Vortices in layered superconductors with columnar pins: A density-functional study
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We use numerical minimization of a model free energy functional to study the effects of columnar pinning
centers on the structure and thermodynamics of a system of pancake vortices in the mixed phase of highly
anisotropic layered superconductors. The magnetic field and the columnar pins are assumed to be perpendicular
to the layers. Our methods allow us to study in detail the density distribution of vortices in real space. We
present results for the dependence of the average number of vortices trapped at a pinning center on temperature
and pinning strength, and for the effective interaction between nearby pinned vortices arising from short-range
correlations in the vortex liquid. For a commensurate, periodic array of pinning centers, we find a line of first
order vortex lattice melting transitions in the temperaflines pin concentratior plane, which terminates at
an experimentally accessible critical point@ss increased. Beyond this point, the transition is replaced by a
crossover. Our results should also apply, with little change, to thin-film superconductors with strong point
pinning.

[. INTRODUCTION ics of a system of two-dimensional interacting bosons in an
external random potential. The main prediction of such theo-
In the mixed phase of type-Il superconductors, magneticies is the existence of a low-temperature “Bose glass”
flux penetrates the sample as quantized vortex lines whichhase, 8 separated by a continuous phase transition from a
form a special physical system known as “vortex matter.” high-temperature, entangled liquid of vortex lines. The theo-
The fascinating equilibrium and dynamical properties of vor-retically predicted scaling behavior near the Bose glass tran-
tex matter in the mixed phase of high-temperature supercorsition has been observédi random array of columnar pins
ductors(HTSC’s) have prompted considerable experimentalalso affects the equilibrium properties of the high-
and theoretical attentidrior more than a decade. Because oftemperature vortex liquid, leading to the occurrence of
enhanced thermal fluctuations, the Abrikosov lattice in veryanomalie$' in the reversible magnetization curve near
pure samples of these highly anisotropic, layered materials is B, , whereB ,=p,®, (p,, is the areal density of columnar
observed to undergo a first order melting transttioio a  pins and®y=hc/2e is the flux quantumis the so-called
resistive vortex liquid as the temperature is increased. “matching field,” andB is the magnetic induction that deter-
The properties of the mixed phase of HTSC'’s are alsgnines the areal density, of vortex lines py=B/d).
known' to be strongly affected by the presence of pinning It is also possible, through the use of a variety of nano-
centers, either intrinsic to the sample or artificially generatedfabrication technique¥, !’ to create periodic arrays of
Understanding the effects of pinning in these systems is vergtrong(in the abovementioned sensenning centers in thin-
important for practical applications because the presence dfim superconductors. The interplay between the lattice con-
pinning strongly influences the value of the critical current instant of the pin arraydetermined byB ;) and the intervortex
the mixed phase. Columnar pinning arising from damageseparationdetermined byB) can lead to a variety of inter-
tracks produced by heavy-ion bombardment has receiveesting commensurability effects in such systems. Some of
much attention in this context because such extended defedizese effects have been observed in recent experiments. Im-
parallel to the direction of the average magnetic flux areaging experimenté'’ have shown the formation of ordered
highly effectivé? in increasing the critical current by local- structures of the vortex system at low temperatures for com-
izing vortex lines along their length. Columnar defects pro-mensurate values d8/B,. Magnetization measuremettts
duce “strong pinning” in the sense that the pinning potentialin the irreversible(vortex solid regime have demonstrated
of a defect is sufficiently strong to pin a vortex line at low the occurrence of anomalies at harmonic8gf. The effec-
temperatures. Heavy-ion irradiation generally produces diveness of pinning at integral values &/B, has been
random array of parallel columnar defects. The effects ofound to produce regularly spaced sharp minima in the re-
such an array of extended defects on the properties of thaistivity versus field curve. A pinning-induced reconfigura-
mixed phase of HTSC's have been extensively studiedion of the vortex lattice has been observed in an
experimentally~° theoretically’~® and numerically:’® The  experiment® on a thin-film superconductor with a rectangu-
thermodynamics of a collection of vortex lines in the pres-lar array of pinning centers. Some of these effects have been
ence of a parallel array of random columnar pins has beestudied theoretically, using analytfcand numericdf meth-
analyze@® by mapping the problem to the quantum mechan-ods. Bulk HTSC samples with periodic arrays of columnar



pins have not been fabricated yet, but the technology forolves direct numerical minimization of a discretized version
doing this appears to be within reath. of the free energy functional. Since both the magnetic field
A periodic array of strong pinning centers should haveand the direction of the columnar pins are assumed to be
significant effects on the melting transition of the vortex lat-perpendicular to the layers, thiene-averagedocal density
tice. We consider here the situation whé8e-B,, that is,  of pancake vortices must be the same on all the layers. This
when the pin array is relatively dilute. If, in addition, the simplification makes the problem effectively two-
value ofB is such that the melting temperature of the vortexdimensional and allows a high-precision numerical investi-
lattice in the pure system is substantially lower than the sugation of the effects of columnar pins on the structure and
perconducting transition temperature in zero field, then eacthermodynamics of the vortex system. Furthermore, our re-
pinning center would pin a vortex at temperatures compasults should apply, with little change, to thin film supercon-
rable to the melting temperature of the pure vortex latticeductors with strong pinning.
However, the interstitial vortices, which would be present The model considered in our work is defined in Sec. I,
whenever the number of pinning centers is smaller than therhere the method of calculation is also described. We then
number of vortices(assuming that each defect can pin atconsider(Sec. Il A) the effects of an isolated columnar pin
most one vorte may undergo a sharp melting transition. on the structure of the vortex liquid in the vicinity of the pin.
This would certainly be the case in the limit where the spac-This is done mainly for testing the systematics of our nu-
ing of the pin array is sufficiently large. Since the vorticesmerical method and also for determining appropriate values
pinned at the defects produce a periodic potential for thef the pinning potential to be used in subsequent calcula-
interstitial ones, the melting transition of the latter is an ex-tions. We choose throughout the computations numerical pa-
ample of a solid to liquid transition in the presence of anrameter values appropriate for BSCCO. We determine the
external periodic potential. Evidence for such melting of in-suitable choice of the discretization scale in order that our
terstitial vortices has been found in experiméhtdon thin-  numerical method provides an accurate account of the den-
film superconductors with periodic pinning. However, thesity inhomogeneities produced by the trapping of a vortex at
thermodynamic behavior at the melting transition has not pinning center. We also determine the range of values of
been characterized in these experiments. The effects of the pinning potential strength for which nearly one vortex is
periodic potential on the melting of two-dimensional solidstrapped at a pinning center in the temperature range of inter-
have been investigated earlier using anafyticand est. The strength of the pinning potential is kept fixed in this
numericaf®?® methods. We are not aware of any theoreticalrange in our subsequent work: pinning of multiple vortices at
study of the effects of a periodic array of columnar pins ona pinning center is not considered because this is rarely ob-
the vortex lattice melting transition in three dimensions.  served in experiments. Next, in Sec. Ill B, we consider the
In this paper, we report the results of a study of the equi-effects of two neighboring pinning centers on the liquid-state
librium properties of the mixed phase of highly anisotropic, properties. An ‘“effective interaction” between vortices
layered superconductors in the presence of columnar pingrapped at the two pinning centers is obtained by calculating
We consider a geometry in which both the magnetic field andhe free energy as a function of the separation between the
the direction of the columnar defects are perpendicular to thpinning centers. This effective interaction is found to oscil-
superconducting layers. Our study is based on a model frelate with distance. This study and the one-pin calculation
energy function&f~2% for a system of “pancake” vortices mentioned above complement, in a sense, the analytic work
lying on the superconducting layers. We consider the limitingof Ref. 18 where the RY free-energy functional was used to
case of a vanishingly small Josephson coupling between thenalyze the structure and magnetization of a two-
layers, so that the pancake vortices on different layers intedimensional vortex liquid in the presence of strong pinning.
act via only their electromagnetic coupling. As we discuss inHowever, we consider here a three-dimensional system with
some detail early in the next section, previous theoretical andolumnar pins, instead of a two-dimensional system with
experimental studié~*have shown that this limit is appro- point pinning as in Ref. 18. Also, the numerical direct mini-

