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Abstract

We present a numerical study of the domain growth kineticslof the
continuous, two-dimensional, q-state Potts model with a non-conserved order
parameter. After the system is quenched from a high temperature disordered_
state to a finite temperature in the ordered region of the phasé diagram,
the development of ordered domains in time is analyzed by direct numerical
solution of the associated Langevin equations. We find that the domain
growth in the model, after a short initial transient time, is well-described
by a characteristic length L(t) which increases with time as L(t)x t". The
kinetic exponent n is determined to be 1/2 for both q = 4 and q = 15. The
quasistatic structure factor S(E,t) obeys dynamical scaling during the
growth process, as e#pected. Our results are in agreement with those
obtained from recent Monte Carlo studies of the discrete Potts model with
stochastié dynamics, and indicate that the domain growth kinetics of the
two-dimensional q-state Pot?s model is characterized by a Lifshitz-Allen-
Cahn kinetic exponent n = 1/2, independent of q for a non-conserved order

parameter.



I. INTRODUCTION

There has been recently a renewed surge of interest in the study of
non-equilibrium phenomena through the use of field-theoretic methods with a
Ginzburg-Landau free-energy and Langevin dynamics (see for example Refs. 1-
7). These numerical studies have ;omplemented the conventional Monte Carlo
(MC) simulation approach involving discrete lattice-gas models and
stochastic dynamicss. It has been found that Langevin equation methods have
several advantages. From the numerical point of view, vectorization
techniques often make them competitive3 with lattice-gas dynamics. It
appears also that transient effects are, at least in some cases6, less
severe in Langevin than in stochastic dynamics. An important advantage of
Langevin methods is that they are more amenable fo theoretical study.
Indeed, the earlier development of the field of growth kinetics was
dominated by field-theoretic modelsg, and recent theoretical developments10
along these lines have taken place. Therefore, a field theory approach to
these problems is likely to be an important step in establishing an analytic
theory of growth kinetics.

In this paper, we study the domain growth kinetics of the field theory
version of the two-dimensional (2D) g-state Potts model. This field
theoretic aﬁproach to the Potts model was first proposed by Zia and
Wallacell. Using this approach, the static critical properties of this
system near six dimensions were investigated by perturbative renormalization
group calculations and the model was shown to exhibit a first order phase

11’12. The non-equilibrium dynamics of this

transition for general q = 3
model, however, has not been investigated. We have studied the domain

growth kinetics of this model in two dimensional space for q = 4 and q = 15.



While we do not know of any physical system corresponding to the case q =
15, the 2D q = 4 model can be realized in systems in which 02 is adsorbed on
the surface of nickel and N2 is adsorbed on krypton-plated graphitel3

There is also a recent experimental study14 of the growth of domains in

Cu,Au alloys. The late stage coarsening of the system after a quench to a

3
low temperature is consistent with a curvature driven growth, i.e., L(t)x
1/2 . . . . . .
t , where L(t) is the characteristic size of ordered domains at time t.
The CuBAu system has a q = 4 fold degenerate ground state, but it is not a
simple Potts system as discussed here because of the existence of more than
. . 14
one kind of domain walls™ .
The kinetics of domain growth in the conventional 2D q-state Potts
model with stochastic dynamics when it is suddenly quenched to a finite
temperature below the ordering temperature TC has been the subject of many

15,19 . s .
. From these we know that the characteristic domain size

studies
increases algebraically with time as L(t) ~ tn(q), where n(q) is called the
kinetic exponent. In the case of non-conserved order parameter, the q = 2
limit of the model (the Ising model) gives n(q) = 1/2. This is a well
established result16 from analytical17 and computer18 studies as well as
experimental investigations. When q > 2, however, the value of n(q) has
been a matter of some dispute. Initial studies15 reported a n(q) value that
depends on q, with n(q) decreasing from 0.5 for q = 2 to = 0.4 in the large-
q limit. However, there are indications that the results obtained in these
computer simulations may not be really "asymptotic" and thus do not describe
the true long-time behavior of the model for q larger than two. Grest et

19

al. have recently obtained n(q) = 0.5 with q > 30 in computef simulations

of large samples over considerably longer times. This recent result is,




15,20 which argued that the

thus, in contradiction with earlier studies
domain growth should be sléwer in the 2D Potts model with q > 2 due to the
presence of vertices, pinning effects, and domain wall interactions.

