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Abstract This paper presents a Straightforward Inversion Scheme (SIS) for interpreting
one-dimensional magnetotelluric sounding data. The basic steps of SIS are (i) parameteriza-
tion of the layered model such that the layer thickness, expressed in units of its skin depth, is
a constant («); (i) expansion of the reflection function at each interface as a power series in

parameter u =exp(—2(1 +J Yo /f ); (ii) development of a recurrence relation between the
coefficients of the same powers of u in the power series of reflection functions of any two
successive layers; (iv) estimation of the impedance power series coefficients using regressed
minimum norm estimator; and (v) evaluation of layer resistivities and thicknesses using the
inverse recurrence relation. The power of SIS is established by inverting four synthetic data
sets and two field data sets. The effect of noise is extensively studied on a synthetic data set,
deliberately corrupted with increasing levels of Gaussian random noise up to 25%. It is found
that the scheme can retrieve broad features of the true model even with noise levels as high
as 25%. On the basis of findings of different experiments conducted on SIS, it is concluded
that SIS is an efficient, robust algorithm with high resolving power. Further, being linear,
it is non-iterative and it dispenses with the requirement of having to choose an initial guess
model. .

Keywords Inversion; MT data.

1. Introduction

Electrical properties of the earth materials exhibit the widest range of variations
spanning 8—10 orders of magnitude. Electrical resistivity is, therefore, a good indicator
of their distinctive character and a knowledge of its distribution at different depths
provides a direct clue to the way different kinds of materials are placed in the deeper
regions. Magnetotelluric sounding is, therefore, often employed to elucidate the nature
and texture of rock formation at depth. This information, in turn, is made use of in
locating the presence of fluidized fractured regions and temperature-pressure induced
phase changes in the deeper crust and upper mantle. '
Magnetotelluric (MT) exploration exploits the wide bandwidth excitation of the
earth by naturally occurring ionospheric current systems, to glean information from
a wide depth range from a few tens of meters corresponding to 1 KHzto few hundreds
of kilometers corresponding to 10~ ¢ Hz at the lower end of the spectrum. Its physical
basis was first provided by Cagniard (1953) who showed that the simultaneous values
of orthogonal horizontal components of clectric and magnetic vector pairs at the
surface of a horizontally stratified earth contains all the information about the vertical
distribution of electrical resistivity. Inversion of the measured values of these field
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component pairs in terms of the resistivit
MT exploration.

The most widely used model for inverting MT data is an earth parameterized as
astack of horizontal layers, each of a constant resistivity (Wu 1968; Patrick and Bostick
1969; Kunetz 1972), or as one characterized by a continuous variation of resistivity
(Bostick 1977; Oldenburg 1979). Further details can be found in the excellent papers by
Parker (1980), Parker and Whaler (1981), Varentsov (1983), Hermance (1983), Vozoff
(1986), Pedersen and Hermance (1986), Chave and Booker (1987), Hohmann and
Raiche (1987), Oldenburg (1990), Whittal and Oldenburg (1990)

The process of inverting an EM data set, usually of inadequate quality or density, is
beset by the endemic problems of non-uniqueness and resolution common to all such
ill-posed problems (Backus and Gilbert 1970; Berdichevsky and Zhdanov 1984). To
circumvent this problem numerous methods; techniques and approaches resulting in
robust computational algorithms have, therefore, been developed.

The EM inverse problem is essentially a non-linear one. Most existing inversion
techniques deal with this by first quasi-linearizing them and then using a Newton-
Raphson type of iterative scheme to obtain a solution. However, besides the pitfalls
often implicit in quasi-linearization (Sabatier 1974; Anderssen 1975), these approaches
require an educated guess of the model parameters as a starting point. Parker (1977)
who used MT data to illustrate the discussions on the Backus-Gilbert method pointed
out that a major disadvantage of reducing the essentially infinite dimensional par-
ameter space to a finite one, results in the reduced degree of freedom in the description
of unknown parameters.