priate for describing extremely anisotroplicBi- and TI-  mization method used in the present work is more accurate
based HTSC's. These are the systems that we will considghan the analytic variational method in the earlier study.
here. The Ramakrishnan-YussoufiRY) free-energy We next study(Sec. Il O the freezing of the vortex lig-

functionaf* used in the present work is the same as that usedid in the pure system. This is done primarily for checking
in earlier studie®?® of vortex lattice melting in pure sys- the method against the results of earlier calculatfGréWe
tems. The same free energy functional was also used, ifind results in excellent agreement with those of earlier stud-
combination with the replica method for treating quenchedes. Our method also provides a very detailed and accurate
disorder, in a studf of the effects of random point pinning account of the distribution of the density near a lattice point.
on the melting line in thé-T plane. In these earlier studies, We then proceed, in Sec. lll D, to consider the melting tran-
the density distribution in the crystalline state was expressedition of interstitial vortices in a commensurate, triangular
in terms of a few “order parameters” and the free energyarray of columnar pins. As discussed above, this transition
was minimized with respect to these parameters. In th@rovides a physical realization of three-dimensional melting
present work, we use a different method which is more powin the presence of a commensurate periodic potential. Defin-
erful and more appropriate for describing in detail pinning-ing the concentratior of pinning centers as=B,/B, we
induced inhomogeneities of the local density. This methodgonsider values of given by 11? wherel is an integer. For
developed in our studié$of the hard-sphere system, in- small concentrations of pinning centers=6), we find a



first-order melting transition from a crystalline solid to an ergy per layer corresponding to the first term in the right side
inhomogeneous liquid. As the pin concentration is increasedhf Eq. (2.1) may be writteA* in an effectively two-
the transition temperature increases and the latent heat andémensional form

the jump in the crystalline order parameter at the transition

decrease. We find that this line of first-order transititers

minatesat a critical point beyond which the thermodynamic BFRY[p]:f dr{p(r)In[p(r)/po]— Sp(r)}

transition is replaced by a sharp crossover. This critical point

is a rare, experimentally realizable example of continuous

melting in three dimensions. We show that a simple Landau —(1/2)f drf dr'C(|r—r'])8p(r)p(r'),
theory provides a semiquantitative understanding of most of
our results. Some of our most salient results on the melting (2.2

transition in the presence of a periodic pin array were sum-

marized in a recent pap&t.Here, we present many details wherep is the inverse temperature. We have defidpdr)
which could not be included in that short paper. Section IV=p(r)—pg as the deviation op(r) from p,, the density of
contains a summary of the main results and some concludingpe uniform liquid and taken our zero of the free energy at its

remarks. uniform liquid value. The functior€(r) is a static correla-
tion function that contains all the required information about
the interactions in the system. It is given ByC(n,r) where
n is the label denoting layer separatianjs the in-plane

As explained in the Introduction, we perform in this paperdistance, an€C(n,r) is the direct pair correlation functidn
a numerical study using density-functional theory, which in-of a layered liquid of pancake vortices with areal denpiy
volves, as its foundation, a model free energy functional ap- Strongly anisotropic layered superconductors can be de-
propriate to a system of pancake vortices in a layered supescribed in terms of the Lawrence-Donid&Hamiltonian
conductor. Density-functional methods have long beerfrom which the energy of a system of pancake vortices can
used*3with great success in the study of solidification phe-be derived®’ In general, these vortices interact via a combi-
nomena in ordinary fluid systems. Although the theory isnation of electromagnetic and Josephson couplings. To cal-
basically mean-field based, it works very accurately in theculate the contribution of the Josephson coupling to the en-
description of first-order melting. We have ourselves per€rgy, one needs to specify, in addition to the positions of the
formed extensive numerical studies of a density vs disordeyortices on the superconducting layers, the precise way in
strength phase diagram of a hard sphere system in the preghich these vortices are to be connected to form lines. The
ence of quenched disorddusing a methodology quite simi- resulting effective “Hamiltonian” of the vortex system can-
lar to that employed in the present work. Density functionalnot be written as a sum of pairwise interactions. However in
methods have also been successfully &&&tto study the the limit of infinite anisotropy, which corresponds to vanish-
melting of the vortex lattice in layered superconductors with-ingly small Josephson coupling, the pancake vortices interact
out pinning. via a pairwise potential which is nonzero for vortices lying

The starting point of our calculation is an expression foron different layers because they continue to be coupled
the free energy of the system, written as a functional of théhrough their electromagnetic interaction. This limit is an
time averaged local density. In our case the relevant densitgppropriate starting point for describing BSCCO, for which
is p(i,r), the time averaged areal density of pancake vorticeghe anisotropy factoy=X\./\,, (A; andA ,;, are the penetra-
at pointr on theith layer. In the homogeneous vortex liquid tion depths for currents flowing perpendicular and parallel to
state in the absence of pinning, this density is uniform and ithe copper-oxide planes, respectiyehas been estimatéd
is given in terms of the magnetic inducti@by p,=B/®,,  to be higher than 500. The regime where Josephson coupling
whered, is the superconducting flux quantum. It is custom-is relevant is given &% X\ ,,> yd whered is the layer spac-
ary and convenient to introduce a length through the re-  ing. Since\,,(T=0)~1500 A andd=15 A for BSCCO,
lation 7ajpo=1. We will usea, as our standard unit of MNap(T=0) is substantially smaller thanyd, which
length in terms of which other lengths will be given and weindicate$® that the electromagnetic coupling should domi-

Il. MODEL AND METHODS

will usua”y also normalize densities in terms m{ nate the behavior of the vortex SyStem over much oHKHE
We write the free energy functional in the form plane. s g . _
Analytic®®?® and numeric&l’ studies based on the ap-
proximation of infinite anisotropy have yielded results in
Flp]l=Frdpl+Fylp]. 2.0 good agreement with those obtained from experiments on

