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GENERATORS FOR VECTOR BUNDLES ON GENERIC
HYPERSURFACES

N. Mohan Kumar, A. P. Rao, and G. V. Ravindra

Abstract. We prove that on a generic hypersurface in Pm+1 of dimension at least 3,
a vector bundle with r ≤ m generators must be split if m is odd. If m is even, then the

same is true if the degree of X is at least 3.

1. Introduction

Let (V,OV (1)) be a smooth polarized projective variety and E be a vector bundle
on V . We say E is r-generated if there is a surjection

⊕r
i=1OV (ai) � E, ai ∈ Z.

The aim of this note is to extend to hypersurfaces, the following splitting criterion for
vector bundles on projective space due to Faltings.

Theorem 1 ([2], Satz 1). A vector bundle on Pm is split if it can be generated by
r ≤ m sections.

Based on an idea in [7], we prove the following.

Theorem 2. Let E be any r-generated rank n vector bundle on a smooth hypersurface
X of dimension m ≥ 3. Then E is a sum of line bundles if

(1) r ≤ m− 1.
(2) r = m and n 6= m/2.
(3) X is generic of degree d ≥ 3, r = m and n = m/2.

The first two parts of the theorem have proofs similar to Faltings’ with the addi-
tional use of the Weak Lefschetz theorem. The third part is the main result of this
paper and the outline of its proof is as follows. In the first section, following [7], we
introduce a certain thickening of X in its universal family which we call Xε and show
that images of the cohomology of the projective space and Xε in the cohomology of
X coincide (Corollary 1). We then show that if a generic hypersurface has a vector
bundle as in the statement of the theorem, then this implies that there is such a
bundle on Xε (section 3). Then using certain standard arguments involving Chern
classes, we conclude that such a bundle must be split. We remark that alternatively
one could use the standard Noether-Lefschetz theorem on Hodge classes to prove the
desired theorem. However the use of Xε makes the proof simple and self-contained.

The result is sharp for low values of m; for quadrics in P5 and P7, we can find
4-generated rank 2 bundles and 6-generated rank 3 bundles respectively. Since these
examples can be pulled back via finite morphisms Pl → Pl (with l = 5, 7), we get
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other examples on various smooth hypersurfaces. Hence the requirement of genericity
is needed. We do not know any examples on quadrics or special smooth hypersurfaces
in dimensions greater than six.

1.1. Conventions. We work over k = C, the field of complex numbers. By a generic
point of a variety, we mean a point outside a countable union of proper closed subva-
rieties.

2. Cohomology computations

2.1. Preliminaries. Let P := Pm+1
k S := P(W ∗) where W = H0(P,OP(d)) denotes

the parameter space of all degree d hypersurfaces in P. One has a short exact sequence

0 → V → H0(P,OP(d))⊗OP → OP(d) → 0.

Let X := P(V∗) → S be the universal family of all degree d hypersurfaces. Let X ⊂ P
be a smooth degree d hypersurface corresponding to a closed point s ∈ S. Let V :=
T ∗

S,s, the dual of the Zariski tangent space at the point s ∈ S. A := OS,s/m2
s = k⊕V ∗

then over the subscheme Spec A ⊂ S, there is a hypersurface which we will denote
by Xε, the (infinitesimal) universal hypersurface over Spec A. It is easy to see that
Ω1

A ⊗ k ∼= V ∗.
Let p : PA → P, q : PA → Spec A denote the two projections. Consider the

cotangent sheaf sequence for the inclusion ιε : Xε ↪→ PA,

OXε(−d) → Ω1
PA
⊗OXε = p∗Ω1

P ⊗OXε ⊕ q∗Ω1
A ⊗OXε → Ω1

Xε
→ 0.

