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The stability of the pinch

By S. CHANDRASERKHAR, F.R.S., A. N. Kaurman axp K. M. WaTsoN

Los Alamos Scientific Laboratory, Los Alamos, New Mexico

(Recetved 9 December 1957)

The stability of a cylindrical plasma with an axial magnetic field and confined between
conducting walls is investigated by solving, for small oscillations about equilibrium, the
linearized Boltzmann and Maxwell equations. A criterion for marginal stability is derived;
this differs slightly from the one derived by Rosenbluth from an analysis of the particle
orbits. However, Rosenbluth’s principal results on the possibility of stabilizing the pinch
under suitable external conditions are confirmed. In the appendix a dispersion relation
appropriate for plane hydromagnetic waves in an infinite medium is obtained ; this relation
discloses under the simplest conditions certain types of instabilities which may occur in
plasma physics.

1. INTRODUCTION

The stability of a cylindrical plasma (the ‘pinch’) with an axial magnetic field has
recently been investigated by Kruskal & Tuck (1958), Rosenbluth (1957), Tayler
(1957), Shrafranov (1957), and others. Rosenbluth has, in particular, shown that
when the plasma is confined between conducting walls, the presence of an axial
magnetic field can, under suitable circumstances, stabilize the pinch. Moreover,
Rosenbluth has treated the problem not only from the standpoint of conventional
hydromagnetics (with the usual assumptions of scalar pressure and adiabatic
changes of state), but also from the physically more important standpoint of the
orbits described by the ions and electrons in the external magnetic field and under
conditions when collisions between particles play no role. The importance of
Rosenbluth’s treatment from the latter standpoint (along the general lines
described by Longmire & Rosenbluth 1957) arises from the fact that under the
conditions pinches are usually realized in the laboratory, collisions between ions
and electrons do not, indeed, play any significant role.

In this paper we shall re-examine the problem treated by Rosenbluth by going
directly to the Boltzmann equation appropriate under the conditions. This method
has certain advantages over Rosenbluth’s in that certain assumptions justified by
him on physical grounds can now be examined for their validity. Also, we are able
to treat the general time-dependent problem without being, necessarily, restricted
to the marginal case distinguishing stability from instability. Further, the method
provides an illustration of a general theory we have recently developed (Chandra-
sekhar, Kaufman & Watson 1957; this paper will be referred to hereafter as TII)
for a rigorous treatment for problems of this kind.

2. THE METHOD OF TREATMENT AND THE BASIC EQUATIONS

Consider a uniform cylindrical plasma of radius r, with a constant magnetic field,
BY%, along the z-axis. The plasma is confined in a cylinder of radius R, with
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conducting walls. In the space between r, and R, there is a vacuum field with
both z- and f-components; thus,

7
By = By1,+B)-21, (r,<r<R), 1)

where 1, and 1, are unit vectors in the z- and the 6-directions. We are interested in
the stability of the plasma under these conditions.

A general perturbation theory for treating small departures from stationary
solutions of the Boltzmann equation (in which the collision term is neglected) has
been given in III. We shall begin by briefly describing this theory and quoting the
basicequations under the simplified conditions of the problem on hand. The essential
simplifications are that there are no static drifts (denoted by V° in III); also the
unperturbed field lines in the plasma are straight. A

In treating the perturbation problem, a variable § which plays the same role as
the Lagrangian displacement in the usual hydromagnetic treatments (cf. Bernstein,
Frieman, Kruskal & Kulsrud 1958) is first introduced. In the present theory, §
is related to the perturbations in the electric (E’) and the magnetic (B’) fields. In
the case when the dependence on time of all quantities describing departures from
equilibrium is given by

oo,
these relations are as follows: resolving § into two components, £, and &, respec-
tively parallel and perpendicular to the direction of the unperturbed magnetic
field B° (we are suppressing the subscript, P, for the present) we have (cf. ITI,
equations (41), (42) and (46) and note that U = QE)

, mtQ2 , Q
I =T§u: EJ_ :"“C‘E_LXBO (2)
m*e
and B’ = curl (g_‘_ x BO— e Qg, n) s (3)

where n denotes a unit vector in the direction of B%—the z-axis in the problem on
hand; further, m* denotes the mass of the ion, e the charge on the ion and ¢ the
velocity of light.

Before proceeding further, we may make some general remarks on the notation
we shall adopt. The subscripts | and 1 will indicate that the components of the
particular vector parallel and perpendicular, respectively, to n are meant. Similarly,
the superscripts + and — will distinguish the quantities referring to the ions and
the electrons; when, however, an equation (or a quantity) is to be understood as
applying to both ions and electrons, these superscripts will in general be omitted.
Finally, superscripts ‘0’ will be used to denote the equilibrium values of the
respective quantities while primes will denote the corresponding perturbations.

From equation (2) it follows that

E, mte Q
ET = o ~—_———
| EJ_ | eB Wrarmor

(2)
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Since a basic assumption underlying the present treatment of plasmas (cf. IIL, § 6)
is that the changes which the system undergoes take place in times which are long
compared with the Larmor periods of the particle orbits, it is clear that in calculating
B’ in accordance with equation (3), we may neglect the term in £, if £, and |§, |
should be of comparable magnitudes. And even if the term in £, makes no contribu-
tion to B’, we shall find that £, does contribute a term to the perturbation in the
pressure tensor which cannot be ignored.
The equations of motion governing £, and §, are (III, equations (68) and (73))

Pl 4—1—1—;0—'3 Q% = —(divP) +—£ (curl B’) x B® (4)
471052 + g

and (Q2+ X 02) B, =cQn.curl B +47 3} {;% (div P')n}, (5)
- +am

where P’ (=Pj;) denotes the perturbation in the total pressure tensort and the
summations in equation (5) are over the terms referring to the ions and electrons;
also p° denotes the (unperturbed) density and w; the plasma frequency,

wi = (4mN%xe?/mt)t, (6)

and N%=+ the (unperturbed) concentration of the ions and electrons.