It is a premise of our present study that through the use of Langevin
dynamics, one can follow the evoluéion of the long-time growth of the system
more easily than with conventional spin-flip dynamics. This premise is
based on the expectation that the energy barriers one has to overcome while
flipping spins in the conventional dynamics may not be present in Langevin
dynamics. This is important in numerical studies of long time behavior
within limited computer time. Whether our results for n(q) in the
asymptotic regime would apply to spin-flip dynamics depends on whether the
two kinds of dynamics belong to the same "universality class". There is no
rigorous proof that this is the case, although recent studies3 have shown it
to be true for q = 2 and nonconserving dynamics. To the extent that this
may be a general result, some of the growth kinetics problems which are very
difficult to resolve by conventional Monte Carlo studies can possibly be
addressed.by field theoretic methods. Thus, if the Langevin dynamics and
the spin-flip dynamics belong to the same "universality class", our field
theoretic study would help to remove some of the controversies still
remaining on the question of ithe growth kinetics of the 2D g-state Potts
model.

We summarize our results as the following: We quenched the field
theoretic 2D q-state Potts model with non-conserved order parameter from a

high temperature disordered state to a temperature far below the phase

transition temperature. The evolution of the ordered domains in time was

then monitored by solving the associated Langevin equation numerically. The



domain growth of the modeled system, after a short transient time, is well
described by a characteristic length L(t), which varies in time as
L(t)«x t1/2 for both q = 4 and q = 15. All dynamical quantities such as the
susceptibility x(t), the structure;factor S(ﬁ,t) (ﬁ is the wave vector), and
the first moment of S(ﬁ,t) exhibit;time-dependences similar to those found
in the 1sing mode13. Also S(ﬁ,t) éxhibits the expected dynamic scﬁling
behavior. We have obtained the schling function for this quantity, aﬁd
found it to be very similar to that of the Ising model. Thus, our study
shows that the field theoretic 2D g-state Potts model with non-conserving
Langevin dynamics belongs to the 2D Ising model "universality class", »
characterized by a curvature-driven growth with a Lifshitz-Allen-Cahn growth
exponent n = 1/2, independent of q.

The rest of this paper is organized as follows: in Section II we
discuss the model and its associated Langevin equations. The results of our
numerical calculations are presented in Section III and the conclusions are

recapitulated in Section IV.

II. THE MODEL AND ITS LANGEVIN EQUATIONS

We consider the q-state Potts model in the field theoretic

11

representation proposed by Zia and Wallace The free energy functional is

written as:
JORE. 2K 193017 - 3 2317 + 37 £5%,, 45(14,(14, (D)
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81 ‘.' B, VvV = 1’ 2) ce s Q'l, (2-1)

where 3(1) is a real vector field with q-1 components, defined on a 2D
square lattice site i, and repeated greek indices are summed over. The

tensors Q, S, and V are of the form:

QU = I e‘; e: e‘:, (2.2a)
SS(uu - % (65§ S”V + 2 permutations), (2.2b)
V&(pv -z e? e? ez e: , (2.2¢)
with (ga) being a set of q vectors in (q-1) - dimensional space which
satisfy:
a, =1, 2, , 9,
b, v=12, ..., q-1 . (2.3)