In contrast to the iterative schemes certain researchers, e.g., Kunetz (1972), Weidelt
(1972), Parker (1980), Fischer et al (1981), Parker and Whaler (1981), Barcilon (1982),
and Whittal and Oldenburg (1986) have developed non-iterative schemes. Weidelt
(1972) presented an inverse methodolo gy based on the solution of Gelfand and Lavitan
(1955) of the inverse Sturm-Liouville problem. Numerical implementation of this
scheme is a six-stage process involving Laplace transformation and integral equation
solution. Whittal and Oldenburg (1986) have implemented this scheme for four
different norm definitions using either Backus-Gilbert or linear programming methods
for stage three. Parker (1980) also derived an integral representation, similar to
Weidelt’s, and then presented three possible classes of solutions D* HT and S™.
Parker and Whaler (1981) have implemented these schemes using a two-stage process.

The first stage is linear but iterative and is solved using quadratic programming
method. In the second stage the conductivity profile is derived using the continued

fraction representation. In the H* model the authors have employed the equal
penetration layer thickness criterion of Kunetz(1972) and Loewenthal (1975). It may be
a}luded here that these schemes are theoretically rigorous, however, their implementa-
tion demands knowledge of advanced mathematical analysis and numerical methods.

These concerng motivated us to develop a non-iterative straightforward inversion
scheme (SIS) for inverting MT data. This scheme is primarily based on a linear re-

function of a layered earth in terms of a power

y profile thus constitutes an important step in
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Furthermore, the method can be designed to yield an almost continuous resistivity
depth distribution by representing the earth by a large number of closely-spaced layers.
The scheme has been tested on various synthetic and field data sets with excellent
results.

2. The SIS algorithm -
2.1 Forward formulation

The surface impedance of an N-layered Earth, resting on a half space, is obtained by
solving the appropriate Helmholtz equation subject to the electromagnetic boundary
constraints of continuity of the tangential components at each interface. Ore can write
the downward looking impedance Z, (Pedersen and Hermance 1986), at the top of the
I-th layer, in terms of the following recurrence relationship,

Z 1 + R[ e—-?.vld,
(= 20T R,

1=1,2,...,N—1, (1)

where the intrinsic impedance, z,,, the reflection function R;, and the propagation
constant v, are given by

_zm"zz+1
| S s
Zgut 2y

Vl=ijD}.l.O'l,

with d, being the thickness of the I-th layer, w the angular frequency, p the magnetic
~ permeability and j = NESE
The impedance at the surface of the deepest half space is given by

Z N =2z oN* . ' (2)

Let the thickness d, of each layer be chosenin accordance with the equal penetration
depth criterion introduced by Kunetz (1972) and Loewenthal (197 5) and subsequently
used by Parker (1980) to define his proxy parameter ‘P’ in H + formulation. This choice
would result in d,/6, = «, a constant. Here §;, the unit frequency skin depth of the l-th
layer, is given by

5= |21 (3)
o -
Now, defining a parameter u as '
u=e I g =2nf,

equation (1) can be written as

14 Ry
Z (W)l 1op = Zor r}ﬁ% 4)
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Similarly, the upward looking impedance at the bottom of the (I—1th layer, is
given as,

Zl(u)lbottom = Zou-1) % (5)

The continuity of Z(u),imposed by equating (4) and (5), yields the following recurrence
relation for the reflection function

_ Rw+r,_, 6
ST Ry, (©)
with
RN+‘1(u)=O, Ry(W)=ryu
and
_ Inttry 7
Rn_l(u)_--———--1+rN*eruu. (7

Here r,, the reflection coefficient at the I-th interface between the I-th and the (I +1)-th
layers, is given by

rl___zot—zo.z+1=\/Pz+1"\/:_0—1' (8)
ZotZoa+1 \/pi,y +\/;’—1

Further, as in the case of the direct current resistivity problem, (Gupta et al 1997)it can
be shown, that

lul<1 and [R,<1.