It will be observed that equations (4) and (5) involve the perturbations in the
pressure tensor, p"£. We, therefore, need equations for determining p’; and these
are provided by the appropriately linearized form of the Boltzmann equation.

Let f%(¢?% s2,r) denote the function governing the distribution of the velocities
q and s parallel and perpendicular, respectively, to the direction of n, in the sta-
tionary equilibrium state. Then, by expressing the perturbation in the distribution
function, f'(¢, s, r,t) in the manner

f’(q7 s, 1, t) = Al(q27 82’ r, t) + qAZ(q27 82’ r, t) +f113(q’ S,T, t): (7)
where fp is such that it vanishes when averaged over all directions of s, equations

for A, and 4, and an explicit expression for f;, were derived in I1I (equations (112),
(145), (148) and (150)). Under the simpler conditions of the problem on hand, these

equations are . 2q (of% of° ,
fpzﬁ(@é‘@) B, (8)
Ay=QA, A, = —QZ%%JFGI
, 9)
24 (
and Q2A+—az*1 =—Qs
where (ILI, equations (127) and (130))
oL, o o
Gl = 2928_; ETqé +82(V_|_'g_l_)’a§ (10)
o 3f"\V,.B,
and Q2=82(3?2_§§‘2)—l36_i' (11)
t Note that PY; and P}, refer to the total pressure (due to the electrons and the ions)
while p; and pj; with superscripts + and — refer to the pressures due to the ions and

electrons, separately; thus PY= 7% and PlL=3p,
7 25— %3°
o i

27-2


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on July 28, 2010

438 S. Chandrasekhar, A. N. Kaufman and K. M. Watson

In equations (10) and (11), V, denotes the projection of the usual gradient operator

on a plane perpendicular to n:
0 0

(V)= é‘%;_nzn]"a’x; (12)

In terms of the solution (7) for f’, the required perturbation in the pressure tensor,

Py 18 given by D = Pi; LM%+ D1, 105 — i) + iy, ps (13)

where Prip = %mjjquldqu% Pl =1im stAldquz (14)T
0 0

and Pijp = (nfiBfL,j'i"njBl.i)p"Z_gopJ_' (15)

3. THE SOLUTION OF THE PERTURBATION EQUATIONS FOR THE PLASMA

We shall now show how the various equations governing the perturbed plasma
can be solved. In solving these equations we shall suppose that the disturbance has
been analyzed into normal modes and that the dependence on z and ¢ of all the
perturbed quantities is given by ellkz+md) (16)

where k is the wave number of the disturbance and m is an integer (positive, zero
or negative). Apart from the factor (16), the various quantities are functions only
of r, the distance from the 2-axis. For solutions having the dependence on z and 6

given by (16), P 5
5= ik and 50 = 1™ (17)
0 im
a/lSO, V_L = 1’8—7‘ +107. (18)

(@) The perturbations in the electric and the magnetic fields

€ ’

Let F'= 2B sothat &= oI (19)
In terms of F” the expression for B’ is (cf. equation (3))
B’ = curl (§, x B%) +n x grad #. (20)
When BY is in the direction of the z-axis, the foregoing becomes
B’ = BYikE, —(V, .E,)n}+(nxV,)F’, (21)

where we have made use of the fact that when n is a constant vector,
V.A =V, A=V A,
where A is an arbitrary vector. Accordingly,
B, =—-BW, . and B =ikB%, +(nxV )F'. (22)

+ In writing (14) we have assumed that f° is so normalized that, for example,

1 o0 PO
NO= — fodgds®.
2JoJo
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We may note here (for later use) that for B’ given by equation (21)
curl B’ = B° {179 curl§, + (nxV,)(V, .§)) + 55 (nV2 —ikV) F’} (23)
so that nxcurl B’ = B‘){iknxcurl’él——Vl(VL.gL)—%(nxVL)F’} (24)
and n.curl B’ = B° {ikn ccurl§, + — o L ye F’} (25)F

(b) The solution for A,
According to equations (9) and (17)

A, = —ikg?’A + &4 (26)
and DA +ikd; = — Q. (27)
From these equations, we find
Q2 ikq?

