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Understanding fields using strings: A review
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Abstract. In addition to being a prime candidate for a fundamental unified theory of all interactions
in nature, string theory provides a natural setting to understand gauge field theories. This is linked to
the concept of ‘D-branes’: extended, solitonic excitations of string theory which can be studied using
techniques of string theory and which support gauge fields localized along their world-volumes. It
follows that the techniques of string theory can be very useful even for those particle physicists who
are not specifically interested in unification and/or quantum gravity. In this talk I attempt to review
how strings help us to understand fields. The discussion is restricted to 3+1 spacetime dimensions.
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1. Introduction

A long-standing goal in theoretical high-energy physics is to understand the dynamics of
gauge theory beyond perturbation theory. This is particularly important for QCD where
non-perturbative effects are responsible for many, if not most, of the physical behaviour
of the theory. While the lattice offers one hope to address this problem in a very explicit
way, it is often the case that a continuum picture, even qualitative, can be a rich source of
insight.

Such a continuum picture — of confinement and other non-perturbative effects in gauge
theory — has been conjectured by many outstanding physicists since the early 1970’s.
While beautiful and reasonably convincing physical pictures of QCD emerged from this
analysis, it proved very hard to substantiate much of this thinking by evidence, even ‘the-
oretical evidence’.

What is theoretical evidence? In the last five years, we understand this term much bet-
ter. Conjectures about strongly-coupled gauge theory cannot be proved without having a
definite and effective computational procedure in mind, and this is still lacking at present.
But there is a more realistic goal: having formulated a conjecture, one can make a large list
of its consequences, and then hope to isolate, from this list, a few consequences that can
actually be theoretically tested. This then constitutes a body of theoretical evidence for the
conjecture.

Supersymmetry and string theory have turned out to be the twin planks on which a large
body of theoretical evidence, embodied in ‘duality symmetries’, has accumulated over the
last few years. Since not all high-energyphysicists are interested in the goal of string theory
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(to unify all four fundamental interactions, including gravity, into a consistent quantum
theory), I have chosen to focus this talk on the areas in which a more or less conventional
particle physicist can gain insight from string theory.

Along with string theory, supersymmetry will turn out to be a key ingredient in our story.
Supersymmetry is accepted by most high-energy physicists as a plausible proposal for what
the world is like above a TeV or so. Even if this proposal turns out not to be correct, string
theory might still be a helpful way to understand the correct field theory. This is because
many of the ‘miraculous’ symmetries of string theory that we will use, might well be
present even in the absence of supersymmetry. It is our knowledge of non-supersymmetric
string theory that is still insufficient to put it to the service of gauge theory.

This review should be fairly accessible to readers who are not knowledgeable about
string theory. Such readers may, however, wish to consult refs [1,2] to learn more about
the subject.

2. Classical SUSY gauge theory

To set the stage for our discussions, it is useful to review the structure of supersymmetric
gauge fields in 4 spacetime dimensions [3,4]. Supersymmetry requires different bosonic
and fermionic fields to fall into multiplets.

2.1Multiplets and Lagrangians

N = 1 supersymmetry: WithN = 1 supersymmetry we have two possible multiplets. The
first is a vector multiplet:

vector multiplet : Aa
�; �

a; a = 1; : : : ; dimG (1)

consisting of a gauge field and a Majorana spinor (‘gaugino’) in the adjoint of the gauge
groupG.

The second multiplet, called the ‘chiral multiplet’, contains no gauge fields but only
scalars and fermions:

chiral multiplet : �iI ;  
i
I ; i = 1; : : : ; dimR; I = 1; : : : ; Nf ; (2)

whereR is a representation of the gauge groupG, andN f denotes the number of flavours.
The scalars in this multiplet are usually called ‘squarks’ since that is what they would be if
we were writing a supersymmetric version of the standard model.

Together, supersymmetry and gauge symmetry constrain the most general renormaliz-
able classical action one can write with these fields. The action is made up of three terms:

S = Skinetic + SD�term + Ssuperpotential; (3)

whereSkinetic contains the usual kinetic terms for all the fields, and

SD�term =

Z
d4x

dim GX
a=1

�
�iI

y

T a
ij�

j
I

�2
+ fermions;

Ssuperpotential =

Z
d4x

X
i;I

����@W@�iI
����
2

+ fermions; (4)
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whereW (�Ii ) is an analytic function of the complex field on which it depends, and is called
the ‘superpotential’. Supersymmetry allows this to be arbitrary, but for renormalizability it
should be at most cubic in its argument.

N = 2 Supersymmetry:With N = 2 supersymmetry we again have two possible multi-
plets. The first is again called a vector multiplet but its content is different from theN = 1
vector multiplet:

vector multiplet : Aa
�;�

a; �a; a = 1 : : :dim G: (5)

Here�a is a Dirac gaugino, while�a is a complex scalar field in the adjoint. This multiplet
is actually the combination of a vector and a chiral multiplet ofN = 1 supersymmetry.