The reflection function, R, (1), can in turn, be expressed as a power series in u (Appendix
1) as

0

Rw=Y R, u™ 9
m=1

Using this expression for R, (1) and R,_,(u)in equation (6) and performing some simple

algebraic steps (Appendix 1) the following recurrence relation between the coefficients

of the same powers of u in the power series of R,_; and R, is obtained

Rz—1,1 =Ty (10)
m—1

Rz—l,mzr?—iRz,m—f“"zﬂ Z Rl,m-—le-l,k’ ‘ (11)
k=2

with
* 2
MHey=1-ri_

The expression for Z,(u) at the top of the I-

_ th layer can, similarly, be written as the
following power series :

Zu)= io Cryu™. (12)
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For m > 0, the coefficients, c;,, would be related to R, ,, as
Cim=RinCio + Rym-161 + RymozCpt ot RpCim-z2tT1Cm-1  (13)

while

Cio=/Pr- (14)

Equations (8)-(14) can be employed to compute the impedance at the air-earth
interface.

The widely used MT response is the apparent resistivity defined by Cagniard
(1953) as ‘

1
Paz ='ajﬁlzz|2- (15)

Spies and Eggers (1986) investigated various alternative definitions of MT’s apparent
resistivity and found that the ones based on the real and imaginary components of the
impedance were more representative. Two such definitions, given by them, are

2
pa.Re(z)z-w—u[Re Zl]zs (16)

and

5 .
pa,Im(z)=°C:)—;l[Im Zl]z' (17)

Our analysis is capable of using any of these definitions, however, in order to appraise
their relative merits, a discussion of equations (16) and (17) would be in order. Since the
coefficients c,,’s are real, both the real and imaginary components of impedance can be
obtained simply by retaining in the series the real and imaginary parts of the term u™.
These can be respectively expressed as:

(u™)g, =&~ ™ cos mp. : (18)
and

"), = —e ™ sinmp, (19)
where

B= Za\/f.

Since c,, is purely real, information about the resistivity of the I-th layer will be contained
only in the real component of impedance. This would explain the superiority of the
definition given by equation (16) over that of (17). It may be observed that whereas the
inversion of the real component of impedance will directly Jead to layer resistivities, that of
the imaginary component will yield the interface reflection coefficients from which layer
resistivities can be derived only when resistivity of one layer is supplied extraneously. This
led us to work with the real component of impedance for MT data inversion. It may be
alluded here that information about both amplitude and phase of apparent resistivity is
made use of to obtain real component of impedance. The formulation is, however,
presented here for the general complex case so that, if desired, even data for the imaginary

component of impedance can be inverted to obtain a supplementary solution.
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2.2 Inverse formulation

Equation (12) for the air-earth interface can be rewritten in a matrix form as,

Uc=Z, (20)

where the coefficient matrix,
2

Uowg wd

s ;

Uow, gy - u

U= , ;

1w u u
2

_1 U, u, uj, i

the unknown column vector,

c=[c10:€11:C120 s Cpo. .. Ty
and the known impedance vector,
Z,=1[Z,(u), Z(uy),.... Z(uy) T

Here, the superscript ¢ stands for the matrix transpose operation. The minimum norm
solution of equation (20) can be written as: ‘

t=U'W, (21)
with

W=[UU'T"!Z,

It may be emphasized here that no truncation is employed in the evaluation of ij-th
element of UU* which is obtained as given below

UV, =3 ()"
k=0

1
1 —uiuj.