4, = (28)

Q2 + k2q2 Gl + 02 + k2q2 sz
and substituting for ¢, and @, from equations (10) and (11), we have

Q2 of° .. ikg?s?  (of° of\V, .B
Al == m{2q2%!2(lkg“)+sz f (V gJ_)} szkz (aj; 'a‘f?) JBO L- (29)

(¢) The pressure tensor p;; and its divergence

On inserting for 4, from (29) in equations (14), we observe that p;., and p/ . ; can
be expressed in the forms

Py =1k L+ (V, . 8)) I, +1leBB’ I (30)

and Pip = T+ (V, )y + ik V2L (31)
() (el e
() = ()] s () s o @)

and () = () oo () (o) 00 0

Now substituting for §, and B’ from equations (19) and (22) in the expressions
for p,.;, and p' ., we obtain

Pin = (b= BRIV, E, +ik ‘o (35)
ey
and plL—(J K2,V | €, +ik QF (36)

t In deriving this, use has been made of the relation V2—ikn.V =V24+%2=V?,
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Using the definitions of I, and I;, we readily find that

0 0 2 0
L,—k?I; = %mff 252 {8f % S }dqu2

0s? £22+lc2 q?% 0g>
= (p) —p)) + (37)
Similarly,
of* of° st of°
2 = -——l [ A 2 2 2.
Jy— k2 ff (8 )dqu 4mQJ F1 g 5 dgds?; (38)
or, letting
of° _of° of°
2£0 2 af v _ Y 2 2 2
Sffsf dgds —J‘fs (aq )d ds fo92+k2 25 ;dgds?, (39)
we can write Jp—k2Jy = —SpY. (40)
Thus, p1'|;L = (S +p) - p“)v gJ."'lk el Fl (41)
and P =—-8Sp(V .§))+ik ey B (42)
135 L LDl ch *

For later use we shall obtain here the divergence of the tensor p;;. For p;; given
by equation (13) we may write (cf. ITI, equations (85) to (88))

divp’ =V p' ., +ikp,,,n+divpp. (43)

By making use of equation (15), we can reduce the last term in equation (43) as

follows:

0 , 0 ’ 0 o pﬂ“f"i
-gx‘jpu;P = ["ié;jBl,ﬁ"ja—ijL,i] B°

a ’ ’ . —
[ﬂcB i+ M5 (B,-—n,-n,Bl)]p"Bfl
_ k(B ,—nB) PP (44)

RO
and substituting for B, and B, from (22), we obtain

div D = k{5, + g (n x V.) F'+(V,..E,)n) (20— (45)

Finally, combining equations (41), (42), (43) and (45), we have

., ..ed
divp =VJ_{—Sp‘i(VJ_.‘éL)+1kmc;2

1. L oel o,
7 }+lk{[J1+(p‘i —P)(V, .E) +ik L F }“

+ib i, + 55 (X V) I +n(V,.E,)| (90— pL) (46)

Hence (divp’), = 170{J(V téi)+17\c el F'} (47)
and
(@ B, = V[ =SV, 8 )ik b 1, — G x V) P -0 (49
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(d) The reduction of the equations governing F' and §

441

With the pressure tensor p’ determined, we can now proceed to the solution of

the equations governing £, and § .

Considering first equation (4) for g, and making use of equations (24) and (48),

we have

. J, ,
0%, = (V09,803 (2 ).

- {kzgl— —iB’% (nxV,) F} (P —PY)

| B[ .., 1€, -V (V LT %
Ty M our €. -V ( .L-EJ_)“EB XV, ’
¥ = 014 180
where : p¥=p (1+ smpict)”
Letting > Spl = Stplt+8-p%- = 8pt  (say),
_'.,._.
and noting that n x curl§, = —ikg , we find after some rearranging that
, - . o
(spe+ 2] ) l(vl.a%kz(P" L

Eal; , :
= - P)+ L )Bo(n V) F +1k(2 Q)V F.
Similarly, by combining equations (5), (19), (25) and (47), we obtain
Q2+ 3 w?) %‘F = cQV2 F' +ikcB'Qn . curl§ |
+’._

. e 47re? ,

+47flk(+§ 7%J;_) VJ‘.gJ'_k2(+2’:_’)’7L2_C‘§Il) F .
or, equivalently (cf. equation (6))

s e

mN°® Q2

= cQV2 F' +ikcBQn. curl €, + 4mik ( s %JI) V,E,.
+’_

Making use of the definition of I, (equation (32)) we find,
k2q4 af() 9
N°£22 o f f Gt gt ag 0998
_ 1 1 Q%2 ofo 9
=1+ ffq =—5dgds?— f oo 28q2dqu

NOJJQ2+k2 2aq2dqd 82 =— 2K (say).

Equation (54) may, therefore, be rewritten as

I+ s

Q2
Q{F(l_ E_}_wﬁ,K)——Vi’}F’ = ik{cQBon.curl§L+4ﬂ( > W%JI)VL.gl}.

(49)
(50)

(51)

(52)

(53)

(54)

(85)

(56)
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(e) The solution of the equations for F' and §, in the limit ke[Q — oo

Under most conditions of physical interest, the fluid velocities are very small
compared with the velocity of light and kc/Q> 1. In the limit kc/Q — c0, equations
(52) and (56) simplify somewhat and we are left with

\ Q2 b . e, )
V(Y. ) = (bt | B~k gy (nx V) F+ik( £ GV, B (57)

and V2F = —ik{B”n.curlgl—Hlﬂ(_l_Z_ niJ ) L. ’c:l} Z 2 K)F, (58)

where we have introduced the abbreviations

_ BO|2 Bol2
a=SP‘i+l~Z7?i— and b=P"l——P§,’-|-i 47rl . (59)
. ik .,
Letting B—OF =¢, V,.§ =y (60)
— RO ey _ o 2
El - B +Z CQ, 2 02 (+A,V-4‘_a)pK) ‘ (61)
2

and % (b +p %2) R (62)

we can rewrite equations (57) and (58) more conveniently in the forms

b 2
V.ox= k2’)’2g¢_&(nxvi)¢+ E-V_L¢ (63)
and V2 ¢ = k2{n curl§ | + —- |B°[2 1X} 20 (64)
Taking the vector product of equation (63) with V , we get