BSCCO. Also, several experimental studfe€ have shown

The first term in the right-hand side of E.1) is the free  that in BSCCO, the electromagnetic interaction between vor-
energy of the vortex system in the absence of pinning, whilgices dominates over the interaction generated by the Joseph-
the second includes the pinning effects. Since the potentisdon coupling if the temperature is lower than about
produced by a collection of straight columnar pins perpen0.8T.,(H=0). As the low-temperature behavior will be our
dicular to the layers is the same on every layer, tiee-  primary concern, the assumption of infinite anisotropy is
averageddensity of vortices at any poimtmust be the same quite reasonable for BSCCO. However, this approximation
on all layers, i.e.p(i,r)=p(r) for all i. Then, the free en- should break down in less anisotropic systems such as



YBCO where the Josephson coupling can not be neglectecomputational lattice, proportional to the square of its lattice
over much of theH-T plane?® constanh. We haveL=Nh, so that the computational lattice
In the limit of infinite anisotropy, it is relatively hasN? sites. Periodic boundary conditions are used in all our
straightforward® to calculateC(n,r) andC(r) using the hy- ~ calculations.
pernetted chaiffHNC) approximatiors® Since the interac- Our basic procedure is to minimize the free energy of the
tion term in Eq.(2.2) is of a convolution form, it is numeri- System given certain values of the relevant parameters and
cally most efficient to deal with it in wave vector space. Thisthe appropriate initial conditions, that is, some initial set of
and the use of fast Fourier transfoffFT) methods reduces Values for the computational varialpde. Finding the minima
the computation of the interaction term in the free energy tdf the free energy is not at all trivial, since one is minimizing
a single sum. One begins with the expression for the Fourie? function of a very large number of variabl@ge have used
transform ofv (n,r), the two-body vortex-vortex interaction, values ofN up to 2048 as discussed belpand these vari-
which, in the limit of vanishingly small Josephson coupling ablesp; can take values differing by many orders of magni-

between the layers, is giv&tt° by tude(particularly in the solid phagend must also satisfy the
nonnegativity constraint. This precludes the use of many
2771“)\2[kf+(4/d2)sin2(kzd/2)] standard minimization methods. The procedure we use here
Bu (k)= (2.3 is the same as that originally employed in the hard sphere

2 2 H ’
KI[1+M2KE+4(N?/d?)sire(k,d/2) ] problent®3%%with the important difference that the calcula-

wherek, andk, are, respectively, the componentskoper- tions involving the interacting term are performed in wave
pendicular and parallel to the layer plads the layer spac- Vector space. This is for two reasons: first, it turns out to be
ing, and\(T) the penetration depth in the layer plane. Themuch more efficient, since the time used by _Founer trans-
dimensionless quantity which determines the strength of forming back and forth using efficient FFT routines turns out

the interactions is givefi by to be negligible compared with the time saved by not hav_ing
to perform a double sum over the large computational lattice.
F:qu)é/BWz)\z_ (2.9 Second, the direct correlation function is more conveniently

computed in any case in terms of the wave vector variable.
In coordinate space,(0r) is repulsive and logarithmic in - The procedure we use incorporafethe nonnegativity con-
while v(n#0yr) is also logarithmic, but attractive and straints and is insensitive to the large range of the variables,
weaker than the intralayer potential by a factor of roughlypyt require®® a large number of iterations for convergence.
(d/\)e™"*. Beginning with an interaction of this form, the The efficiency of the FFT method, however, still allows us to
HNC procedure of Ref. 26 can be used to numerically comyse the sizes required for the problem.
pute C(k) for the appropriate values of the relevant param-  The minimization procedure finds a local minimum of the
eters. The quantityC(k,), the two-dimensional Fourier free energy. The minimum located depends on the initial val-
transform ofC(r), is then obtained by settirig=0 inC(k). ~ ues chosen for the set of variables. The appropriate

The second term in Eq2.1) represents the contribution choices in each case are discussed in the next section. Gen-

of pinning to the free energy per |ayer_ Itis given by erally Speaking, nearly uniform initial conditions lead to ||q-

uid minima while ordered initial conditions with the proper

symmetry lead to crystalline states.

BF01= [ arv,(n) spr), 259

whereV,(r) is the dimensionlesgrormalized bykgT) pin- Il RESULTS
ning potential at point. This quantity can be written as A. General and one pin
Vo(r)=Zjvp(|Ir—Ry|), where the sum is over all pinning
centers located at the poirftR;} on a plane, and ,(r) is the
dimensionless form of the potential atdue to a pinning
center at the origin. We take this potential to be of the trun
cated parabolic fortd

In this section we present and discuss our numerical re-
sults. In principle, these could be given in terms of a minimal
set of dimensionless parameters. However, it is more appro-
‘priate, in view of this paper’s objectives as discussed in the
Introduction, to present the results in terms of physical pa-

_ 2 rameters with dimensions. This is the course we have taken.

0p(1) == Vol 1=(r/ro)"10(ro=1), 28 The values of the material parameters that we use here have
wherer g is the range of the pinning potential. We will write been therefore chosen as appropriate to BSCCO. These pa-
the dimensionless strength paramétgrasV,=«al" and the rameters are the penetration depttand the interplane dis-
quantity o will be chosen, as explained below, so that thetanced, which together with the temperature and fundamen-
pinning is strong enough to localize one vortex at a pinningal constants determinE. We setd=15.26 A, \(T=0)
center at the temperatures of interest, but not so strong that1500 A, and assume a two-fluid temperature dependence
more than one vortex is bound to a pinning center. of N(T) with T.,(H=0)=85 K. For these parameter values,

In order to carry out numerical work, we have to dis- the dimensionless quantity=2650/(T in K) at low tem-
cretize our system. We introduce for this purpose a compuperatures where th& dependence ok is negligible. We
tational triangular lattice of size. On the sites of this lattice study temperatures and fields in the region where the melting
we define density variablesi=p(r;)v, wherep(r;) is the transition of the vortex lattice is expected to occur. The
density at mesh poiritandv the area of the unit cell in the strength of the pinning potential is described by the param-
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FIG. 1. Numerical accuracy of density profile calculations. The  FiG. 2. Short distancewithin the range of the pinning potentjal
normalized local density variable/p, in the presence of a single results for the normalized density profildots. A fit to an expo-

pinning center is plotted vs the distance from the pinning center nential form in the pinning potential,(r) (dotted line, see texis
in units of ag. Two sets of data are plotted, for the same physicalajsg shown.

parameter valuesB=2 kG, T=20 K). One set was computed
with N=512, a,/h=20 (crossesand the other sesolid line) with ao/h=80, which are completely indistinguishable from
N=1024, a,/h=40 (see text A third set withN=2048, a,/h  those atN=1024, so that if we had plotted them they would
=80 would be completely obscured by the solid curve if plotted. not be visible: the two plots & = 1024 andN = 2048 would
be on top of each other. This and similar data obtained at

etera=V,/I", as introduced above. We fix the ranggto  other temperatures and fields tell us the range of valuéé of
ro=0.1a,, which corresponds to about 55 A fBr=2 kG. and ag/h needed to obtain high quality data. The results