The estimated solution vector ¢ is used to assess the quality of inverse solution by first
computing the response vector

Z,=U¢

and then the misfit parameters ¢, and &, computed respectively as the absolute root

mean square (rms) error and the relative rms error between the observed data Z ;and
the predicted data Z, as given below ‘

2
&

]

M
Y, 2y~ 2,7M,

[(ZH " Z!i)/zujz/M- |

'Imtq
i
T
M=
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It may be stressed here that equation (21) will yield a unique solution only

when equation (20) is consistent and the matrix U full rank. However, in the case

of field data, where the inadequacy and the random errors of measurement make

consistency impossible, one may seek a regularized minimum norm solution
} given by

¢=UUU'+E)"' Z, (22)

where E is the data error covariance matrix. In case the error covariance matrix is not
available it can be approximated by e” I, e being the average noise to signal ratio.
Equation (21) provides that

N
o= Y wi=/pu (23)

Cp = upw, m>0. : (24)
1

It may be added here that N is a sufficiently large (between 1000—2000) number so that

the contribution of remainder terms of the power series is negligible. The coefficients
R, can be related to ¢, through equation (13) as,

2\/;’-1Rm = CpyRio = Cim—1R11 — Cm-2R1z = —C12 R; -z —C11 Rym-s- (25)
Consequently, the following inverse recurrence relation is developed through equation
(11)

1 m—1

Rz,m—1=T[Rz—1,m+r1—1 > Rz,m—kRz—l,k:‘- (26)
Fi-1 k=2 ‘
Thus the various reflection coefficients, r, and the layer resistivities p,, can be obtained
as
r=Ryy
1+ Ry, ]2
I+1 [ 1 _ Rl ) l

Once the resistivity of the I-th layer is obtained, its thickness can readily be computed

through the expression
dy= b= o/ pi/ T (28)

Thus the solution of the inverse MT problem is completely obtained through equations
(21-28), in a linear fashion, without any initial model. However, the value of o has to be
judiciously chosen keeping in mind the expected thickness and resistivity of the target
layer which ought to be resolved. ] '

In order to estimate the quality of inverted conductivity model, the misfit ¢, between
its response Z ,and the observation Z, can be computed in a manner similar to that used
for ¢, as '

vl [(Zi—zi)/zijz
R
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3. Numerical consideration

The vector ¢, obtained as the solution of equation (20) or (22); can be looked upon as the
initial condition of an initial value problem. This means that as the solution is
continued downward, the error in ¢ will propagate and may get enhanced. This error
propagation may sometimes lead to non-physical reflection coefficients lying outside
the (—1,1) interval. This should always be taken as a warning signal, that no further
downward continuation of conductivity profile is possible. Such eventuality will occur
only if the regression parameter is not able to account for the error in data and/or the
1-D modelis incompatible to the real conductivity distribution. A possible way out is to.
use higher regression parameter value. The higher regression parameter value will lead
to the increased misfit and blurred conductivity profile. Further, for smooth function-
ing of the SIS algorithm, the inverted reflection coefficients should be approximated as

zero whenever it lies within a prescribed infinitesimal interval. In the present study this
intervalis —-01 to -01.

4. Model studies

The SIS algorithm was tested on several synthetic as well as field data sets. The results
of four synthetic data sets and two field data sets are discussed below. The synthetic

models considered here have been specially chosen to highlight efficacy of the SIS
algorithm. ‘ '