On restricting this sequence to X, we have

0 → OX(−d)
(α,β)−−−→ Ω1

P ⊗OX ⊕ V ∗ ⊗OX
(γ,δ)−−−→ Ω1

Xε
⊗OX → 0.(2.1)

Let F denote the polynomial defining Xε ⊂ PA. On taking cohomology of the
sequence 0 → OP → OP(d) → OX(d) → 0, we get 0 → k → W → V → 0. Choose
a splitting θ : V → W , so that θ ∈ W ⊗ V ∗. Since W ⊗ A = W ⊕ W ⊗ V ∗, we
have F = (f, θ) ∈ W ⊗ A = H0(PA,OPA

(d)) where f is the polynomial defining
X. The map dF is then given by (α̃, β̃). It is easy to see that α̃|X = α = df . By
local computations, we can verify that β̃|X = β : OX(−d) → V ∗ ⊗ OX is dual to
the evaluation map. Notice that the injectivity of δ follows from the injectivity of
α. We can also identify δ with the natural map obtained as follows. We have an
exact sequence q∗Ω1

A → Ω1
Xε

→ Ω1
Xε/A → 0, which is the relative cotangent sheaf

sequence of the family q : Xε → Spec A. On restricting this sequence to X, we get
0 → q∗Ω1

A ⊗OX
δ−→ Ω1

Xε
⊗OX → Ω1

Xε/A ⊗OX = Ω1
X → 0.

The exactness of sequence (2.1) implies that γα = −δβ and as a consequence, we
have the following

Lemma 1 (Mohan Kumar-Srinivas, [7]). There is a commutative diagram:

0 → OX(−d) α−→ Ω1
P ⊗OX → Ω1

X → 0
↓ −β ↓ γ ||

0 → V ∗ ⊗OX
δ−→ Ω1

Xε
⊗OX → Ω1

X → 0

where the two rows come from the inclusions X ⊂ P and X ⊂ Xε and the map β is
the natural map.
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Taking the `-th exterior power, we get a commutative diagram

(2.2)
0 → Ω`−1

X (−d) → Ω`
P ⊗OX → Ω`

X → 0
↓ ↓ ||

0 → Ω(`) → Ω`
Xε
⊗OX → Ω`

X → 0

where Ω(`) (see [3], 5.16 (d), page 126) comes equipped with a decreasing filtration
F∗ Ω(`) satisfying the properties F1(Ω(`)) = Ω(`), F`+1(Ω(`)) = 0 and grj

F Ω(`) :=
Fj(Ω(`))/ Fj+1(Ω(`)) = ΛjV ∗ ⊗ Ω`−j

X for j ≥ 1.

2.2. Odd dimensional hypersurfaces.

Lemma 2. Let X ⊂ Pm+1 be a smooth hypersurface and let m = 2n + 1. Then

Hp(P,Ωp
P) ∼= Hp(X, Ωp

X) for 0 ≤ p ≤ dim X

Proof. We first prove the statement for 0 ≤ p ≤ n. By the Weak Lefschetz theorem,
we have

Hi(P, C) ∼= Hi(X, C) ∀ i ≤ 2n

For i = 2p, this implies that

Hp(P,Ωp
P) ∼= Hp(X, Ωp

X) 0 ≤ p ≤ n

For n + 1 ≤ p ≤ dim X, we proceed as follows: Using Serre duality, we have

Hm−p(X, Ωm−p
X ) ∼= Hp(X, Ωp

X)∨ ∼= k ∀ p

Thus hp(X, Ωp
X) = 1 for n+1 ≤ p ≤ dim X. Since the restriction map Hp(P,Ωp

P) →
Hp(X, Ωp

X) is non-zero, this implies that this map is an isomorphism for n + 1 ≤ p ≤
2n + 1. Thus we are done. �

2.3. Even dimensional hypersurfaces.

Lemma 3. Let X ⊂ Pm+1 be a smooth hypersurface with m = 2n. Then, Hn(X, Ω(n))
= 0 where we recall that Ω(n) is the kernel of the map Ωn

Xε
⊗OX → Ωn

X .