This set of e's can be visualized as a set of vectors defining the q
vertices of a hypertetrahedron in (q-1)-dimensional space. For a proper
choice of the values of the parameters, the global minima of the free energy
functional occur for 3 along any one of these P directions, giving a q-fold

degenerate ground state. The static properties of this model have been



studied by applying e-expansion (¢ = 6 - d, where d is the spatial

11,12

dimension) renormalization group methods Results from these studies

show that the trilinear term in ¢, g3 ¢6¢p¢v leads to a first order

QSpu
phase transition for q = 3 (notice’that QSpv vanishes when q = 2, which
corresponds to the Ising model). Such a first order phase transition due to
a trilinear term is well known in the context of the mean-field theory of
the q-state Potts mode121. Therefore, the trilinear term in the free‘energy
is important in the static and presumably, also in the dynamic behavior of
the model. The quartic terms in F[;] give conventional symmetric couplings
(32)2 for both q = 2 and q = 3 and cubic symmetric couplings for q = 4. For
q 2 5, however, a symmetric correspondence is hard to find, as pointed out
by Zia and Wallace11

Since the overall scale of |$|2 is arbitrary, only four of the five

parameters K , r, , u, and £ in F[;] are independent. For this reason, we
) P

can choose to write (2.1) in the following way:

N IR

P =5 s -0 3%+ T3P+
1

B3 Qg #5(1) 4,(1) 6,(5) +

W =

1 , . ) ' '
tg (LH0) (Spo, + £ Voo ) 4e(D) $.(1) ¢,(D4, (D). (2.4)

Here we have chosen the parameters in a similar fashion as in Ref 3: the
choice involves a rescaling of every component of 3, i.e., ¢i(i) is scaled
by a factor u/2(|r| + K ). The relations between the new and old parameters

are then § = || / K and K = 2K 2 (1 + 6)/u. The coefficient of the



trilinear term is simply written down as gy since its actual value still
remains to be chosen. The parameter f’ is now equal to f/u.

The dynamics of the model is generated by a Langevin equation:
9¢,(1,t)/8t = -T aF($(i,t)]/ 3¢g(1,t) + no(i,t) (2.5)

where T' is a kinetic coefficient. We consider the case of a non-conserved
order parameter, so that I' is a constant which can be set equal to unity by

4n appropriéte choice of the time unit, and ns(i,t) is a Gaussian noise term
éatisfying

<n (1,8) n,(j,t")> = 2IT5, §(t - t') ' (2.6)

| v 81j
i

‘Qhere T is the final quenching temperature. Combining (2;5) with (2.4), we

have

6¢6(i,t) /ét = -T K{ -4 ¢6(i,t) - V2¢8(i,t) +
+ 3850, 4,(1,0) 4,(L,0) +
+ % (1‘+ 8) [¢s(1,t) |3(i.t)|2 + £ ngp;¢§(i.t) ¢p(i.t) ¢,(1,0)])
+ ng(i,t) : (2.7)
where V2 is the usual discrete version of the Laplacian:

.Y?¢5(i) =3 (¢8(i + a) - ¢8(i)).‘ .fi (2.8)
a , S



Here a is a nearest neighbor lattice vector, and we have chosen the unit of
length to be the lattice constant a. Equation (2.7) could be used directly
for the temperature quenching study. However, the presence of the tensors Q
and V is inconvenient in the numerical calculation. To eliminate them, we
introduce11 the order parameter fiélds ¢a, a=1, 2, ... q, obtained by

projecting 3 onto the q unit vectors P
-3z e (2.9)

Equation (2.7) can then be written in the following form, with ¢a instead of

é:

3y (i,t) /0t = -TR(-6y%(i,t) - Voy%(i,t) +

1
+ =

3 8y 4 %Y (@D - § P+
a,. B,. 2

+(L+6) (q@-1) ¥ (i,¢v) §(¢ (1,£))7/3q +

+3a o £ eta o ey - 3o a e’ /@ nn

+ 0 (i,0). (2.10)

We note that the ¢a(i,t), a=1, 2, ..., q are not all independent. From

(2.3) and (2.9), it is clear that:

§¢°(1,t) = 0. (2.11)
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’

Also, the new noise term is given by n, = E ez q“, so that:

’

<@um)%um>>-§§eef<uum)%um)>

[+ 4
M
= 2T (a6, - 1)/(a-D). - (2.12)