BV, <E, =V 4. (65)

Multiplying this equation scalarly by n and making use of equation (64), we obtain

k2y*n.curl€, = ~Ic2{n curl, + 1z BZPE x} ZE2¢. (66)

On further simplification (in which use is made of equation (62)) equation (66)

reduces to p——
T
pQn.curlg, = b{ lB0|2 —22¢}. (67)

The termsin & | in this equation are of relative order (cf. equations (32), (59) and (61))

P b Q2 mcQ) meQ\ Q .
s, o~ Ol o) (i) =0 ) (©)
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and quantities of this order are neglected in our present treatment (cf. the remarks
following equation (2')). Accordingly, we may equate the quantity on the right-hand
side of equation (67) to zero and obtain
4mk? %,
¢= TR, (69)

Returning to equation (63), we observe that of the two terms in ¢ on the right-
hand side of this equation, the first can be neglected since it is of order (Q/w) (w3 /k?c?)
relative to the second. Thus, we can write

p
VJ_X = k27’2€_1_+glvl¢~ (70)

Eliminating ¢ from this equation by making use of equation (69), we obtain
dmk? X3 s
(I—WE)VJ.X—ICYEL- (71)

On substituting for 2, %, and v, in accordance with equations (6) and (61), we find
that the quantity in parentheses on the left-hand of equation (71) simplifies to

o U3 ehjm)
+’_

L= a0 S K Jm)” (72)
+’_
12 {+Z (ey/m)}?
1 2 . T2 RS i e —
Letting yE=T241 at S, HNOK m) [ (73)
N +’._
we can rewrite equation (71) in the form
V,x = kT, (74)

Taking the scalar product of this equation with V, and remembering that
V,.E, = x, we obtain V2 y = 2Ty, (75)

The general solution of equation (75) which has no singularity at » = 0 is a
multiple of L,(Tkr)elnd = X(r)em? (say), (76)
where I,,(x) is the Bessel function of order m for a purely imaginary argument. (In
this paper we shall adopt Watson’s (1952) notation regarding Bessel functions.)
With the solution for X known (apart from an arbitrary constant factor which we
shall ignore), we can, in accordance with equation (74), write

g, =V (Xelm). (77)
Thus £ = X' = kT'I,(Tkr) (78)
and £, = 1? X = 9;1’1,”(1“1@»), (79)

where (as in all other cases) we have suppressed the (common) factor ei®z+mf) jn
the expressions for £, and &,.
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(f) The perturbation in the magnetic field

In terms of the solution for §, obtained in the preceding subsection, the per-
turbation in the magnetic field B} (given by equation (21)) becomes

Bj = ikBOP(X'l,+ l%Xl,,) ~k*T?BL X1, (80)

where we have restored the subscript P to indicate that this solution refers to the
interior of the plasma. (Note that to the order of accuracy of the present treatment,
the term in F” in equation (21) does not make any contribution to B% (cf. the
remarks following equation (2')).)

(9) The perturbation in the pressure tensor

The perturbation in the transverse component of the pressure tensor can now
be found. According to equations (42), (60) and (69), we have

’ eB° d7k? X
Pin = “‘Spiﬂ"(m«ﬂ)wi}vrgr (81)

On substituting for X, and %, from (61), we find that the second term in braces on
the right-hand side of equation (81) can be simplified to the form

1o @hjm) 3 (edifm)
Z

O S (@NKm) = —Rp} (say). (82)
+’.._
Thus, Plr=—(S+R)POV, €, = — kTS +R)pL X. (83)

From equations (82) and (83) it follows that
P ., =—kT%(S+R)P{ X, (84)
where (cf. equations (62) and (73))

1o {3 (eh/m)p
_|,.,_.

_ 2
RPY = — g~ = (1) @ 5
_l_’—.

and S has the same meaning as in equation (51).
From equation (85) we can derive an alternative formulae for I'2. We have

(S+R) PYI2 = (SP) —a) [ +ya; (86)

or making use of equations (59), we have

— Bo|2 Q2 | RBol2
('5'+R)P°¢F2=—|—4ﬂ—iI‘2+P‘i—P},’+pp+! 4ﬂ| : (87)
0 0 |2 2/:2
Thus = P{ — P+ | B |*4m + pQ?|k (88)

(S+R)P% + | B 2[4
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4. THE SOLUTION FOR THE PERTURBED FIELD IN THE VACUUM

The unperturbed field outside the plasma is given by equation (1). Let B, denote
the perturbation in the field. Since no currents can flow in a vacuum, we can derive
B/, from a scalar potential ¥'; thus

%»=V¥, where V¥ =0. (89)
For solutions which have the ei®+m9 dependence on z and 8, the appropriate form
for ¥ is W = Byro[C,L,(kr) + C, K, (kr)] etket+md), (90)

where C; and C, are constants to be determined, and I, and K,, are the Bessel
functions of order m and of the two kinds for a purely imaginary argument (cf.
Waitson 1952). The constant factor Byr, has been introduced in (90) for later con-
venience. The required solution for BJ, can, therefore, be expressed in the form

, , im .
V= Bo’"o(‘ﬁ 1+ - lﬂo"'lklﬁlz) ) (91)

where Y(r) = O L, (kr) + Co K, (kr), (92)

and the factor el®>+md) hag again been suppressed.
At the outer boundary, r = R, the radial component of B} must vanish. This

leads to the relation .1, (kR,) +C, K Nk Ry) = 0. (93)

A further relation arises from applying the boundary conditions at the surface of
the plasma. These latter conditions are considered in the following section.