Proof. The proof follows by analysing the sequences

0 → Fj+1(Ω(n)) → Fj(Ω(n)) → grj
F Ω = ΛjV ∗ ⊗ Ωn−j

X → 0

For j ≥ 1, we first claim that Hn(X, Ωn−j
X ) = 0. By the Weak Lefschetz theorem,

Hi(P, C) ∼= Hi(X, C) for i < dim X. Since 2n − j < 2n, H2n−j(X, C) is either 0 (j
odd) or one dimensional and isomorphic to Hn−`(X, Ωn−`

X ) where j = 2`. Thus on
taking cohomology, we have a surjection

Hn(X, Fj+1(Ω(n))) → Hn(X, Fj(Ω(n))) � 0 ∀ j ≥ 1

Since Hn(X, Fn Ω(n)) = Hn(X, ΛnV ∗ ⊗OX) = 0, we are done.
�

Lemma 4. Let X ⊂ Pm+1 be a smooth hypersurface with m = 2n. Then there are
isomorphisms

Hn+1(X, Ωn−1
X (−d)) ∼= H2n(X,OX(−nd))

Hn+1(X, Ωn−1
X ) ∼= H2n(X,OX((−n + 1)d)
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Proof. We consider the exterior powers of the cotangent bundle sequence for the
inclusion X ⊂ P

0 → Ω`−1
X (−d) → Ω`

P ⊗OX → Ω`
X → 0

together with the sequences

0 → Ω`
P(−d) → Ω`

P → Ω`
P ⊗OX → 0

Using the fact that Hi(P,Ωj
P(∗)) = 0 for 1 ≤ i ≤ m, i 6= j, we get isomorphisms

Hn+`(X, Ωn−`
X (−t)) ∼= Hn+`+1(X, Ωn−`−1

X (−t− d)) ∀ 1 ≤ ` < n

This finishes the proof. �

Lemma 5. Let X ⊂ Pm+1 be a smooth hypersurface with m = 2n. Then the map
φ : Hn+1(X, Ωn−1

X (−d)) → V ∗ ⊗Hn+1(X, Ωn−1
X ) is injective for d ≥ 2 + 2

n .

Proof. The map φ is induced by the composite map of sheaves Ωn−1
X ⊗ OX(−d) =

Ωn−1
X (−d) → Ω(n) → Ωn−1

X ⊗ V ∗ obtained from diagram (2.2) and the filtration with
` = n . This map is clearly 1⊗−β. Using the identifications in the previous lemma,
we can identify the map φ with the dual of the cup product map

H2n(X,OX(−nd)) → V ∗ ⊗H2n(X,OX(−(n− 1)d)

The lemma now follows by noting that the cup product map

V ⊗H0(OX(nd− 2n− 2)) → H0(OX(nd + d− 2n− 2))

is surjective as soon as H0(OX(nd−2n−2)) 6= 0 which happens for all d ≥ 2+ 2
n . �

Proposition 1. Let X ⊂ Pm+1 with m = 2n. Then
1) Hp(P,Ωp

P) ∼= Hp(X, Ωp
X) 0 ≤ p ≤ dim X, p 6= n

2) If d ≥ 3, we also have

Hn(X, Ωn
P ⊗OX) ∼= Hn(X, Ωn

Xε
⊗OX)

Proof. The proof of the first part follows from the Weak Lefschetz theorem as in
Lemma 2. For the second part, we consider the cohomology diagram associated to
(2.2) when ` = n.