To test our procedures and to find out more about th&ubsequently presented in this and the next subsection are
parameter range to be studied and the system sizes requireghtained aiN=1024 anda,/h=40
we begin by considering the simple case of an isolated pin- The high peak at small in Fig. 1 represents the large
ning center in a vortex system in the liquid state. We placevortex density at the pinned site. This density then decays
this pinning center in the center of the computational latticeaway in an oscillatory manner, as shown in the figure, to-
Since periodic boundary conditions are used, this amounts twards its long range limit, which is unity for our normaliza-
considering a periodic array of pinning centers with spacingion. As expected® the behavior ofp(r)/p, outside the
equal to the sizé of the computational cell. As discussed range of the pinning potential is very similar to that of the
below, the values of used in these studies are sufficiently radial distribution functiof? of the unpinned vortex liquid at
large, so that the behavior near a pinning center is not afthe temperature and magnetic induction being considered.
fected by the presence of its periodic images. We then choosghus, the medium and long range behavior of the density is
the initial configuration of the variables; as one vortex reasonable. The behavior @f(r) at very short distances,
located at the pinning center and uniform density everywherénside the pinning range, is shown in Fig. 2. One can see in
else, with the average density consistent wih We then this figure how the results are well fit, as expected, by an
perform the minimization of the free energy as describedexponential forme™vr("), where the pinning potential in
above. The main issues here are the determination of thenits of kgT is given by Eq.(2.6). This confirms that our
appropriate values of the pinning strength, and, from a techeomputational mesh is sufficiently fine even at these very
nical standpoint, finding the system sizes, and the values &fmall ranges.
h/aq required. A smaller value di/ay implies higher spatial Next, we must find the appropriate values of the pinning
resolution in describing the variation of the local density, butstrength parameter, as introduced above. We wish to con-
at constaniN this amounts to a reduction in the size of the sider here, of course, the case of strong pinning, but never-
system being studied. One must therefore strike a balancetheless o should remain small enough so that the total

We have performed this procedure for fieBs=2 and 3 amount of flux pinned at each site remains on the average
kG and at several temperatures in the range of interest (1below one superconducting flux quantum. To choose the ap-
—22 K) at those fields. We have considered valuedNof propriate value, we studied the average number of vortices
ranging from 128 to 2048 withy/h from a maximum of 80  pinned as a function ofr. Sample results are shown in Fig.
down to values of order unity. Representative results of thig, where the number of vortices pinned at the &itletained
rather extensive study are shown in Fig. 1. In this figure weby integrating the density over the pinning rande dis-
plot the density variable (normalized byp,) as a function  played as a function af. The data shown in this figure were
of the dimensionless distancefrom the pin, measured in taken atB=2 kG andT=18.0 K; data at other relevant
units ofa,. The data in the figure are all taken at a temperafields and temperatures are very similar. We see that the
tureT=20.0 K and a field3=2 kG, with the parametet ~ number of pinned vortices rises very rapidly withuntil a
set at 0.06. Results are shown for two casés:512 with  very marked kink occurs, at about the value when one vortex
ag/h=20 and N=1024, a;/h=40. The scaling ofag/h is pinned on the average. It is clear that one should use a
with N ensures that we are comparing systems containing thealue of « just below the kink in the curve, and in this study
same number of vortices. The two results are very close tove have used the values=0.05 anda=0.06 (the smaller
each other. We have also obtained results Kor 2048,  value was used in calculations at lower temperajufésr T
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The two centers are placed symmetrically around the origée
text). In the main plot, the density profiles are shown as a function
0 1 1 1 1 1 of the distance from the origin, that is, from the midpoint between
0 0.05 0.1 0.15 0.2 0.25 the two pinning sites. The inset shoyeplid line) the free energy as

Pinning strength a function of the pin separatiah The horizontal dashed line marks
the infinite distance limit. The curves shown in the main plot are for
FIG. 3. Integrated density within the range of the pinning po-the cases where the distartteetween centers equals 1295solid
tential (that is, the average number of vortices pinned at a center cyrve) and 2.6@, (dashed curve The first corresponds to a mini-

as a function of pinning strength given by the parametedefined  mum of BF (insed, the second to a nearby maximum. The results
in the text. For values of the pinning strength just before the kink ingshown are foB=2 kG, T=20 K.

the curve, nearly one vortex is pinned at a center. The temperature
is 20 K and the field 2 kG. two examples of the density profile as a function of distance.
Only one half of the density distribution is plotted, with the
in the range of interest here (322 K), these values of  ©rigin corresponding to the center of the lattice and the hori-
correspond td/,~7—9. This is consistent with the results Zontal axis representing distances along the diagonal. The
of the two-dimensional study of Ref. 18 where it was founddistribution is then symmetric about the origin, and the dis-
that the average number of vortices trapped at a pinning cei@nce from the center of the first peak to the plot's origin is
ter decreases sharply below one as the dimensionless pinnifig!f the interpin distance. The solid curve corresponds to the
strengthV, becomes lower than about 8. case wherel (in units ofag) is 1.95 and the dashed curve to
the case where it equals 2.60. One can see at larger values of
r, away from both pins, an oscillatory decay similar to that in
Fig. 1. The behavior in the interpin region near the plot ori-
Having in the previous subsection determined the propergin is more complicated. At shorter interpin distan¢as in
ties of the density profile when the pins are, in effect, verythe solid curvg, the density is very small between the two
far apart, we consider now the case where there are tweenters, but when that distance is increased to over tagce
pinning centers separated by a smaller distaha®ith o set  (see the dashed curydt becomes possible to have a peak
so that each center pins nearly one vortex, we expect to haveetween the two pinning centers, and édgs further in-
when the two centers are not too far apart, interactive effectsreased, additional intersite peaks appear as well.
as a function ofi, as the density oscillations emanating from  When the two centers are close enough to interact, the
each pinning centefsee Fig. 1 must be distorted to match free energy will obviously depend on whether the oscilla-
each other. We perform this calculation by placing the twotions in the density profiles corresponding to the two centers
pinning centers symmetrically around the center of the com¢|ock” or not. This implies’® that the free energy of the
putational triangular lattice, on the longer diagonal. For thesystem should be an oscillatory function of interpin distance.
initial conditions, we place one vortex on each of the twoTo verify this, we have evaluated the free energy as a func-
pinning sites, and a uniform density on the remaining com+tion of interpin distancel. Results are shown in the corner
putational sites, consistent with the average density b@ing inset of Fig. 4. The dashed horizontal line is the result for the
We have performed this study at fields of 2 and 3 kG and atase wherel is very large, that is, twice the value for a single
several temperatures. Results Bt=2 kG andT=20 K, pin[recall that the zero of free energy is taken to be the at the
with «=0.06 are shown in Fig. 4. These results were againuniform liquid state, see Eq(2.2)]. This value is BF
obtained atN=1024, a;/h=40. In the main plot we give =-—4.680 for the case plotted. The solid curve shows the

B. Two pinning centers



behavior of BF as a function of interpin distance and it
clearly displays the oscillatory behavior of this quantity. As
found in Ref. 18, the free energy has minima at interpin
distances approximately corresponding to the position of the
maxima of the single pin density profile shown in Fig. 1.
This reflects that it is easier, for those distances, to lock the
oscillations corresponding to the two centers. The two pin
distances corresponding to the two curves shown in the main -
plot of Fig. 4 were chosen so that one corresponds to a free 1518 18585 a1 185
energy minimum(solid line) while the other(dashed curje T(K)
corresponds to a nearby maximum. The higher value of the ) )

free energy in the latter case is due to greater difficulty in /G- 5. Computation of the melting temperature for the pure
matching the two profiles in this case. This difficulty is re- SyStem atafield=2 kG.The symbols, connected by a solid line,
flected in the smaller height of the first peakgdf) outside represent the computational results for the dimensionless free en-

the range of the pinning potential and the appearance of ergy of the crystal, as explained in the text. The results are shown to
small peak ofp(r) nearr/a,~0.6. The oscillatory behavior ge independent dfl which determinegsee textthe mesh size used

