
PRAMANA c© Indian Academy of Sciences Vol. 68, No. 1
— journal of January 2007

physics pp. 99–104

Experimental investigation of the response of a
harmonically excited hard Duffing oscillator

N S PATIL and A K MALLIK∗
Department of Mechanical Engineering, Indian Institute of Technology Kanpur,
Kanpur 208 016, India
∗Corresponding author: E-mail: akmallik@iitk.ac.in

MS received 20 June 2006; revised 15 September 2006; accepted 18 October 2006

Abstract. A single degree-of-freedom torsional vibratory system, which constitutes a
third-order dissipative dynamical system, has been fabricated as a mechanical analogue of
hard Duffing equation with strong nonlinearity. The forced response of the system reveals
complicated and chaotic motion at low frequency regime. Besides usual jump phenomenon,
unpredictable jump phenomenon with two and three coexisting periodic attractors is also
observed.
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1. Introduction

The equation of motion of a harmonically excited and viscously damped Duffing
oscillator is given by

ẍ + cẋ + αx + βx3 = F cosωt; c > 0. (1)

The approximate periodic response for the above equation, obtained by various
analytical methods, is discussed in almost all textbooks on nonlinear vibration.

If the parameters α and β are of opposite signs, then the corresponding undamped
and unforced system has three equilibrium states at x = 0 and x = ±

√
−β/α.

Complicated and chaotic dynamics of such systems possessing heteroclinic and ho-
moclinic orbits have received a lot of attention and have been studied, analytically,
numerically and experimentally. In this paper, we refer only to some of the exper-
imental works. With α < 0 and β > 0, i.e. with a double-well potential, famous
work of Moon and Holmes [1] revealed chaotic motion of the tip of a cantilever.
Large oscillation of a pendulum can be approximated by α > 0 and β < 0. Ex-
perimentally obtained chaotic motions of a pendulum were reported by Baker and
Gollub [2] and Hatwal et al [3].
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Figure 1. Experimental set-up.

However, with both α and β as positive, the system has only one equilibrium
position in the undamped and unforced state. A very high level of excitation is
required for such a system to exhibit chaotic response. The practical difficulty of
reaching such a high level of excitation, for these ‘hardening’ systems to exhibit
chaotic response, has been explicitly mentioned by Virgin [4].

The objective of the present paper is to report on chaotic response obtained
experimentally for a hardening system. The design of a torsional oscillator obeying
eq. (1) with α and β as positive is reported. Besides the usual jump phenomenon,
chaotic response is observed. If the forcing frequency is around three times the
linearised natural frequency of the system, then the response reveals unpredictable
jumps between two and even three possible attractors. In such a situation, the
response does not reach a steady state during experimentation. Numerical results
confirm the above-mentioned experimental findings.

2. Experimental set-up

Figure 1 shows the experimental set-up for a torsional oscillatory system. This
system is designed following the idea of Pippard [5]. A permanent magnet is held
in the middle by two thin mylar strips pasted securely onto the magnet. The ends of
the strips are clamped to a perspex ring onto which a coil of several hundred turns
is wound. For rotational motion of the magnet about its central vertical axis, mylar
strips act as a nonlinear torsional spring. The torsional stiffness characteristic of
the system is measured by applying equal tensions near the ends of the magnet
using pulleys and dead weights.

The torque (Ts) about the central vertical axis of the magnet can be computed
if the weights and the distances involved (moment arms) are known [6]. It may
be pointed out that the moment arm of the torque due to tension in the string is
dependent on the rotation (θ) of the magnet. It can be shown that the expression
for the moment arm is [a(l cos θ − a sin θ/

√
(1− a sin θ)2 + (a− a cos θ)2], where a

is the distance of the string attachment point from the axis of rotation along the
length of the magnet and l is the distance of the top of the pulley from the string
attachment point when θ = 0.
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High values of θ are measured by the protractor (figure 1) with a least count
of 0.5◦. For measuring low values of θ, a small mirror is attached to the side of
the magnet (figure 1). Such values of θ are obtained by measuring the deflection
of a reflected laser pointer incident on the mirror (at the center of the side of the
magnet). This system has a least count of 0.1◦. Small frictional torque at the pulley
axles is estimated by assuming it to be constant and a linear relationship between
the torque and rotation for very small values of θ [6]. All the torque readings were
corrected by subtracting this frictional torque and plotted vs. θ. Fitting the data
of this plot as

Ts = k1θ + k2θ
3 (2)

the following values are obtained:

k1 = 60.14 N·mm/rad
k2 = 62.46 N·mm/rad3.

A small B&K 4374 accelerometer was attached near the end of the magnet. The
accelerometer signal was fed to CF 3200 ONO SOKKI FFT analyzer via a B&K
2635 charge amplifier. Assuming linear viscous damping, the damping factor of the
system, measured from the decay rate of free vibration, is estimated to lie between
0.014 and 0.016.

Current sent to the coil wound on the ring provides harmonic excitation to the
torsional system. A Philips PM 5132 (0.1 Hz–2 MHz) signal generator and a MB
Dynamics SL 6000 VCF power amplifier were used for this purpose. The amplitude
(Γ) and frequency (ω) of the excitation torque are controlled by setting the gains
and frequency accordingly in these two instruments. The steady state peak-to-peak
response and the associated power spectrum are obtained from the FFT analyzer.