4.1 Model 1

This s the four-layer model designed by Porstendorfer (1975) to study the limitations of
the MT method in deciphering highly resistive layers buried underneath conducting
layers. It represents a typical thick sedimentary basin overlying a highly resistive (10*
ohm-m) substratum (for instance crystalline rock). The first layer in this model is well
conducting: p, =2 ohm-m, and thickness d, = 2000 m. The second layer is an insula-
ting salt layer: p, = 10000 ohm-m and d, =1000m, and the third layer comprises
sediments of medium resistivity: p3 =20 ohm-m and d, = 6,500 m. Forward computa-
tions were carried out using equations (10), (11) and (12) to obtain the real part of
impedance at 26 data points for a period ranging from 102 to 103s. Equation (16) was
then used to compute the apparent resistivity values. The unit of layer thickness was
chosen to be 1000 m, which fixed the value of o, the layer thickness unit in terms of the
layer skin depth, at 0-01987. Asexpected the highly resistive layers are weakly defined in
the apparent resistivity curve. For carrying out the inversion, a 650-layer model with
constant « was selected. Equations (26),(27) and (28) were then used to estimate the
resistivity variations. The results are shown in figure 1. It may be observed that, in
accorgiance with the apparent resistivity curve, the inverse solution also reproduces the
true signatures only of the conducting layers: 1 and 3, masking completely the highly
resistive layers 2 and 4. The screening effect of resistivity of the first layer on inverse
solutions, was therfore, further studied by changing its resistivity to 20 ohm-m and 200
ohm-m, leaving all other layer parameters unchanged. The apparent resistivity curves
as well as the inverted model for these two cases are also shown in figure 1. When the
resistivity of the first layer is increased, both the resistive layers 2 and 4, become visible.
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Figure 1. Apparent resistivity curves and corresponding inverse solutions for the three cases
of model 1, The factors 2, 20 and 200 refer to true resistivities of first layer.

However, layer 4is prominent in the p; = 200 ohm-m case while layer 2 is in the p, =20
ohm-m case. The conducting layer 3 is well represented in both the cases. Once the high
frequency oscillations are averaged out the smooth model is quite close to the true one
except for the highly resistive layers 2 and 4 whose resistivities are always grossly
underestimated. Further, the relative rms errors, &, and g, in all three cases were found
to be of the order of 1072 and 10 ! respectively.

4.2 Model 2

A study of the influence on the inverted solution of the data error, the regression
parameter (¢?) and of the layer thickness unit o was carried out by considering the five
layer Model of Oldenburg (1990): p, =250 ohm-m, d, =1000m; p, =25 ohm-m,
d, =2000m; p; =100 ohm-m, d;= 3000m; p, =10 ohm-m, d, = 4000m; ps =25
ohm-m. The real component of impedance as well as the apparent resistivities were
computed as before for 26 values of the period. The minimum layer thickness was
chosen to be 500m, thereby fixing o= 0-063. The number of layers assumed for the
inverse model was 100. The error-free inverse solution along with the true model and
the apparent resistivity curve is shown in figure 2(a). The rms errors ¢, and ¢, inthis case
were 1-5 x 10~ 10 and 0-059 respectively. From the inverse solution plot it is evident
that all the five layers have been adequately resolved. - .

The effect of data error on inverted model was studied by generating four data sets
corrupted with 01, 1,10 and 25% random Gaussian noise. The corresponding inverted
solutions, plotted in figure 2(b), were obtained using the regression parameter (€?)
valuesequal to the respective error percentage. The rms error ¢, values in the four cases




422 P K Gupta, Sri Niwas and V K Gaur

10°3 (a) 16 %5
f h g
[} h I
i 5
4 k-]
| = .
blo 3“
b 3
3 3
i 1]
2
N 121
:‘ @
LETY 310-.
R P s ey x“. + P ~r T ™.
Dapth in meters Depth ia metars
b Chnd 1 10 10"
Sqrt (Period)
10°3 (b)
[ h 9
] [}
£ i
= k-]
2 2
z 3
k-
- °\ -
4 A= 4
[ - 1
- - M —
§ o .:.'.g‘: . 3 —_:3{‘
10: -~ 10 X
3] 3
E :
= I
L " T YYreTTTrYT v 1 —TrrreeT YTy YT
10 “o.-pn o = 10* 10° 10° 10 10°* 10"

Depth in meters

Figure 2. The stability study of SIS on model 2: (a) true model, its apparent resistivity curve
and error free inverted model, (b) the inverted models of the responses corrupted with 0.1, 1.0,
10.0 and the error free inverted model, (¢) The inverted models of the error free response for
layer thickness unit values 300, 700 and 1000 m, (d) The inverted models of the 0.001 per cent
error corrupted response for the regression parameter e? values 0.001, 0.01 and 0.1.