5. THE CHARACTERISTIC EQUATION FOR ()2

The solutions of the equations governing the departures from equilibrium of the
plasma have been obtained in §§ 3 and 4. It remains to satisfy the boundary con-
ditions which must be met at the surface of the plasma. As we shall presently see,
these conditions will lead to an equation for Q2 and thus to the criterion for stability.

The boundary conditions which must in general be satisfied at a surface of dis-
continuity have been formulated in III, § 14. The principal requirements are that
the normal components of the magnetic field and the stress tensor, 7};, are continuous
across the boundary. Thus, if N denotes the unit outward normal on a surface of

discontinuity, then NA[B,] =0 (94)

and N;A[T;;] = 0, (95)

where A[X] is the jump experienced by a quantity X at the surface. The conditions
(94) and (95) must, of course, be satisfied for both the perturbed and the unperturbed
problems.

(@) The continuity of the normal component of B
Consider first the condition (94). Since N? = 1,, the unperturbed fields

B} = B}y1, = apByl, (r<r,) (96)

and OBy = B(wl+ 1) (y<r<Ry), (97)
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(where ap = B%/B, and a; = BY|B,) clearly satisfy the required condition. That
the condition be satisfied for the perturbed problem, as well, requires that

1,.A[B']+0N.A[B] = 0, (98)

where SN is the change in the direction of the outward normal caused by the
perturbation. This latter change can be inferred from the equation of motion relating
N to the velocity of displacement, a, of the surface, namely (III, equation (178))

Qgﬂa.V)N = N x [N x{(Va).N}]. (99)

Since there are no statie drifts in the problem under consideration, the appropriate,
linearized form of equation (99) for the perturbed problem is
Q0N =1, x[1,x{(Va).1,}]. (100)
The velocity of displacement of the surface of the plasma is clearly given by
a=QF . (1o1)
From equations (100) and (101) we deduce that

ON = —ir—fgr(m 1, —ikE,(r) 1,. (102)

Now substituting for B’, B? and 6N in accordance with equations (80), (91), (96),
(97) and (102) in equation (98), we find, after some reductions, that

iE(ro) (apy +m) = 13 (rg), (103)
where y = kry (104)

is the wave number of the disturbance in the unit 1/r,. The explicit form of equation
(103) is (cf. equations (78) and (92)) ‘

IKTI(Ty) (o +m) = 13K{C, Lin(y) + Cy K ()] (105)
Equations (92) and (105) now determine the constants C; and C,. We find:

_ _iTLTy) Guy)
Yoo L(y) 1-G,((y)

(o y +m),

IOy 1 (106)
_ 14Uy
where Gm,g(y) - IMMQ) —_ M (107)

- ELW) L(Boylre)  Kou(y) Iu(&y)’
where { = Ry/r,.

(b) The continuity of the normal component of T;;

Consider next the requirement of the continuity of the normal component of 7};.

Since 1 Yy
Tij=—Pij+z7;(BiBj+EiEj)_8—Z,(|E|2+|B|2)7 (108)
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the condition for the unperturbed problem is
o |B]
A[PLJF o ] 0. (109)
According to equations (96) and (97) this condition requires that
P +oc2§‘§-~:—1~(oc2 B+ B?) (110)
£ P 87T 87 v 7
dar 0 1 2 2.
or EEPJ. = (1 +oy —ap); (111)

this is a condition for the equilibrium of the stationary plasma.
The continuity of N,T;; for the perturbed problem on the displaced surface of
the plasma leads to the single condition (cf. III, equation (207))

0|2
A[g,a%(Pg |]§!)+Pl+ B°.B’]=O. (112)

According to equations (96) and (97)

s[6 2 (o 2] - e 2(9)]

Similarly, from equations (80), (91), (96) and (97) we find
A[B°.B’] = B%.B,~BY%.B},
= Bs[aﬁ’vl . gJ_ + 1710(0(1/?/ + m)]r:fo; (1 14)

also (cf. equation (84)), o
A[P\1=—-(S+R)P\V, .E,. (115)

Substituting for the various terms in equation (112) in accordance with the fore-
going equations, we obtain
B
BBV, 5 = [V, Bty -E] e
0lr=rg
or, more explicitly,

2
| ["‘{;B +(S+R)P°]k2r21 (T'y)
B} BT
= =i D ) (O L)+ C )+ oy Ty (17)

Finally, substituting for C; and C, from equations (106), we obtain

2
[“ZB +(S+R)PY ] k22l (Ty)

B3 r I

L) _Knl0) BT
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Letting

K
P, (x) = xg”:g) and @, (x) = :?{w%%’ (119)f

and making use of equation (88) we find that equation (118) can be reduced to the
form
P —PY 4 poQ
{1 +dm o2 B2 s T2 o p2 Bz} apy?F,(T'y)

¢) Buy) — Qm()
1- Gm,g(y)

where we have replaced m by +m to emphasize that m can be a positive or a
negative integer (including, of course, the value zero).
Equation (120) is the required equation for determining Q2.