The equation of motion of the driven oscillator, with the measured values of the
system parameters, can now be written as

Θ′′ + 0.03Θ′ + Θ + Θ3 = T1 cos(ω1τ), (3)

where the prime denotes differentiation with respect to τ and the other symbols
are defined as given below:

Θ =
√

β/αθ, T1 = (
√

β/α)(T/α), ω1 = ω/
√

α, τ =
√

αt,

α = k1/J, β = k2/J, T = Γ/J

with J representing the centroidal moment of inertia of the bar magnet about the
axis of rotation.

To confirm the experimentally obtained features of the response, numerical results
[6] are obtained by integrating eq. (3) using a standard solver ode45 in MATLAB
6.5.

3. Results and discussion

Experiments were conducted with increasing and decreasing excitation frequency
keeping the amplitude of excitation constant. The plot of peak-to-peak response
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Figure 2. Chaotic response obtained experimentally at 1.9 Hz with increas-
ing level of excitation.

versus frequency of excitation, for three different levels of excitation, clearly revealed
the usual jump phenomenon. The size of the hysteresis loop, while jumping to and
from the resonance branch, was seen to increase with increasing level of excitation.
It may be pointed out that with the level of excitation below a critical limit, no
jump was seen in the response.

The peak-to-peak response in the low frequency regime exhibited non-smooth
variation of the response curve with increasing level of excitation. This irregular
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Figure 3. Experimentally obtained response at 18 Hz showing unpredictable
jumps preventing attainment of steady state.

behavior may be attributed to the complex interaction of higher order unstable
regions of the harmonic response. The non-smooth variation of the peak-to-peak
response with frequency, obtained experimentally, is confirmed by numerical simu-
lation results [6].

Now the results at a particular frequency in this low frequency regime are dis-
cussed. Figures 2a–2c show (i) the time response and (ii) the corresponding power
spectrum obtained experimentally at 1.9 Hz for three different levels of excitations.
Figure 2a shows a periodic response with a number of superharmonics. With in-
creasing level of excitation, subharmonics start appearing (figure 2b) with conse-
quent increase in the period. The appearance of distinct super- and sub-harmonics
is clearly indicated by sharp peaks in the power spectrum. With a still higher level
of excitation, all the low frequencies starting from zero appear in the response and
the absence of any distinct sharp peaks in this low frequency regime confirms that
the response is aperiodic or chaotic (figure 2c). Thus chaotic motion at this fre-
quency is observed experimentally. Numerical simulation confirmed such chaotic
response at 1.8 Hz with increasing level of excitation [7].

Experiments were also conducted at a frequency, which is close to three times the
linearised natural frequency. It is well-known that at such frequencies, one-third
subharmonic response can be sustained. With a high enough excitation, the normal
jump from the resonance to the non-resonance branch can also be shifted to such
a high frequency. All these can give rise to a complicated behavior. The linearised
natural frequency of the system was found to be 5.7 Hz. Accordingly, experiments
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were conducted at 18 Hz. It was observed that the response never settles down
to a steady state. Figures 3a–3c show three equal time windows within the same
run of the experimentally obtained response. All these windows are in a time
zone by when the response was supposed to settle down to a steady state. The
response clearly depicts unpredictable jumps between different solutions resulting
in the disappearance of the steady state. Of course, this response is non-chaotic.

In the frequency range 18.01–18.03 Hz, the response obtained by numerical inte-
gration showed intense sensitivity to small variation in frequency [7]. It was found
that while at 18.03 Hz, the response has a single peak at the forcing frequency, at
18.02 Hz the response with the same initial conditions has a large one-third sub-
harmonic peak (n = 3). The response at 18.01 Hz seems to consist almost entirely
of one-half subharmonic (n = 2). The disappearance of steady state at 18 Hz,
observed in the experimental response, may be attributed to this intense sensitiv-
ity of the response to frequency. During experimentation, there is inevitable small
fluctuation in the forcing frequency.

4. Conclusions

The major conclusions of this paper are listed below:

(a) A torsional, hard Duffing oscillator with strong nonlinearity has been designed
and fabricated.

(b) Non-smooth variation (with frequency) of the peak-to-peak periodic response
in the low-frequency regime ultimately leading to chaotic motion of a hard-
ening oscillator possessing one equilibrium point has been confirmed experi-
mentally.

(c) Over and above the usual jump phenomenon, the response at excitation fre-
quency nearing three times the linearised natural frequency exhibits unpre-
dictable jumps between multiple periodic attractors. This, in turn, results in
the disappearance of steady-state motion during experimentation.
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Supplementary figures

Figure S1a-S1c show stroboscopic maps of the response obtained numerically for
different levels of excitation at 1.8 Hz. It may be mentioned that for Γ in the range
0.7471 to 0.7578, with changing excitation level, the solution between the one having
period 2 and the other having period 7 and eventually both turn chaotic. For some
excitation level in this range, attractors having period 2 and period 7 are found to
coexist (with different initial conditions). No period doubling route to chaos could
be detected.

Figure S1. Nature of response at different levels of excitation obtained nu-

merically at 1.8 Hz.
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Figure S2. Intense sensitivity of the nature of the numerically obtained

response to excitation frequency near 18 Hz.
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