were 0:0021, 0-008, 0-08 and 0-217 respectively. The corresponding ¢, values were 0-113,
0-117, 0-116 and 0-237. It may be observed that in all the four cases the highly
conducting layer 4 could not be retrieved while the magnitude of the peak values of
layer resistivities got reduced for layers 1 and 3, a feature which became more
prominent for the higher noise levels. When the noise level was 25 %, even layer 3 could
not be perceived. It may, therefore, be argued that error in the inverse solutions is
contained within acceptable limits if the data has up to 10% noise.

Theeffect on inverted model of the vériation in magnitude of layer thickness unit was
studied by inverting the error-free data for the minimum layer thickness equal to 300 m,
700m'and 1000m corresponding to o values -038, 088 and -126 respectively. The
inverted solutions are presented in figure 2(c). It is evident that in all the three cases the
basic features are retrieved at it was in the case of 500 m. It may be added here that for
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layer thickness unit 300 m the solution oscillates wildly at depths greater than 10km
which is well beyond the target depth. The ¢, values in three cases were 3-86 x 1077,
173 x 10712 and 1-81 x 107*2 respectively while the corresponding ¢, values were
0-058, 0-045 and 0-098.

Lastly, the effect of regression parameter (e®) variation on the inverse solution was
studied on the response corrupted with 0-1 per cent noise. The e? values used in these
cases were ‘001, -01 and -1. The corresponding rms error &, values were 596 x 1073,
797 x 10”2 and 2-46 x 1072 respectively while the ¢, values were 0-104, 0-117 and
0-197. The inverse solutions are plotted in figure 2(d) which confirms the expectations

that the retrieved solution features get smoothened as e? values increases.

4.3 Model 3

This is an eight-layer model taken from Manglik (1988). It comprises alternate
sequence of highly conducting and moderately resistive layers: p, =7-389 ohm-m,
d, = 10m; p, = 1-0 ohm-m, d, =20m; p5 = 4-482 ohm-m, d; =40m; p, = 1-649 ohm-
'm, d, =30 m; ps=1484 ohm-m, ds=200 m; ps=2718 ohm-m, d; =400 m;
p-=20-09 ohm-m, d, = 2300m; pg = 1-649 ohm-m. Basic synthetic data used in the
inversion scheme, real component of the impedance, were computed for 25 values of the
period from 1073 to 10%s using a minimum layer thickness of 10m corresponding to
o = 0-0073. For graphical presentation the apparent resistivity values were also com-
puted. The model, its apparent resistivity response as well as the SIS inverse solution
are presented in figure 3(b). For comparison, the inverted model obtained by Manglik
(1988), using Oldenburg’s -(1979) formulation of the Backus and Gilbert Method
(BGM), is shown in figure 3(a). From this it can be seen that the BGM inverted model
amalgamates the second, third and fourth layer features into one, completely missing
the thin highly conducting fourth layer. The SIS inverted model on the other hand,
distinctly resolves all the features of these layers. Further, in the BGM invexjted mod?l
the resistivity of the last layer exhibits spurious variations. This last conducting layer 1s
in fact not sensed at all in the SIS solution but thisisnot a serious disadvgn?a.ge as this
value can be easily estimated from the right asymptote of the apparent resistivity curve.
The rms error in SIS and BGM cases were 182 x 10~ 11 and 46 x 1073 respectively.
The rms error &, in SIS was 0-231.
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Figure 3(a). Backus-Gilbert inversion of MT data computed for model 3 (taken fror§
Manglik '1988): ‘ X
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Figure 3(b). Apparent resistivity values, true model and SIS solution of model 3.