. . 3 ) in the computation. The temperature at which the solid line crosses
of the free energy as a function dfimplies an oscillatory

it > the liquid free energyzero by convention, dashed linis the melt-
dependence of the magnetization of the vortex liquid on th(?ng point.

applied magnetic field when a periodic array of pinning cen-
ters is present. In particular, the reversible magnetization imne unit cell of the vortex crystal is plotted as a function of
the liquid state is expected to show minima near certain inthe temperatur@. We find that the free energies of the crys-
tegral values oB/B . tal obtained for all the values dfl listed above are essen-
The integrated density inside the range of a pinning centetially the same, as exemplified by the data shown for two
remains close to unity when the pin separatibis greater values ofN, indicating that the effects of discretization are
than 2ay. As the value ofd is decreased belowad, the  minimal provided thah<L/16=0.12%,.
integrated density begins to decrease and becomes substan-The equilibrium value., of the lattice parameter is deter-
tially lower than unity ford<<1.5a,. Thus, the simultaneous mined by finding the value df that minimizes the free en-
occupation of two pinning centers by two vortices is likely if ergy at a giverB andT. The dependence ¢fF on the value
the centers are far apafin units of ag), but unlikely only  of L for B=2 kG, T=18.5 K is shown in Fig. 6. The value
when the two pinning centers are separated by distances lesg L, is found to be close to 1.988, which is slightly
than about 1&. This is consistent with decoration pigherthan the spacing/27/y3 a, of a triangular lattice of
expenment%l which show that nearly all pinning sites are yengity . This reflects the well-known restiithat the den-
occupied by vortices when the number of pinning sites issjty of 3 vortex latticéncreasesslightly at melting. The tran-
smaller than the number of vorticeB% B,). sition temperature is determined from the zero crossing of
the free energy of the crystalline state, calculated.ferl ,
as a function ofT, as illustrated in Fig. 5, which shows the

results of computations performedlatL,. ForB=2 kG,
As a preliminary step in our study of the effect of an arraype melting temperature is théh=18.45 K. This value of
of pinning centers on vortex lattice melting, we have carriedr _js sjightly higher than that obtained variationgfyThis is
out calculations of the melting transition of the pure SyStemexpected: the free energy of the crystal obtained in our un-
for B=2 and 3 kG. This is in order to determine the “clean” constrained minimization should tewer than that obtained

limit of our subsequent results. In addition, our numericaliy calculations where the free energy is minimized with re-
solutions in the pure limit can be compared with those obxpect to a few parameters only.

tained from variational treatmeRts® of the same RY free-

energy functional in which the density distribution in the 0.9
crystalline phase was expressed in terms of the Fourier com- B=2kG, T=18.5K
ponents of the density at a few small reciprocal lattice vec- 0.8
tors.

The computational cell used in our pure limit calculations 07+
is one triangular-lattice unit cell with lattice constdntThe /
spacingh of the computational grid is chosen to have the 0.6 \/.
valuesL/N with N=16, 32, 64, and 128. Crystalline minima
of the free energy are obtained by running the minimization 05 1
routine with initial states that have a sharp peak of the den- ¥ 1.990
sity at the center of the computational cell. At sufficiently %
low temperatures such minima are found for a range of val- F|G. 6. Determination of the equilibrium lattice parameltgrat
ues of L. Typical results obtained forB=2 kG, L  melting. The dimensionless free energy of the crystal at featd
=1.9884, and two values oN (N=16 andN=128) are Tis plotted here vs the lattice parameterThe free energy has a
shown in Fig. 5 where the dimensionless free eng8gyof minimum atL =L,=1.988&,,.
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ues of £ in simple three-dimensional solids near melting.
B=2kG, T=18.5K The large value ofZ implies that the peak of the density at
the center of the unit cell is not very shaigee Fig. 7. This
helps explain why relatively coarse values of the meshtsize
(e.g.,h=Ly/16) are adequate for obtaining an accurate de-
scription of the density distribution in the crystalline state.

PPy

0 D. Periodic array of columnar pins

0 02 O-‘Lr/a% 0.8 1 Having obtained these clean limit results in the previous
0

subsection, we proceed now with our study of the effects of

FIG. 7. Radial dependence of the density distribution in the? COmmensurate, periodic array of pins on the vortex lattice
vortex lattice. The quantity plotted is the angular average of théMelting transition. We consider a triangular lattice of pins
normalized local density(r)/p,. It is given as a function of the With spacing equal tdL,, wherel is an integer and.,, as
distance from the center of a crystalline unit cell. The symbolsdefined above, is the equilibrium value of the spacing of the
(crossesare the computed results, and the solid line is a Gaussiapure vortex lattice at its melting point for the value Bf
best fit, valid at small distances from the center of the cell. being considered. Thus the pin concentrationssl/i?. The

computational cell used is one unit cell of the pin lattice

The discontinuity in the entropy at the crystallization tran- (which containd? unit cells of the vortex latticewith peri-
sition is obtained from the numerically calculated slope ofodic boundary conditions and one pin located at the center of
the BF versusT curve at the transition temperature. The one of the vortex lattice unit cells. The value lofvas fixed
Fourier transform of the density distribution at the crystallineat L,/64 in the calculations foB=2 kG. We also carried
minimum obtained at the transition temperature yields theout a few calculations foB=2 kG usingh=Ly/16. The
value of the jump in the crystalline order parameterde-  results obtained for this larger value bfwere found to be
fined as the magnitude of the Fourier component of the deressentially the same as those obtained HerLy/64. We
sity at the shortest reciprocal lattice vector of the triangulatherefore usech=Ly/16 in our calculations foB=3 kG.
lattice. At B=2 kG the entropy changAs per vortex is We set the pin strength parameter, as mentioned above, to
0.2%g, and the jump in the order parameter is Am a=0.06 in the calculations faB=2 kG. A slightly smaller
=0.52. Very similar results are obtained fB=3 kG: T,  value, a=0.05, was used in the calculations Br=3 kG
=15.10 K, As=0.2&g, Am=0.52, L;=1.98%,. These because the temperature range of interest is lower in this case
are in close agreement with the results of earlier stutf®s. and the strength required to pin slightly less than one vortex