Equation (2.10) is the final expression of the Langevin equation used in the
calculation. It preserves the constraints given in (2.11) provided that the
initial values of ¢a(i,t) satisfy these constraints.‘

The information on the dynamical behavior was obtained from the

calculated correlation functions
. a,. a,,
caa (i’J lt) = <'lb (lit) ¢ (J vt)> (2~13)

where the average is over the noise and initial probability distribution of
¢a(i,t = 0). Here, the time t is measured from the time of quench. We note
that all relevant information about two-point correlations in the system is

contained in these "diagonal" correlation functions. From (2.3) and (2.9)

it is clear that:
C_(i,j,t) = < §(1i,t) » 3(3,)>
33 .

q-1 ' :
- zC (1,3,0). (2.14)

Also, by using (2.11) it is possible to express the off-diagonal correlation

" functions Céﬁ(i,j,t), a #£ B, in terms of the diagonal ones. Since we expect
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that the long time behavior of the model will be independent of the initial
conditions chosen for wa in our problem, we chose to work with {wa(i, t =
0)) = 0 in all the calculations. Of course, this choice does not correspond
to any true physical state, but to a somewhat artificial "quasi-disordered”
configuration. However, it has the advantage of simplicity.

In the present work, we set f' = 1 and g; = -1, We chose a negative
value for g; because this choice produces the correct ordered state of the ‘
standard Potts model, i.e., the global minima of F[z] occur for z along the

12,22

- .
positive e direction We also chose K = § = ' = 1 as our units of

energy, length and time respectively. The choice for the temperature T, /
that is, the noise strength, is dictated in part by the rgquirement that the
quench be into the thermodynamically ordered region. The phase diagram of
this model has only been studied in detail for q = 23. We have chosen for
our studies T = 0.05 (in units where K = 1) for q = 15 and T = 0.2 for q =
4., These values were chésen because very conservative estimates showed them
to be well within Ithe ofdered region. As we shall see, we found that indeed
the system is well-ordered at these quenching temperatures.

The discretized version of the Langevin equations were numerically
integrated by using a simple Euler method. A detailed discussion of the
integration method and the method used to generate the Gaussian noise fields

is given in Ref. 3. These details will not be repeated here. Our numerical

results are presented in the following section.

III. RESULTS

The physicai quantities of interest are the correlation functions




12
Ci5(6) = F C,p (1.3,0) (3.1

where the sites i, j are on a square lattice of size N X N with periodic
boundary conditions. Equivalently, we can consider the Fourier transform of
Cij(t), that is, the quasistatic sﬁructure factor S(ﬁ,t), where k is an
appropriate discrete wavevector in the first Brillouin zone. We ﬁnalyze our
data on these correlation functions according to standard techniquesg, which
include analysis of the structure factor S(ﬁ,t) and its first moment. We
will present these results in detail below. We also separately consider the
susceptibility function x(t) which is given in terms of the correlation

functions as:

x(t) = £ 3 Caa(i,j,t)/qu - S(k = 0,t) (3.2)
i,j a
This quantity can be calculated numerically faster than s(k #*0,t).

Before proceeding further, we verified that our chosen quenching
‘temperatures are below the transition temperature by using preliminary data
on x(t). This was done in the following way. For a given system size N, we
quenched the‘systeh to a fixed final temperature T. After the qunch, x(t)
would at first grow rapidly with time, and then saturate for large enough
times. We then increased tﬁe size of the system to N’ > N and repeated this
procedure. If x saturated at a value independent of N for large N, then one
would conclude that the system equilibrates without ordering, and one is
therefore above Tc. If however, one finds that the saturated value of x is

proportional to N2 (the number of sites in the system), then one can
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conclude that the system has ordered for that choice of the quenching
temperature, which is therefore clearly below Tc'