44 Model 4

This four-layer model, taken from Sri Niwas and Kumar (1991), represents a geological
situation prevailing in the Saurashtra region of western India and is based on the
interpretation of dipole electrical sounding curves. Its parameters are: p; = 20 ohm-m,
d, = 50m; p, = 200 ohm-m, d, =3000m; p, = 10 ohm-m, d; = 5000 m and p, = 5000
ohm-m. The real component of impedance as well as the apparent resistivity were
obtained for the 25 period values ranging from 10~2-10% using a minimum layer
thickness unit of 250 m (x = 0-0222). The model, the apparent resistivity curve, the SIS
inverted model, the model obtained using the Ridge Regression Method (RRM) (Sri
Niwas and Kumar 1991) and one obtained using Occam’s method (OM) (Naresh
Kumar 1989) are reproduced in figure 4. The rms errors ¢, and ¢, in the SIS solution
were 193 x 1079 and 0-165. It is clear that on the whole SIS solution is best while the
last layer is best estimated by RRM. It may be added here that the RRM estimates were
obtained using the initial guess model-p, = 15 ohm-m, d, = 100 m; p, = 300 ohm-m,

d, =2500m; p5 = 20 ohm-m, d, = 4000 m; p, =4000 ohm—m which was qu1te close to
the true model.

4.5 Field data 1

The first field data set analysed here was procured and inverted by Larsen (1975).
It comprised twelve complex admittance values which were taken from Parker
and Whaler (1981) (PW), who reinterpreted the data set using their H* inversion
scheme. PW have stated that Larsen (1975) as well as they themselves were unable
to find any one-dimensional conductivity model that could account for all the
twelve response values. However, when only the seven values corresponding to
larger time-periods were used, they could invert the data for 1-D models. From
the complete data set we computed the twelve real components of the impedance
values and used these as our data. While inverting the complete 12 frequency data
set we faced the problem of non-physical reflection coefficient with magnitude > 1,
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Figure 5(a). Real component of impedance observations (data) and the computed responses
ctt, cte and ctf of inverted models ¢ 20, ¢20and /20 respectively. (b). Inversion of Larsen’s data
(1975) paerhe 7 data H*solution of Parker and Whaler (1981),/20 and e 20 the SIS solutions
for 7 data with e*=0.0 and 0.001 respectively and ¢ 20 the 12 data SIS solution for e*=0.01.

meaning thereby that either the data are erroneous or the 1-D-model is not repre-
senting the real situation. When we rerun the program with regression parameter
2= 001 2 useful 1-D model £20, is achieved. The erros after the two stages were
g, =0-016 and ¢, = 0-018. It means that SIS can better interpret data generated by real
situations which deviates from 1-D models. To gauge the usefulness of this inverted
model the seven frequency data. set was then inverted without and with 0-001
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Figure 6. The apparent resistivity curve from Panonian Basin, Hungary, its Ridge Re-
gression Solution (after Adam 1990) and the two SIS solution for a=0.1 and 0.2.

regression values. The resulting model £20 and e 20 together with ¢t 20 and the
model of par are plotted in figure 5(b) while the fit of the computed responses
of 120, €20 and ¢20 are shown in figure 5(a) as curves ctf, cte and ctt respectively.
The rms error parameter for f20 were ¢, =113 x 10711, ¢, =0-0242 and for ¢20
were 0-00043 and 0-028 respectively. It is interesting to note that all the three inverted
models viz., t20, f20, 20 are depicting the first conducting zone obtained by PW

very closely, however, the second 22 km conducting zone indicated by PW at a depth
of 669 km is not seen.