Hn(X, Ωn−1
X (−d)) → Hn(X, Ωn

P |X) → Hn(X, Ωn
X) → Hn+1(X, Ωn−1

X (−d))
↓ ↓ || ↓

Hn(X, Ω(n)) → Hn(X, Ωn
Xε
|X) → Hn(X, Ωn

X) → Hn+1(X, Ω(n))

By Lemma 3, we have Hn(X, Ω(n)) = 0. Furthermore, by Kodaira-Akizuki-Nakano
theorem (see [1], page 154) Hn(X, Ωn−1

X (−d)) = 0. This implies that Hn(X, Ωn
P ⊗

OX) → Hn(X, Ωn
Xε
⊗ OX) is injective. To prove surjectivity, it is enough to prove

that the right most vertical arrow i.e. the map Hn+1(X, Ωn−1
X (−d)) → Hn+1(X, Ω(n))

is injective. By Lemma 5, the composite Hn+1(X, Ωn−1
X (−d)) → Hn+1(X, Ω(n)) →

V ∗ ⊗Hn+1(X, Ωn−1
X ) is injective. Thus we are done. �

Corollary 1. With notation as above,

Image
(
Hi(P,Ωi

P) → Hi(X, Ωi
X)

)
= Image

(
Hi(Xε,Ωi

Xε
) → Hi(X, Ωi

X)
)
.
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Proof. When X is odd-dimensional, this follows from Lemma 2. When dim X = 2n
and i 6= n, it follows from the first part of Proposition 1. When i = n, this follows
from the second part of the same proposition by noting that there is a factorisation
Hn(Xε,Ωn

Xε
) → Hn(X, Ωn

Xε
⊗OX) → Hn(X, Ωn

X). �

3. Vector bundles on hypersurfaces

We start this section with a Lemma due to Faltings whose proof we omit.

Lemma 6 (Faltings, [2]). Let (V,OV (1)) be any quasi-projective scheme. For an
exact sequence of vector bundles

0 → G → ⊕r
i=1OV (ai) → E → 0

and for some a = ai, let G
t1−→ OV (a) and OV (a) t2−→ E denote the induced maps. Let

T1 and T2 denote the zero schemes of t1 and t2 respectively. Then T1 ∩ T2 = ∅.

We now prove the first two parts of Theorem 2.

Proof of Theorem 2 (1). The proof is by induction on r. The base case r = 1 is
trivial. Suppose that E is an r-generated bundle. Then in the notation of Lemma 6,
if E has rank n and G has rank g, then the dimensions of T1 and T2 are at least m−g
and m− n respectively. Since their sum is at least 2m− r ≥ m + 1, T1 and T2 must
intersect in projective space. Thus we arrive at a contradiction unless one of T1 or T2

is empty. If T2 is empty, we may replace E by a quotient E′ which is r− 1-generated.
By induction, E′ is a sum of line bundles and hence so is E. If we assume T1 is empty,
then by looking at the dual sequence, G∨ is split likewise and hence G is split with
OX(a) as one of the summands. This implies that the map OX(a) → E is the zero
map and hence E is r − 1-generated and hence split. �

Proof of Theorem 2 (2). Suppose E is m-generated. Using Lemma 6, we get T1

and T2. If T2 is empty, we would get a quotient which is m − 1-generated. By part
(1), this quotient and hence E is split. If T1 is empty, then a similar argument as
above shows that E is split. We claim that T1 and T2 have dimensions exactly equal
to m− g and m− n respectively. For, if not, then T1 and T2 would have non-empty
intersection in projective space, a contradiction.

Let [T1] ∈ Hg(X, Ωg
X) and [T2] ∈ Hn(X, Ωn

X) denote the Hodge classes of T1 and T2

respectively. Since neither n nor g is m/2, using Lemma 2 and Proposition 1.1, we may
assume that [T1] = αhg and [T2] = βhn where h is the class of the hyperplane section
and α, β are non-zero scalars. Since g + n = m, this implies that [T1].[T2] = α.βhm ∈
Hm(X, Ωm

X) and hence non-zero. This contradicts the fact that T1 ∩ T2 = ∅. �

Lemma 7. Let Y be a smooth projective variety and E be a vector bundle of rank n
on Y . Let s : OY → E be a morphism of sheaves such that the zero scheme Z = Z(s)
has codimension n in Y . Then cn(E) = 0 in Hn(Y,Ωn

Y ) if and only Z is empty.