The second multiplet ofN = 2 supersymmetry is called a ‘hypermultiplet’ and has the
following content:

hypermultiplet : Qi
I ;

~Qi
I ;	

i
I ;
~	i
I ; i = 1 : : :dim R; I = 1 : : :Nf ;

(6)

whereQi
I and ~Qi

I are complex scalars in the representationNc and �Nc respectively of
the gauge group, and	i

I ;
~	i
I are Weyl fermions in the same representations. Thus the

hypermultiplet is a combination of two chiral multiplets ofN = 1 supersymmetry, in
conjugate representations.

The most general renormalizable action compatible withN = 2 supersymmetry is:

S = Skinetic + S2 + Ssuperpotential; (7)

where

S2 =

Z
d4x

X
a

jfabc ��b�cj2 + fermions

Ssuperpotential =

Z
d4xjW 0j2 + fermions

W (�a; Qi
I ;

~Qi
I) =

~Qi
I�

aT a
ijQ

j
I +mIJ

~Qi
IQ

i
j : (8)

There is an SU(2)� U(1)R-symmetry under which�a decomposes into a doublet. The
squarks(Q; ~Q+) also form an SU(2)R doublet.

N = 4 supersymmetry: WithN = 4 supersymmetry there is only a single multiplet, called
the vector multiplet:

vector multiplet : Aa
�;�

a
r ; �

a
R; a = 1 : : :dim G;

r = 1 : : : 6; R = 1 � � � 4: (9)

In terms ofN = 2 super-multiplets, this is a combination of a vector multiplet and an
adjoint hypermultiplet, while inN = 1 language this is a combination of a vector multiplet
and three adjoint chiral multiplets.

With such a high degree of supersymmetry, the action is completely determined if we
allow only renormalizable (dimension 4) interactions. It takes the form:
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S = Skinetic + S2;

S2 =

Z
d4x

 
6X

r;s=1

jfabc�b
r�

c
sj
2 + fermions

!
: (10)

This is the maximally supersymmetric situation if we restrict ourselves to field theories in
3+1 dimensions without gravity. In components, there are 16 supersymmetry charges (4
Majorana spinors of 4 components each).

2.2Classical parameter space (‘moduli space’)

The parameter space, or ‘moduli space’, of a field theory is the space of degenerate vac-
uum configurations. This amounts to the space of energy-minimising vacuum expectation
values of various scalar fields. Classically, this is easy to determine by examining the La-
grangian and looking for flat directions in field space along which the potential does not
vary. Quantum mechanically, one has to replace the Lagrangian by the effective Lagrangian
incorporating quantum corrections.

Without supersymmetry, there is often no moduli space since the potential will have a
unique minimum. Even if we choose a potential with flat directions, quantum corrections
will generically lift this degeneracy. However, with supersymmetry, the classical moduli
space is already constrained and moreover, quantum corrections can fail to lift degeneracies
because of cancellations between fermion and boson loops. We will denote the classical
moduli space byMc and the quantum moduli space byMq .

The moduli spaces are most constrained when there is the greatest degree of supersym-
metry. Hence in this discussion we start with the maximally supersymmetric case.

N = 4 Supersymmetry: In this case, the classical moduli space consists of those vacuum
expectation values of the 6 scalars which together minimise the potential energy. The result
is simple but interesting. We require:X

r;s

(fabc�br�
c
s)
2 = 0; (11)

where the scalar fields are understood to represent the VEV’s. Positivity implies

fabc�br�
c
s = 0 for all a; r; s: (12)

This condition will be satisfied if and only if the VEV’s all lie in the Cartan subalgebra of
the gauge group:

��r arbitrary; � = 1 � � � rank G

�ar= 0; a = (rank G) + 1; : : : ; dim G: (13)

Recall thatr takes values from 1 to 6, labelling the 6 scalar fields in the vector multiplet.
As a simple example, with gauge group SU(2), we have

�3r arbitrary; �1;2r = 0 (r = 1; : : : ; 6): (14)
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It is convenient to label the VEV’s by a collection of 6-vectors:

��r = v�r = (v�1 ; v
�
2 ; : : : ; v

�
6 ) = ~v� (15)

Then, the classical moduli space is the space of all 6-vectors~v�. However, there are global
identifications by the Weyl group ofG, a discrete subgroup which must still be imposed as
a gauge symmetry. Thus the true classical moduli space is really the quotient of the naive
one by this group.

The Weyl group of SU(2) is justZ2, while for general SU(Nc) it is the permutation
groupSNc

. Thus the classical moduli space in these cases is:

SU(2) :Mc = R
6=Z2

SU(Nc) :Mc = R
6(Nc�1)=SNc

: (16)

Let us consider the SU(2) case in more detail.R6 has coordinates(v1; : : : ; v6) = ~v. The
action of the Weyl group is:

Z2 : ~v ! �~v: (17)

There is a fixed point of this action at~v = ~0. This is the point where SU(2) gauge symmetry
is restored, since the adjoint scalar VEV’s all vanish. Elsewhere,�3r = vr 6= 0 breaks
SU(2) to U(1).

Geometrically, a fixed point of the quotienting group corresponds to a singularity of the
space. The space becomes anorbifold, so while it is flat everywhere else, it has infinite
curvature at the origin.