4.6 Field data 2

Lastly, we applied SIS to invert a field data set from Panonian basin in Hungary
provided by Adam (1990). For SIS inversion, the real component of impedance was
computed using the apparent resistivity and phase data of Adam (1990). The apparent
resistivity curve, Adam’s RRM inverted model and the SIS solution with two different
values of a, 0-1 and 0-2, are presented in figure 6. In SIS the regularization parameter >
was taken as 0-01 assuming 1% noise. The rms error ¢, values in the solutions for ¢ = 0-1 -
and 0-2 were 0-029 and 0-044 respectively while the corresponding ¢, values were 0-068
and 0-096. All the anticipated features of the model have been well retrieved in both the
SIS solutions. However, the resistive layers are more prominent in the solution
corresponding to o= 0-2. It must again be stressed here that unlike Adam’s RRM
inversion, where an initial model - p1=3104 ohmm, d, =11m; p, = 16:0 ohmm,
d,=222m; p; =822 ohmm, d, =428 m; P4=3-36 ohm m, d, =1723m; p5 = 680
ohmm, d5 = 12480 m; p, = 0-00350 ohm m,dg =247m; p, =125 0ohmm, d, = 72220 m

and pg = 40-76 ohm m-~very close to the true one was assumed, no such arbitrariness
was needed to obtain the SIS solution. »
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5. Conclusions

Based on a sound mathematical treatment, and having been successfully tested on

diverse models, the SIS algorithm for inverting MT data has been demonstrated to be
} an efficient and robust algorithm of high resolving power. In contrast to the conven-
: tional use of amplitude or phase data of impedance function, the SIS employs its real or
imaginary components. Being linear, SIS is non-iterative and it does not require an
initial guess model. It is therefore, free from the disadvantages of quasi-linearized
iterative schemes. Further, it provides a nearly continuous resistivity variation with
depth as a very large number of closely-spaced layers can be assumed to parameterize
the model. The continuous solution so obtained can then be used to obtain the gross
layered earth models by averaging over any desired depth range. The rms error & andg,
are, for field or erroneous syntheticdata, of the order of error in data. In cases where the
inverted model is not able to retrieve deeper layers, the computed higher time period-
response is not correct and this results in a higher ¢, value. It may be added that the
imaginary component inversion is more sensitive to the surface features and hence may
be used for studying the topographic effects. The only concernable Jimitation of SIS is
that in its present form it is unable to fruitfully use a priori information.
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Appendix 1

Derivation of recurrence relation (11)

In order to understand the structure of relation (6)let us explicitly write the expressions
for reflection functions R,(u) for =N + 1, N and N — 1 as power series in u.

Ryy )=0=2 Ryyynt" with Ryiim=0Ym

Ry(u)=ryt=Y Ry, u" with Ry, =Tn and Ry,=0VYm>1.
m .

Ry(u)+ry-1 "

R = S
w-1) 1+ RyWry-1 ’

=u(ryu+ ry-p+ rN_eru)-l,
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with

3 —_ * — o Y2
Ry_1,1=7y-; and Ry g m=rnri—1(=7y_1rn) Vm>1.
Here -

r;;-»l =1 =ry_

This suggests that the function R,(

u) and R, _,(u) appearing in relation (6) can be
expressed as '

Rl— l(u) = ZRI— 1,m um’

m

R,(u) =) R, "
Using these relations in equation (6) and cross-multiplying we get

0 [ve]

k. m+1 )
Rl*l,mu‘m leu - Z leu +rl—1u

k=1 m=1

S ® <)
Z Rl“l,mum—*-rl—l Z
m=1 m=1

o m—1
Of (Riy, =1 Ju+ ), [Rl—l,m—Rl,m—l +ro ), Rl—l,le,m—-ijumzo
m=2 k=1

lm—1

Or(Rz—l,l’“rl—l)“'i' Z [R1—1,m‘"(l_rl~1Rz~1,1R
. : m=2 "

: m—1 .
m __
+r_ ), Rl—l,le,m—k]u =0.
k=2

Since this relationship is valid for all

possible values of u, equating the coefficients Qf
various powers of u to zero we get '

R

t-1,1 =111
— (1 .2 I
Rz—1,z—(1 7‘z~1)R11—‘rz—1R11-

m=1

—_— ¥
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