+ (apy £ m)? G, =1, (120)

6. THE MARGINAL STATE Q2 =0

If one assumes that the principle of the exchange of stabilities is valid, then the
marginal state separating the domains of stability and instability will be charac-
terized by Q? = 0; and when Q2 = 0, the characteristic equation (120) reduces to

PO; oc%:szm(I‘y) + (opy £ m)2 M L, (121)

P°
14-4m
{ PB2 1- Gm g(y)

where it may be recalled that now (cf. equation (88))

PY — PY+ o BY4mr

U S m 1)
SPY = Z Spl,
" g (2 Chm)ype
(123)
RP} (]21_1;1(1) Q4 Z > (e2N°K [m)
and ijfosquds2 ffs‘* (gf Z o 0) dgds2. (124)

Except for the appearance of the term in R, these equations are the same as those
derived by Rosenbluth from an analysis of the particle orbits. The term in R arises
from electric fields induced in the direction of B%; and the possibility of such electric
fields are not allowed for in Rosenbluth’s treatment. As we shall presently see,
only under very special conditions does R vanish.

If the distributions of ¢ and s are both Gaussian but with different dispersions
(‘temperatures’) then it can be readily shown from the foregoing definitions that

eNO X eN%

8= 20— d Bp = 5
U G

(125)

where 7 = p%p. (126)
1 These are the functions denoted by L,, and K,, by Kruskal & Tuck (1958).
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If, in addition, the ratio of the temperatures in the longitudinal and the transverse
directions are the same for ions and electrons, then

S=8=21-9) and R=R=0, (127)

since N%+ = N®-. In our further discussion we shall assume the validity of
equations (127).
In discussing the implications of equation (121) (under the circumstances leading
to (127)) it is convenient to introduce the parameter
4m
defined in this manner, it has (apart from a factor) the usual meaning of ‘4’. In
terms of 7 and
7 g 2= Oi%’ +ﬂ(ﬁ1_:__77_1) (129)
ap+2B(1—1)
and equation (121) becomes
1- Gm, 4 (?/)

In equation (130), a%, a3, and S are not all independent; for, according to equa-
tion (111),

{cxﬁa+ﬂ(1—%)}iy2Pm(I’y)+(ochi-m)2 = 1. (130)

28 = 1+a%—ad; (131)
in particular, ab< (1+0a3), (132)

and the maximum value of a% (namely, 1+ a3,) corresponds to # = 0 and, therefore,
to a vanishing plasma.

The case 7 = 1 has been discussed quite completely by Rosenbluth. The case
=1 can be discussed in a very similar manner, though there is one important
limitation which does not arise when 5 =1. For, if 7 is sufficiently large (or small)
I'2 can be negative; and one can convince oneself that if I'2 should be negative then
the pinch would be definitely unstable for certain values of y. This arises from the
fact that if I'2< 0, then P, (I'y) becomes

Il Tly)

I T gl T )’
where J,, () is the ordinary Bessel function. The function P,(|I'|y) thus defined
has poles for infinitely many values of y; in the neighbourhood of these poles, the

right-hand side of equation (130) will become negatively infinite; and this clearly
implies instability. Therefore, a supplementary condition for stability is

BT |y) = (133)

% +28(1—7)>0 when #>1
b+ 2p(1—7) Ui } (134)

and ob+p(1—y1)>0 when g5<l1.
On eliminating £ by making use of equation (131), we find that these conditions are

o> (1+02) (1—yY) when 7>1 }

1
and %> (14+0a%)(1-n)/(1+9) when g5<l1. (135)
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(Note that by definition 7 is positive.) For stability, the possible range of o3 is,
therefore, limited by

(L+af)zap>(1+ap) (1—-97Y) (n>1) } (136)
and (L+ay)zap>(1+at) (L=n)/(L+7) (n<1).
14
4
121 13-
4
/
1-0 1-2 //
/4
/
2 /
Xp 08 L= 4
yeu
06 10 ,; Z 7 1
/
/3—7/ //2 1
g 2 S
) ) V._/:/]"/
02 | 1 | ] 1 08 P | ] I
2 3 4 5 6 1 2 3 4 5
4
Ficure 1 Ficure 2

Ficure 1. The regions of stability in the (a3, {)-plane for the case 7 = } and oy = 0, 01, 0-25
and 0-5 (distinguished by the numbers 1, 2, 3 and 4, respectively). For a given ay, a
stable pinch occurs in a region bounded on the left by the a%-axis, on the right by the
marginal curve for m = — 1, above the equilibrium condition a%< (1 +a%) and below by
the condition a%>}(1+a}) (see (136)).

FicUurE 2. The regions of stability in the (a3, {)-plane for the case 7 = 5 and ey = 0, 0-1, 0-25
and 0-5 (distinguished by the numbers 1, 2, 3 and 4, respectively). For a given ay, a
stable pinch occurs in a region bounded on the left by the a}-axis, on the right by the
marginal curve for m = — 1, below by the condition (138) and above by the equilibrium
condition a%< (1+a%). The circles are the calculated points on the marginal curve for
m = — 1; and the extrapolated parts of these curves are shown dashed.

Returning to equations (130) and (131) and considering first the case m = 0, we
can show, as in Rosenbluth’s discussion for the casey = 1, that a sufficient condition
for the stability of the mode m = 0, for all ¥, is that it obtains in the limit y = 0.
This yields the condition o2

a2p+2ﬁ(1—77)+€7_”—1>%; (137)

or, eliminating # by means of equation (131), we obtain
2

AN Y (138)

1%+ (1=1) (1+0) 755 >

This condition is always satisfied for 5 < §; and for 5 > £, equation (138) defines, for
each prescribed 7, a locus in the (%, {)-plane which, together with (136), delimits
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a region of stability (for the mode m = 0) in this plane. These regions for different
values of 7 and a3, are shown in figures 1 and 2.