Our numerical method provides detailed and accurate inis somewhat smaller.
formation about the spatial distribution of the time averaged The crystalline and liquid minima of the free energy were
density in a unit cell of the vortex lattice. We find that the located from “heating” and “cooling” runs, respectively. In
density function near the center of the unit cell is, to a gooda heating run, the crystalline minimum was first located by
approximation, invariant under a rotation about an axis perminimizing the free energy starting with an initial state in
pendicular to the layers and passing through the center of thehich the density distribution in each of th&vortex lattice
unit cell. Figure 7 shows a plot of the local densjyr) unit cells contained in the computational cell was that in one
(angularly averaged and normalized by the average densitynit cell of the vortex lattice of the pure system at its melting
po) at the crystalline minimum obtained f@=2 kG, T point for the same value d8. The crystalline minimum so
=185 K,L=1.98&,, as a function of the distanaefrom  obtained was “followed” to higher temperatures by increas-
the center of the unit cell. As shown in the figure, a Gaussiaiing the temperature in small steps and running the minimi-
fit to the data for small provides a good account of the zation program at each temperature with the minimum ob-
dependence of the density anexcept at larger distances. tained at the previous step as the initial state. In a cooling
The value of the Lindemann parameigmt melting may be run, a liquid minimum was first obtained at a relatively high
obtained approximately from the width of the gaussian fit, otemperature by minimizing the free energy with an initial
more accurately from a numerical evaluation of the root-state consisting of one vortex located at the pinning center

mean-square displacement and uniform density everywhere else, so that the average
density wag,. This minimum was then “followed” to lower
2 temperatures as in the heating runs, but decreasing the tem-
r<p(r)dr - . . R o
N perature in small steps instead of increasing it. The liquid
(ro)= ' 3.1 state is not homogeneous in the presence of pinning and its
f p(r)dr free energy is nonzero.

For both values oB studied and relatively small values of
where the integrals are over a lattice unit cell ant the ¢ (1=10, 8, 7, and § we found a range of temperatures over
radius vector measured from the center of the unit cell. Weavhich both crystalline and liquid minima are locally stable.
find that the value ofZ at melting is 0.26 foB=2 kG and The crossing of the free energies of these two minima defines
0.25 forB=3 kG. These values, similar to those found in a first-order transition between crystalline and liquid states.
earlier work>2® are substantially larger than the typical val- Results for the transition temperatufe as a function ofc
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FIG. 8. Phase diagrariransition temperatur&. as a function
of pin concentrationc) for B=2 kG (solid symbol$ and B
=3 kG (open symbols The circles denote first order transitions a
and the squares mark crossovers. The dotted lines are polynomigx
fits, included to guide the eye. The arrow marks the approximate

po;itign of the critical point aB=2 kG. AtB=3 kG the critical noting the vertical axis scalewith small-amplitude, damped
point is nearT=17.6 K. oscillations aboup = p,. In contrast, the density in the crys-
talline state exhibits higher, sharper and asymmetric peaks at
for B=2 and 3 kG are shown in Fig. 8. The presence ofthe lattice points, with the density rising more sharply on the
columnar pins is found to increadg . This should be ex- side closer to the pin, particularly at smaller distances from
pected: columnar pins suppress the disordering effects of thile pin site. Similar plots foc=1/64 may be found in Ref.
lateral wandering of vortex lines, and a commensurate peri34. These plots clearly bring out the obvious differences be-
odic array of such pins clearly promotes crystallization. Intween the structures of the coexisting crystal and inhomoge-
other words, an external potential having the same symmetrgeous liquid phases.
as the crystal favors the crystalline state. The resultBfor The density distributions at the liquid minima exhibit as
=2 and 3 kG are quite similar, witfi; for B=3 kG re- expectedf a sixfold angular modulation. This is illustrated in
duced by approximately 3.4 K for all these valuescoThe  Fig. 10 where we have shown the average density at the first
discontinuities in the entropg and the order parameten  peak of the normalized local density near a pinning center
decrease as increase¥ because pinning-induced order in (i.e., the density averaged over the region &g#5r
the liquid increases witla. <1.9,, wherer is the distance from the pinning centes a
Our results yield not only bulk quantities but also very function of the angle measured from the line joining the
detailed information on the density distribution of the vorti- pinning center to one of its nearest neighbors. The data
ces. This quantity is experimentally accessible in scanninghown are for the liquid minimum obtained f&=2 kG,
tunneling microscopySTM) and scanning Hall probe mea- T=19.6 K andc=1/49. A sixfold angular modulation of the
surements. In Fig. 9, we show the variation of the local dendensity is clearly seen in the figure. The minima of the den-
sity p along a line joining two neighboring pinning centers sity occur on the lines that join the pinning center to its
for the crystalline and liquid minima near the transition tem-nearest neighbors. This is different from the behavior found
perature forc=1/49 andB=2 kG. The density profile in in the crystalline minima where density maxima occur on the
the liquid minimum can be viewed as a superposition oflines joining neighboring pinning sitgshis can be seen at a
liquidlike profiles near individual pinécompare with Fig. 1, different value ofc from inspection of Fig. 12 below
The full two-dimensional density distributions at the lig-
8 uid and crystalline minima obtained near the transition tem-
perature foB=2 kG andc=1/36 are shown as gray scale

FIG. 10. Sixfold angular modulation of the density in the liquid
state forB=2 kG, T=19.6 K, c=1/49. The normalized density
eraged over the first ped&ee text is plotted vs the angle mea-
red from a line joining two pinning sites.

6l . :;aulid plots in Figs. 11 and 12, respectively. The plot for the liquid
minimum exhibits the usual correlation “hole” around the
s pinning site at the center, and concentric “rings” of alternat-
s 4 ing high and low densities with sixfold angular modulation.
The angular modulation at the first ring is less pronounced
2 I W (and less obvious in a gray scale plttan that depicted in
\/ \/UU U Fig. 10 forc=1/49. The plot for the crystalline minimum
OO S Y 5'3 P '1'0' L illustrates how the detailed structure of the periodically ar-

ranged crystalline density peaks changes with the distance

from the pinning site at the center. The ability of our numeri-
FIG. 9. Density distribution for the coexisting liquid and crystal cal method to provide detailed information about the density

states at the melting transition for pin concentration1/49 and  distribution in highly inhomogeneous states is clearly illus-

field B=2 kG. The normalized density profiles are plotted along atrated in these figures as well as in Figs. 9 and 10.

line joining two pins, one near=0, and the other just beyond the The degree of order in the liquid state increases with the

right edge of the figure. pin concentrationc, thereby decreasing the difference be-

Xlag
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FIG. 11. Gray scale plot, as indicated, of the normalized density
field p(r)/pq at the liquid minimum foic= 1/36. A pinning center is
located at the center of the shown unit cell of the pin lattice. FIG. 13. lllustration of the different values of the order param-

eterm found in heating and cooling rursquares and circles, re-
tween the crystalline and liquid minima. This has drasticspectively at higher values of the pin concentration<(1/25, B
consequences for the crystallization transition. The behavior 2 kG in this cask The triangles represent the equilibrium values
we find for c>1/36 (<6) for both values oB is signifi- ~ of mfound as explained in the text. The solid line is a polynomial fit
cantly different from that described above. For 1/25 and 10 the gquilibrium da_ta. _The dotted curve is the absolute value of the
c=1/16, the apparent minima obtained in heating and coolderivative of the solid line.
ing runs have almost the same free energy, but somewhat ) ) )
different values of the order parameterWe have shown in  "ations found in heating and cooling runs. We therefore
Fig. 13 plots ofm versusT obtained from heating and cool- €valuated the free energy for a set of configuratigméx) ;
ing runs forB=2 kG andc= 1/25(circles and squargsThe ~ defined by
small difference in the heating and cooling valuesmgieaks ) @)
at a temperaturd=T,=21.2 K. In Fig. 14 we show the pi(X)=xpi '+ (1=Xx)p;i”’, (3.2
two corresponding density profiles obtainedTat 21.2 K.
These plots are analogous to those in Fig. 9cderl/49. In
sharp contrast to that cas@nd also to thec=1/36 case
shown in Figs. 11 and )2he two profiles are now very
similar, with the one obtained in the heating run exhibiting
only a slightly higher degree of order, consistent with the
higher value ofm. This leads to the suspicion that the free