After this preliminary step, we studied in detail quenches to a
_temperature T well below Tc (see Sec. II). In the scaling regime, where the
growth of loqal order in the systeﬁ is céntrolled by a single characteristié

length, x(t) is expected to be of the foxfm23

x(t) = Const. Ld(t) - const. Lq(t) (3.3)
where L(t) represents the characteristic length (or domain-size) at time t.
We will verify below that our data is indeed taken in the scaling regime.
Therefore, the exponent of the power law‘growth in t obtained from x(t) can
be readily translated into the kinetic exponent n that governs the growth of
L. We found in our results that after a very short transient time measured
from time t = O when the system is quenched, x(t) increases linearly with t.
The results for x(t) (which do not include the results during tﬁe initial_
transient) for q = 4 and Q = 15 are plotted in Fig. 1 and Fig. 2
respectively. These are for N2 = 30 x 30 for q = 4 and N2 = 60 x 60 and

90 x 90 for q = 15, and they are well fitted by sﬁraight lines. Preliminary
results for N = 10, 15, 20, 30, 40, 60, and 90 on x(t) and the structure
factor S(i,t) have been used to verify that these sizes are sufficient to
avoid finite size effects (see also below). We thus conclude from (3.3)

that L(t) = Const. t® with n = 1/72. A least-squares fit of these data to a

form:

x(e) & (¢ - £)" (3.4)
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gives n = 0.52 + 0.01, t, = 0.56 * 0.04 for q = 15; and n = 0.51 + 0.02,

0

ty = 2.20 + 0.03 for q = 4. Results for q = 4 were obtained from averaging
over 16 runs and those for q = 15 and N2 = 60 x 60 from 20 runs. We found
that a linear relation between x(t) and t was obtained for each individual
run but with the constants of propértionality varying slightly from run to
run due to statistical fluctuations (within about 20%). The absence of
finite size effects can be seen (in addition to the checks referred to
above) also in Fig. 2 where we show the results for q = 15 with a system
size of N2 = 90 x 90. The data for N = 90 were averaged over only two runs,
but nevertheless it shows a linear relation which is, well within
statistical fluctuations, comparable to the data for N2 = 60 x 60.

The time scales considered here are quite large when compared to
typical time scales in MC simulations, especially for large q values. From
the data shown in Fig. 2, we estimate that the value L(t) = 20 units is

attained at time t = 25 units for q = 15. In M simulations15 with

stochastic dynamics, similar values of L(t) are attained at tMC =3 x 103 MC

steps per spin, which indicates the existence of a factor of at least 160
between t and tvc: Thus, our simulations extend to times equivalent to more
than 6000 MC steps for q = 15 and N = 90.

We turn now to S(ﬁ,t). Fig. 3 displays the circularly averaged
structure factor data for q = 15 (N2 = 60 x 60). In this graph we observe
the development of a Bragg peak at k = 0 as the system is ordering. We
first wish to check if we are in the scaling regime where S(k,t) should be

of the form23:

S(k,t) = M(t) G(k/k (t)) (3.5)
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where M(t) (= x(t)), the normalization f;ctor, ensures G(0) = 1, and kw is
the shrinking width of the Bragg peak of?S(k,t), determined from the
condition G(1) = 0.5. We calculated kw %nd G by carefully interpolating the
data for S(k,t) and the results are pres%nted in Fig. 4. The full curve
shown in Fig. 4 corresponds to q -‘4. Tﬁe results for q = 15 are, within
the error bars shown, the same as those éor q=4. As we can see from Fig.
4, we have indeed confirmed the scaling gehavior of S(k,t) as predicted by
(3.5). The scaling function G(k/kw) is a smooth curve as eipected. For
large k values, error bars are larger which we believe is dﬁeito poorer
statistics. We plot also in Fig; 4 the :esults for the scaling function G
for stochastic dynamics and two values of q, q = 815 and q = 2 (Ising)za.
It appears from this Figure that there is a very large degree of
univérsality in the scaling function, which seems to be very little
sensitive not only to the value of q but also to whether the dynamics is of
the spin-flip or Langevin type.