When |m | = 1, a similar locus can be defined in the (a3, {)-plane. However, the
specification of this locus requires a careful numerical examination of equations
(130) and (131). (It is sufficient to consider m = — 1 as being more unfavourable for
stability.) Precisely, it requires the determination (by trial and error) of the maxi-
mum value of &% which will solve equation (130) (for some y) for assigned values of
¢, n and oy, Mrs Josephine Powers has carried out the necessary calculations and
her results are included in figures 1 and 2.

Finally, considering the modes | m | > 2, we can again show, following Rosenbluth,
that the pinch will be stable for all ¥ and |m | > 2 if it is stable for |m| = 2, all y
and ¢ = co. The case |m| =2 and { = co needs a separate discussion. The most
unfavourable circumstances for stability, in case | m | = 2, arise from

{o%+BA — 1} PR(Ty) + (0 y — 2 Qoly) = 1. (139)
For a given o2, this equation determines a maximum value for a3 for which it allows
a solution for some y. These values are listed in table 1. From an examination of

this table it appears that if the modes m = 0 and —1 are stable and the supple-
mentary conditions (136) are satisfied then all the remaining modes are stable.

TABLE 1. THE MAXIMUM VALUE OF 0% FOR WHICH EQUATION (139)
ALLOWS A SOLUTION FOR ASSIGNED VALUES OF 0y AND 7

7 =05 7 =50
' A hY ~ A ™
ay ap Yy av ap y
0-10 0-383 3-52 0-10 0-307 5-00
0-25 0-464 2-20 0-25 0-348 3-55
0-50 0-688 1-50 0-50 0-422 1-95
1-00 1-482 1-00 1-00 0-970 1-00

7. THE TIME-DEPENDENT CASE

When Q2+ 0, we must go back to equation (120) in which the definition of I"2
also involves Q2; thus,
I :-P‘i —:Pﬁ-_kocﬁ,B?,/zhr +pQ2[k?
(8 +R) P} +apBjf4m
where the ‘shape factor’ (S+ R) also depends on Q2.
If as in § 6 we consider Gaussian distributions of ¢ and s (but with different tem-
peratures) then it can be shown that (cf. equation (125))

(140)

{ Z (eN9)}?

SP° — -, RBPY = o

SP{l - 2+,2‘(1 W)P_L: ‘RP,L Z_(ezNzﬁ/p(i)’ (141)
0
where i =9[l-H(o)] = z;—‘(é [1-H(o)], (142)
Q( m \*
o=7 (W) (k = Boltzmann constant) (143)
I

28 Vol. 245. A.
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T
and H(z) = mix exZ[l - —?—f eV’ dy] . (144)
Nmlo
From the definition of H(z) it follows that
H(z)—>0 as x—>0 and H(zx)—>1 as x-—>o0. (145)

If Q2> 0, then the characteristic equation can be discussed without any difficulty
of principle. If, however, we should be interested in stable oscillations, then we
should exercise some care since the integrals such as I, J, etc., which we have to
define, are divergent. Under these circumstances, we may suppose that we are
solving the Boltzmann equation by considering its Laplace transform; thus

i, Q) = f " e, t) et dt. (146)
0

The solution we have found is formally f(r, Q); and the required solution satisfying
suitable boundary conditions can then be obtained by inversion. This will require
us to go into the complex 2-plane; and the solution of the problem can be completed
as has been done in the case of plasma oscillations by Landau (1946; see also van
Kampen 1955). We hope to return to these matters in greater detail on a later
occasion.

Nores 4ppep IN Proor 10 May 1958

(@) T'he non-occurrence of overstability in the pinch

In discussing the stability of the pinch in §6, we have assumed that Q% =0
separates the domains of stability and instability. To complete the discussion, it is
clearly necessary to examine whether overstability can occur. It can be shown that
thisis not possible. We had constructed a proof for this; at the same time Dr Marshall
Rosenbluth communicated to us a somewhat different but very elegant proof.
The following is an outline of Dr Rosenbluth’s proof; we are grateful to him for
allowing us to include it in this paper.

The basic equations are (107), (119), (120) and (140) to (144). These equations
must be considered in the complex Q-plane.

It is convenient to rewrite equation (120) in the form

2
Q) = {1 +;;%§ (P‘_’L — P +B]§i—)} a3y?P,(T'y)— L = 0.
Here L is independent of  and all quantities except I'? and € are real.
Considering first H(Q) (as defined in equations (143) and (144)), we observe that
this is analytic on the right half of the complex plane and on the imaginary axis;
further the sign of its imaginary part is the same as that of Q; and the imaginary part
vanishes only for real Q. From these properties of H(Q) we deduce that: I'*(Q) is

analytic on the right half plane; it has zeros only at +iQ, where
Qq = by/(PY — P+ a3 Byja)o

it has a non-vanishing imaginary part except on the real axis and on the curves
L —1 and L — 2 passing through +i€Q,; and on these latter lines I'2> 0.
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Considering next B, (I'y) (as defined in equation (119)) for complex I', we infer
from the non-existence of complex zeros of AJ,,(z) + BzJ,,(z) for all real A and B
(see Watson 1952, p. 482), that the imaginary part of P, (I'y) is non-vanishing and
that it has no poles except when I"? is real and negative. Therefore ®(L2) has no
poles on the right half of the complex Q-plane and is in fact analytic. Consequently,
we may determine the number of zeros of ®(Q) on this half of the complex plane by
the principle of the argument, namely by evaluating the integral,