energy aic=1/25 may have only one very *flat” minimum it indeed has a minimum at=x,~0.5 at temperatures near

nearT =T, under the conditions studied. When attempting tothe expected transition, for all higher concentrations,

find a minimum, our numerical routine stops when the free ) . e =
energy gradient becomes smaller than a certain small conver. 1/25. An illustration, for the casB=2 kG, T=21.2 K,

gence parameter. When a minimum is very flat, it may sto ndc=1/25 discussed above, is provided by Fig. 15. If one

at slightly different configurations when approaching it from aitempts such a proc_edure at lower concentrations, on the
different directions in configuration space. other hand, the resulting plot turns out to have a maximum,

If this situation occurs, then the density configuration atrather than a minimum, near= 0.5. . .
the true minimum of the free energy should be better ap- This analysis shows that the suspicions mentioned above

proximated by a linear combination of the density configu-"¢'® correct and that far=1/25, only one minimum of the

where{p™} and{p{?} are the density configurations, at the
same temperature, at the apparent minima obtained in heat-
ing and cooling runs, respectively. The mixing paramgtesr

in the range &x=<1. If one then plots the free energy thus
obtained either as a function &for, equivalently, as a func-
tion of m(x)=xmM+ (1—x)m®?), wherem™® andm® are

the order parameters in the two configurations, one finds that

B=2kG, T=21.2K, c=1/25

crystal
B=2kG, T=20.1K, c=1/36
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FIG. 14. Density profiles, depicted as in Fig. 9, for the heating
FIG. 12. Gray scale plot of the normalized density field at theand cooling runs shown in Fig. 13, at temperatdre 21.2 K,
crystal minimum coexisting with the liquid minimum shown in the which is very close to the crossover temperatiigedefined in the
previous figure. text.
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FIG. 16. Location of cells containing localized vortices under
FIG. 15. The “mixed” free energy plotted as a function of the indicated conditions. The circles denote the positions of the 25
m(x), as explained in the text, at=1/25,B=2 kG, T=21.2 K.  vortex lattice unit cells contained in a unit cell of the pin lattice. A
The triangles represent the results of the computation. The slighginning center is located in the unit cell at the bottom left corner. A
irregularity of the data points reflects numerical uncertainties. Thestar in a circle denotes that the unit cell contains a “localized”
dashed line is a fit to the Landau expansion of &3). vortex according to the criterion given in the text. The temperature

. here is slightly higher than the crossover temperafliyefor B
free energy exists at each temperature. The value of the free;, g c=1/25. The cells containing localized vortices do not

energy at this minimum is lower than those found in thepercolate across thexss sample.
heating and cooling runs. Thus, there is no first-order transi-
tion at c=1/25 or higher. The line of first-order transitions hood of an isolated pinning centésut outside the range of
found for smaller values of ends at a critical point which its pinning potentigl does not exceedgd if the system is in
lies betweerc=1/36 andc=1/25 at both values of the field the liquid state. This suggests that values of the local density
considered. p less than 3, correspond to mobile vortices. We, therefore,
At ¢>1/36, above the critical point, a crossover rathertake p.=3p,. We divide the computational cell int¢?
than a sharp transition characterizes the change from liquidsortex-lattice unit cells and associate a localized vortex with
like to solidlike behavior. The crossover temperature can be unit cell if the local density exceegs at some point inside
conveniently defined from the numerically calculated tem-that cell. We then examine whether the unit cells that contain
perature derivative of the “equilibrium” valuen(x,) of the  localized vortices according to this criterion percolate across
order parameter. Plots of botm(xy) and its temperature the sample.
derivative are shown in Fig. 13. The temperature at which All the vortex-lattice unit cells in a crystalline minimum
the derivative of the order parameter peaks is obviously vergontain localized vortices, since the maximum valugoét
close to the temperaturg, defined earlier as that at which the lattice sites of a crystal always excegds In contrast,
the difference between the order parameters obtained in heatnly the vortex-lattice unit cells in which pinning centers are
ing and cooling runs peaks. The crossover temperature cdacated and, in some cases, the nearest neighbors of such unit
therefore be identified witi, . The sharpness of the cross- cells, contain localized vortices in the coexisting liquid mini-
over suggests that=1/25, T=T,=21.2 K is close to the mum at the crystallization transition far<1/36. Thus, for
critical point forB=2 kG, as indicated by the arrow in Fig. c<1/36, the crystallization transition trivially coincides with
8. Forc=1/16 the crossover is smoother. Our resultsBor a percolation of unit cells containing localized vortices. For
=3 kG are very similar to those at the lower field, with a c=1/25, in the crossover region, we have found that the unit
similar value of the criticak but lower crossover tempera- cells containing localized vortices do not percolate if the
tures (this is obvious from Fig. B with T,=17.6 K forc  temperature is higher than the crossover temperdtyde-
=1/25. fined above, but percolation occurs beldy. Typical results
The crossover to the crystal statecat 1/36 may be cor- are shown in Figs. 16 and 17. In Fig. 16, we have shown the
related with the onset of percolation of vortices which arelocations of the units cells containing localized vortices in
“localized” according to a density-based criterion. Localiza- the minimum obtained in the heating run Br=2 kG, T
tion of vortices is, strictly speaking, a dynamical phenom-=21.2 K andc=1/25. These unit cells do not percolate
enon, but some information about localization may be ob-across the X5 computational cell, while the cells contain-
tained from the distribution of the time-averaged localing mobile vortices do. Since the degree of localization in the
density. The local density near a point where a vortex isninimum obtained in the heating run is higher than that in
localized should be significantly higher than the average derthe minimum obtained in the cooling run, no percolation
sity po. Therefore, a density-based criterion for localizationwould be obtained at this temperature if the cooling-run
may be obtained by demanding that the density near a poiminimum or the equilibrium configuratiop;(x,) were used
where a vortex is localized exceed a suitably chosen cutoffor finding the unit cells containing localized vortices. On the
value p.. Our results for the density modulation around another hand, as shown in Fig. 17, the unit cells containing
isolated pinning center suggest an appropriate choice for thiecalized vortices do percolate across the sample in the
cutoff. One can see, for example, in Fig. 1, that in the tem-~equilibrium” configuration obtained at the slightly lower
perature range of interest the local density in the neighborT=21.1 K. At this temperature, the heating run shows per-



to, but slightly lower than the best-fit values a$ and g,
indicating that the critical point foB=2 kG is, as we had
already stated, very close tw=1/25, T=21.2 K. This ex-
plains the sharpness of the crossover=atl/25. The numeri-
cal results foB=3 kG can be analyzed in the same way. A
fit for T=17.6 K, c=1/25 yields then values &, andg,
which are less than 1% lower than the best-fit valuea.of

