢, is a

slowly varying function of n*. This is in agreement with a MC prediction.? In some cases

the time 7’ is beyond the time region studied, particularly when f is small. A sample of
our results, with best fits to the above form,%, is given in Figs 1 and 2. We observe, at
higher flensities and smaller wavelengths, eitﬁer two successive decay regimes or a decay
to a small finite value f from which presumably the system decays to zero at later times.

The time T is a very strong function otl wavevector, with a sharp maximum at the
value of ¢ where S(g) has its main peak. (At ;;he peak the dec;ay is still single-mode). We
identify this value of 7 with the characteristic time of the slowest mode in the system, t*.

|
We plot this quantity in Fig.(3) as a function of 1/n*. As shown in the Figure, we find an

excellent fit to the Vogel-Fulcher ¢ law:
t*(n*) = ae/(v=ve) (7

(where v = 1/n*) with the critical value of v, corresponding to n* = 1.20. This is in
“excellent agreement with the Monte Carlo result of Ref. (4) where n? = 1.21 was 6btajned.

It is instructive to briefly discuss these results in connection with mode coupling
theory (MC), Ivlqnte Carlo molecular dynamics (MD) simulations and experiment. A
fuller presentation will be given in Ref.(8). In MC 5 one finds that there are two main
decays, § and a -relaxation, separated by an intermediate quasinonergodic regime and by

a power law decay (von Schweidler regime). The first may be preceeded by a fast decay
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(in times of the order of the phonon times) and the last is followed by an ultimate decay to
zero. A considerable amount of experimental evidence f;'om neutron and light scatterir;g
experiments (see Ref.(5) for a review) lends support to this picture. This is clearly similar
to the two-stage decay that we find at higher densities and smaller distances, with the two
decays separated by a power law as explained below Equation (6). The phonon regime is
absent in our data, probably due to the coarse graining nature of dur Langevin dynamics.
. Comparison with MD is made difficult by the fact that existing results are for different
systems, such as binary soft sphere mixtures ! and coulombic systems !¢ , and that MD
data is obtained under the questionable assumption that the equilibration time is of order
tx. However, a qualitative compérison is possible. For these purposes, we can take our
phonon-based unit of time to be of order 0.1 ps. Réfs.(15) and (16) cover then a time span
comparable to ours, although they do not follow the correlations until they decay to a
small valﬁe, as we do follow them. At any rate, after an initial glitch which they attribute
to phonons, two distinct decays are observed in the MC data, the second of which is of a
stretched exponential form. No characterization is given fér the ‘ﬁrst, but we have verified
that the form Eq.(6) fits quite well the data of Ref.(16) with appropriate pa.fa,meter values
(in particular, a large separation of the time scales). Thus, we conclude that our results
are consistent with the pred.ictions of MC and with MD results for similar systems. |
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FIGURE CAPTIONS

Fig. 1. The normalized dynamic structure factor C(g,t) as defined in the text,
plotted vs time in dimensionless units. The plots are at constant density n* = 0.90, and
for wavevectors corresponding to, from top to bottdm, ng = 13,14,12. The dotted-lines
are our results, and the smooth solid lines fits to the form given by Eq.(6).

Fig. 2. Asin Fig. 1, but for different densities at constant wavevector. The
plots shown are for n, = 13, and correspond to densities, from top to bottom, n* =
0.9,0.85,0.80,0.75. The fitting parameters at n* = 0.9 are f = 0.53, 7 = 107, 7’ = 761.

Fig. 3. The characteristic slow time ¢* as defined in the text, plotted as a function
of density. The symbqls are our results at the densities studied, and the solid line the fit

‘to the Vogel-Fulcher law, as explained in the text.
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