1 (1do
= z;fa aq 4

along a contour consisting of a semi-circular arc of sufficiently large radius and the
intercepted part of the imaginary axis; C is the total change in the argument of ®
around the contour. From the fact that ®(Q) becomes proportional to Q as Q- o0,
it is clear that the contribution to C from the semi-circular arcis 1. On the imaginary
axis, the imaginary part of @ is positive during the whole contour and the change
in the argument is + {7 depending on whether ®(0) is positive or negative. Hence
C=1if ®(0)<0and C = 0if ®(0)> 0. The conclusion then is that if '*(0) > 0 and
®(0) > 0, the pinch is stable; otherwise it is unstable. Moreover, in the latter case,
since on the real axis ®(Q) increases from a negative number to infinity, the
instability evidently occurs with a real frequency. In the case of a stable pinch no
purely imaginary roots are possible, i.e. the oscillations are Landau-damped.

(b) The induced electric field parallel to B

By combining equations (19), (60) and (69) we clearly obtain an expression for
. This latter expression can be derived more directly as follows: If the displace-
ment current is ignored

curl B = 47j/c. (1)
Taking the divergence of this equation, we clearly obtain ‘
charge density = X} eN' = 0. (i)
+’ —
On the other hand according to equation (7)
1
= Qf A,dgds?; (iii)
and in limit Q% = 0 we have (cf. equations (19), (22) and (29))
of* of% 2 of°_, .
= I Y A
1= s <3q2 asz) T o T (v)
We thus and
’ e of° Bn of° of°
Z 2 W e(W__ Y
2 {+,Z~ mf dgds 992} 0 2 f f dads (8q A ™)

in agreement with the result given in the paper.

(¢) The case n =1
As we have stated, Rosenbluth (1958) has carried out the discussion of the
stability for the case # = 1. Since his paper may not be readily available we repro-
duce, with his permission, his results in figure 3.

28-2
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0 1 !
1 2 3 4 5

¢

Ficure 3. The regions of stability in the (a3, {)-plane for the case #=1 and a,=0, 0-1,
0-25 and 0-5 (distinguished by the numbers 1, 2, 3 and 4, respectively). For a given ay,
a stable pinch occurs in a region bounded on the left by the aZ-axis, on the right by
the marginal curve for m= —1, above by the equilibrium condition a3 <(1+4«2) and
below by the marginal curve for m=0.

This investigation was carried out under the auspices of the United States Atomic
Energy Commission.
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ApPPENDIX. THE PROPAGATION OF PLANE HYDROMAGNETIC
WAVES IN AN INFINITE MEDIUM

In deriving the equation (§ 3, equation (75))
V2 x = k2T2y, (A1)

no assumptions (in addition to those underlying the general perturbation theory)
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were made except that there is a uniform field, B, in the z-direction and that all
quantities describing the perturbation have the dependence

eQt+ikz (A 2)

on ¢ and z. Accordingly, if the plasma should be of infinite extent, we may seek solu-
tions of (A 1) whose dependence on = and y is also periodic with a (total) wave
number k. For such plane waves (A 1) provides the dispersion relation

K +ET2 =0, (A3)
where we have written k, in place of k£ to emphasize that this represents the wave
number of the disturbance in a direction parallel to B°. Substituting for I'? from
equation (88) in (A 3), we obtain

| B|? | B|?
47

2 +(S+E)P3}+k{ —pyy 120 —pk2} 0, (Ad)

where we have further written iw in place of Q; & denotes, therefore, the frequency

of the wave.
Letting (cf. equations (126) and ( 128))

PO

0
ﬂ |.B0 |2P_L, 77 P(“) (A 5)
and k2 = k2cos?®, ki =k2sin29 (k®=Fki+K2), (A 6)
we can rewrite (A 4) in the form
= 1\ . 4mpw?
2 — 2\ gin2? = P
LS+ R) cos 1‘}+/>’(1 17) sin? 9+ 1 B R (A7)

If the distributions of ¢ and s are Gaussian (but with different dispersions) then §
and Rin (A7) have the values given in § 7, equations (141) to (144).
From (A7) it follows that we shall have instability if
B(S+R)cos? ¥+ pf(1—1/p)sin29+1<0, (A 8)
where S and R are now to be evaluated for the limit w = 0.
If the particular assumptions of § 6 leading to equation (127) are made, then
(A 8) becomes 28(1 —7) cos2 9+ B(1 —1/n)sin29 + 1 < 0. (A9)
A case of special interest is when the waves are propagated in the direction of B,
Then k&, = 0 and the dispersion relation is (cf. (A 4))
[ B2 _ po?
dr k2
When P9 = P this represents the usual Alfvén wave. The waves described by
(A 8) represent unstable modes if
BO|2
P‘l—Pﬁ’+| 47T| <0. (A11)

P° — P+ (b, =0;k=k,). (A 10)

This special case of (A 9) has been stated by Longmire (1956, private communica-
tion); and it has been discussed more recently by Parker (1957, private com-
munication). Also, it may be noted that (A 11)is equivalent to one of the conditions
for stability considered in § 6 (cf. (134)).
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