B=2kG, T=21.1K, c=1/25

* "localized" vortices

Bomoomoomom andg, respectively. Therefore the Landau free energy gives a
% ®m o o m good semiquantitative account of the critical behavior of our
"equilibrium” density functional computations for both valuesBfThis

strengthens our conclusions about the existence and location

FIG. 17. As in the previous figure, but at a temperature slightlyOf the critical point.

lower than the crossover temperatdrg. The cells containing lo-
calized vortices now percolate across the sample. IV. SUMMARY AND DISCUSSION

colation, but the cooling run does not. Thus, percolation oc- 's\clz\:itigz\(ljefrlfazegr:grthIsl‘u%:jlcpt)iiaglugesrtlﬁgl Tr:glr;];fze:ic:t'zgno?:c::

curs at a temperature very close to the crossover temperatu?uémnar inning on tr?g structure and the%mod namics of a

T,=21.2 K. Very similar results were obtained fd P 9 . X X y .
system of pancake vortices in the mixed phase of highly

=2 kG, c=1/16, andB=3 kG, c=1/25, indicating that - . .
I - : . ; anisotropic layered superconductors. The most salient result
this is a general condition. This result is physically reason-

able: a system in which localized vortices percoléad of our study is the existence of a critical point in the vortex-

consequently, the mobile ones do not percolateould be- Ia(;gme meltl?g. phase d'agra'.“ when a commenlsurar:e, pﬁ”'
have as a “solid” at long length scales odic array of pinning center_s_ls present. Our resu t_s st ow that
i the line of the melting transition in the-c plane, which is of

Itis easy to see that the occurrence of a critical point Mcourse first order for small values of the concentration of

the phase diagrams of Fig. 8 does not contradict any funOla'innin centers, terminates at a critical point as the pin con-
mental principles. In the presence of commensurate periodi% g ' P b

Since the degree of order in the liquid increases wijtlt is P y '

possible for the liquid and the crystal to become indistin-Order paramet_er_and ot_her thermod_ynamic qu_antities. To our
guishable beyond a critical value afOne can then go from knowledge, this is the first quantitative theoretical prediction

one phase to the other without crossing a sharp phase boun%f-a continuous melt_mg transition in a th_ree-dlmensmnal _sys.—

ary tem. This critical point should be experimentally accessible:
The basic features of the phase diagrams may be undetlljg é)én I;ttlgﬁ)ssépgcmg stSCTnZ okf(?ﬁecrzji/ jtiso:-ri]r?clijlljocl:et:je i

stood from a simple Landau theory. From well-known sym-__~->> #1 pacing P

metry argument€ one can write down a Landau expansion array of Re_f. 13. The same group recentl_y sho%_/\)/etuat
for E: columnar pins can be created in BSCCO in a highly con-

trolled manner. We, therefore, expect that the fabrication of
bulk HTSC samples with a periodic array of columnar pins

BF = Eazmz— Ea3m3+ 1a4m4—gm, (3.3  Wwith appropriate spacing is technically feasible. Fabrication
2 3 4 of such samples and experiments to verify our theoretical

) predictions would be most welcome.
wherem is our order parameter, the constaagsanda, are We have shown that most of the features of our phase

positive, anda, decreases with decreasifigThe “ordering  gjagram can be understood from a simple Landau theory.
field” g is proportional to the pin concentratian A simple  The critical point found in our study is analogous to the
analysis shows that this free energy leads to a first-ordefqyig-gas critical point in mean-field theory. Fluctuations are
transition forg<<g.=a3/27a; and a critical point aj=g.,  expected to change this correspondence because the symme-
a,=ay.=aj3/3a,. The transition temperature increases withtry of our order parameter is different from that for the
the ordering fieldy in agreement with the arguments previ- liquid-gas transition. Theoretical studies of the universality
ously discussed. The latent heat and the order parameter diglass of this critical point would be interesting. However, the
continuity Am vanish as §.—g)*? asg approacheg, from  |ocation of the first order melting line and the existence and
below. It was shown in Ref. 34 that our data fos andAm  experimental accessibility of the critical point should be
are indeed well described by the fora(c.—c)¥? with ¢, quantitatively described by our work. We have also shown
close to 1/25. that the smooth crossover from liquid-like to solid-like be-
More quantitatively, it is possible to fit o8F vsmdata  havior beyond the critical point might be interpreted as a
to the form Eq.(3.3. The best fit forB=2 kG, T percolation threshold for localized vortices.
=21.2 K, c=1/25, is shown in Fig. 15. The fitting param-  The one-pin results reported here provide useful informa-
eter values ar@,=70.71, a;=234.87,a,=261.71, andg tion about the dependence of the average number of vortices
=7.12. Using the values af; anda, obtained from the fit, trapped at a pinning center on the temperature and the
we geta,.=70.26 andy.=7.01. These values are very close strength of the pinning potential, while our results for the



interaction between two neighboring pins illustrate the oc-perconductors with commensurate periodic pinning. Since
currence of interesting effects in the liquid state arising fromperiodic arrays of strong pinning centers have already been
the commensurability of the separation of the pins with thefabricated?1’in thin-film superconductors, our predictions
average intervortex separation. Finally, our method yieldgan be readily tested in experiments. One should, however,
very detailed results for the density distribution in the sys-keep in mind that the predictions of our mean-field-like den-
tem, which is accessible through STM and scanning Halkity functional calculation are less reliable in two dimensions
probe measurements. where the effects of fluctuations are stronger. The melting
_As noted in Sec. Il, the symmetry of the three-yansition in a pure two-dimensional system without pinning
dimensional system considered here make~s the calculations,, pe continuou& whereas the mean-field prediction of
effectively two dimensional, with the functio@ playing the  first-order melting is always realized in pure three-
role of the two-dimensional direct pair correlation function. dimensional systems. Our main result about the existence of
The direct pair correlation function of a two-dimensional g critical point in the phase diagram should apply to thin-film
vortex liquid®28is quite similar to the functio€ used inthe  superconductors with commensurate periodic pinning if the
present study. We, therefore, expect that most of the resulgystem exhibits a first-order melting transition in the absence
obtained here should apply, at least qualitatively, to thin-filmof pinning.
superconductors in the presence of strong pinning centers. As The melting transition of the lattice of interstitial vortices
noted in Sec. Ill, some of our one- and two-pin results ardan the presence of a commensurate, periodic array of pinning
indeed in good quantitative agreement with those obtained inenters provides a physical example of melting in the pres-
Ref. 18 for a two-dimensional system of vortices with strongence of an external periodic potential. Similar melting tran-
pinning. This leads us to expect that the phase diagram otsitions are of interest in other systems such as atoms ad-
tained here for the vortex lattice melting transition in thesorbed on crystalline substratésand colloidal particles in
presence of a periodic array of pins should apply, with nainterfering laser field§ and arrays of optical tragé. Our
more than fairly minor quantitative changes, to the meltingmethod and results would be of relevance to these systems
transition of a two-dimensional vortex lattice in thin-film su- also.
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