Proof. If Z is empty, then we have an exact sequence of bundles 0 → OY
s−→ E →

E′ → 0 and the result follows by the Whitney sum formula. For the converse, by
taking general hyperplane sections, we may reduce to the case where Z is a bunch
of points in Y . It is a standard result that cn(E) = deg Z (see [1], page 413). Since
deg Z is the number of points in Z counted with multiplicities, we are done. �
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Proof of Theorem 2 (3). Let X ⊂ Pm+1, m = 2n, be a smooth hypersurface of
degree d and let E be a vector bundle of rank n with m-generators so that it has a
presentation

⊕s
i=1OX(bi) → ⊕m

j=1OX(aj) → E → 0.

Let Sa,b ⊂ S be the subset parametrising hypersurfaces which support non-split
vector bundles E with a presentation as above. We shall show that its closure Sa,b is
a proper subset of S. Since there are only countably many choices for a, b, this will
prove theorem 2.3.

By the arguments of theorem (3.4) in [6], there exists a scheme P ′(a, b) along
with a morphism P ′(a, b) → S and a rank n vector bundle on X ×S P ′(a, b) with a
presentation as above. Furthermore, this scheme parametrises all such vector bundles,
split or non-split.

Suppose P is a closed irreducible subvariety of P ′(a, b) which dominates S. By
choosing a Zariski open subset of P, we may assume that P → S is smooth. We
will show that for every point p ∈ P the corresponding bundle is split, proving the
theorem.

Let p ∈ P be a point lying over s ∈ S. We can find a P ′ such that p ∈ P ′ ⊂ P and
P ′ → S is étale at p. Let X := Xp be the hypersurface parametrised by p (and hence
by s). Let Xε be the universal hypersurface over Spec A where A = OP′,p/m2

p =
OS,s/m2

s. There is a rank n bundle E on Xε whose restriction to X is a bundle E
(both are m-generated). We shall now show that E is split.

Suppose E is not split. Since E is m-generated, we have a short exact sequence:

0 → G → ⊕m
i=1OXε

(ai) → E → 0

where G is a vector bundle whose restriction to X shall be denoted by G. Twisting
the above sequence by a line bundle if necessary, we may assume that one of the aj ’s
is zero giving the diagram

(3.1)
0 → G → ⊕m

j=1OXε(aj) → E → 0
↘ t1 ↓↑ ↗ t2

OXε

Let Z1 and Z2 denote the subschemes defined by the morphisms t1 and t2 respec-
tively and Z1, Z2 be the zero schemes of the restrictions of the sections t1 and t2
respectively to X. On restricting the exact sequence to X, we have Z1 ∩ Z2 = ∅
by Lemma 6. As in the proof of Theorem 2.2, we may assume that Z1 and Z2 are
non-empty with codim Z1 = n = codim Z2.

We shall now use the theory of Chern classes for bundles on schemes with values
in Hodge cohomology as described in [4] (see also [5] for a simpler exposition). Since
one of the ai’s is zero, the Whitney sum formula for the exact sequence in (3.1), yields
cn(G). cn(E) = 0 . By functoriality, we have ι∗ ci(G) = ci(G) and ι∗ ci(E) = ci(E) for
all i. Thus by Corollary 1, ci(G) and ci(E) are in the one dimensional vector space
Image

(
Hi(P,Ωi

P) → Hi(X, Ωi
X)

)
∀ i. Putting these together, we have

cn(G) cn(E) = i∗ cn(G)i∗ cn(E) = i∗ (cn(G). cn(E)) = 0

and as a result, either cn(G) = 0 or cn(E) = 0. Since Z1 and Z2 have the correct
codimension, cn(G) = 0 (resp. cn(E) = 0) if and only Z1 = ∅ (resp. Z2 = ∅) by
Lemma 7. This gives a contradiction.
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This proves that for a hypersurface which corresponds to a generic point (i.e.
outside the countable union of the proper closed subvarieties S̄a,b) there are no m-
generated, rank n bundles which are not sums of line bundles. �
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