Having established fhat we are in the scaling regime, we can
investigate again the growth law By studying any length associated with
S(ﬁ,t). The quantity k-i(t) can be used for this purpose. However, a
precise analysis is somewhat impeded by the fact that, as an‘interpolated
quantity, kw(t) is subject to additional?uncertainties. We therefore used a
different measure of the width of the Bragg peak, namely kl(t), the first

moment. of S(ﬁ,t):

K, (t) == k s(k,t) / = sk, t). (3.6)
1 -i(' E !
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Fig. 5 and Fig. 6 show the calculated kiz(t) vs. time t for q = 4 and
q - 15 respectively. Both curves are fitted well by straight lines. Since
kil(t) is proportional to the characteristic length L(t) and kiz (t) is
linear in time t, L(t) is then « t" with n = 1/2. We also performed a
least-squares fit of the results fér kil(t) to the form:

n

kil(t) x (t - t}) (3.7)

0

giving n = 0.49 * 0.01, t6 = 1.96 £ 0.02 for q = 15(N2 = 60 x 60) and

n=0.49 + 0.02, té = 2.40 * 0.04 for q = 4 (N2 = 30 x 30). The
N2 = 90 x 90 results for q = 15 show that there are no systematic
finite-size effects over the time scales considered in our calculation.

Thus, the results of the analysis of S(ﬁ,t) agree with those obtained from

x(t), and we have established that n = 1/2 for both q = 4 and q = 15.

IV. CONCLUSIONS

In the study described above, we quenched the 2D field theoretic Potts
model with a non-conserved order parameter from a high temperature
disordered state to a temperature far below the phase transition
temperature. We then numerically followed the time-evolution of the system
under the Langevin dynamics. After solving the associated Langevin
equations, we found that the characteristic length L(t), which describes the
domain growth kinetics in this model, varies in time according to a power
law behavior, L(t)« t". The kinetic exponent, n, was determined to be 1/2

for both q = 4 and q = 15.
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The fact that the results obtained from our célculation are consistent
with those obtained from the latest MC study of the discrete Potts model19
is a strong indication that the field theoretic and the discrete version of
the Potts model wi;h non-conserving dynamics do belong to the same
‘universality class for q > 2, as tﬂey were known to be in the Ising case.
Although we did not investigate the model with still larger q valﬁes at the
present time, we believe that a similar result would be obtained if such a
study were conducted. We therefore conclude that the domain growth kinetics
in the 2D g-state Potts model with non-conserved order parameter is
characterized by a Lifshitz-Allen-Cahn growth exponent n = 1/2, independent
of q. The apparent insensitivity of the scaling function to the value of q
and to the kind of dynamics reinforces these conclusions. | |

We note also that although a computer study of this model for very

large q is not practical, the q » « of the field theoretic model may be

amenable to analytic treatments, along lines similar to that of Ref. 25.
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FIGURE CAPTIONS
Results for x(t) at T (quenching temperature) = 0.2, in the units
discussed in the text, for q = 4, N2 = 30 x 30. The dependence
of x(t) on t'is linear. The full line is a best least squares

straight line fit.

Same as in Fig. 1, but at T = 0.05 for q = 15, N° = 60 x 60 and

90 x 90.
The circularly averaged structure factor S(k,t) at T = 0.05 for q

2 = 60 x 60 calculated for t = 5, 10, 15, 20, 25 and 30..

- 15, N
The scaling function G(k/kw), Eq. (3.5), for q = 4 (full line).
Error bars are estimated from the scatter of the individual data
points in the scaling plot. The scaling function for q = 15 is,
within the error bars, the same as that for q = 4. We also show
for comparison the scaling functions for stochastic dynamics and
two values of q, q = 8 (crosses, data taken from Kaski eﬁ al,
Ref. 15) and q = 2 (squares , data taken from Ref. 2&).

Results for kiz(t) (see Eq. (3.6)) at T = 0.2 for q=4, ﬁz = 30
x 30. kii(t) is shown to be linear in t. The full line i#lthe
best least-squares fit to a straight line.

Same as in Fig. 5, but at T = 0.05 for q = 15, N2 = 60 x 60 and

90 x 90.
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