Far away from the origin (~v 6= ~0), the off-diagonal SU(2) gauge particles, which we may
denoteW�, are massive, with a massgYMj~vj. As ~v ! ~0, these gauge particles become
massless. We see that singularities of the moduli spaceM are associated to the presence
of new massless particles in the spectrum.

For SU(Nc), at a generic point ofMc we have the symmetry-breaking pattern:

SU(Nc)! (U(1))Nc�1

Note that the Cartan subgroup (U(1))Nc�1 of SU(Nc) can never be broken by the VEV of
an adjoint scalar (since adjoint scalars are uncharged under this subgroup). Hence at such
generic points we always have a number (rankG) of massless photons, and the theory is in
the Coulomb phase.

However, there are special points where the breaking pattern is different:

SU(Nc)! SU(2)� (U(1))Nc�2

! SU(3)� (U(1))Nc�3

! SU(2)� SU(3)�U(1)� � � � (18)

and so on. All such points have ‘enhanced nonabelian symmetry’, hence extra massless
particles. These points are fixed under the action of some element ofSNc

, hence they are
singularities of the moduli space.

In addition to the above moduli space, there is the parameter space for the gauge cou-
pling gYM and the�-angle, which combine into a complex parameter:
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�YM =
�

2�
+

4�i

g2YM
: (19)

In field theory these parameters are fixed by hand and are quite distinct from VEV’s of
scalar fields. However, in string theory they arise as VEV’s of some appropriate scalar
fields, hence string theorists usually consider this parameter space to be part of the moduli
space.

N = 2 Supersymmetry: In this case, there are other phases besides the Coulomb phase.
Thus the classical moduli spaceMc splits into branches. One branch is characterised by
the following:

Qi
I =

~Qi
I = 0

�� = v�; � = 1; : : : ; rank G: (20)

Note that withN = 2 supersymmetry, the field�� and its VEVv� arecomplexnumbers.
The above equation defines the ‘Coulomb branch’, on which as before, the generic

breaking pattern is:

SU(Nc)! (U(1))Nc�1: (21)

In particular, for SU(2) we have the Coulomb branch:

MCoulomb
c = R

2=Z2; (22)

wherev = v3 is the (complex) coordinate onR2.
At generic points ofMCoulomb

c we cannot give a VEV toQi
I ;

~Qi
I , since their couplings

to the adjoint scalars would increase the potential energy. But it is not hard to see that if
v� takes some special values, then we can turn on VEV’s forQ i

I ;
~Qi
I at no cost in energy.

Since the hypermultiplets are usually in the fundamental representation, they are charged
under the Cartan subgroup of the gauge group. Hence such VEV’s break evenU(1) factors.
This branch of the moduli space is therefore called the Higgs branch.

N = 1 supersymmetry: In this case the vector multiplet contains no scalars, hence there is
no moduli space unless we couple some chiral (matter) multiplets. With matter, we have
to minimize

SD�term + Ssuperpotential:

The result forMc depends on the details of the fields, representations and choice of su-
perpotential. Not much can be said about it without going into a detailed classification of
cases.

We see that the classical moduli spaceMc is relatively simple forN = 4 and consists
of a Coulomb phase, while forN = 2 supersymmetry, it consists of intersecting Coulomb
and Higgs branches. WithN = 1 supersymmetry, the moduli space depends largely on
one’s choice of field content and superpotential in the theory.

3. Quantum SUSY gauge theory

We now turn to the question of how quantum corrections modify the classical moduli
space of a supersymmetric gauge theory. In general, the quantum effective action will be
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different from the classical one and will incorporate non-renormalizable terms, including
more general kinetic terms than the usual ones.

N = 4 supersymmetry: Because of the high degree of supersymmetry, the quantum mod-
uli spaceMq is identical to the classical oneMc. At the origin ofMq, the theory has
unbroken SU(Nc) gauge symmetry and vanishing�-function. Thus, it is a conformal field
theory (CFT). Note that as a consequence there is no asymptotic freedom, and hence also
no confinement, in this theory. Away from the origin, conformal invariance is broken by
the scalar VEV and we have massive theory coupled to U(1) gauge fields.

N = 2 supersymmetry: Consider SU(2) gauge theory with no hypermultiplets. It was
shown non-perturbatively, by Seiberg and Witten [5,6], that the structure ofM q is rather
different from that ofMc. Whereas inMc the Coulomb branch is singular at the origin
and SU(2) gauge symmetry is restored there, inMq the Coulomb branch has no singularity
at the origin. Moreover, in this theory SU(2) gauge symmetry isneverrestored at any point
of the moduli space!

Instead, it is found that there are two other singular points inM q. At these points, some
particles do become massless – but not the gauge bosons. The massless particles at these
points are monopoles and dyons. It becomes useful to make an electric–magnetic duality
transformation near these points and study the magnetic theory instead.

ThisN = 2 theory has a nontrivial�-function and is asymptotically free, so the coupling
� = (�=2�)+(4�i=g2YM) depends on the scale. This coupling was shown to vary complex
analytically (‘holomorphically’) as a function of the complex VEV� 3 = v: so we can
write � = �(v). This dependence is known exactly as a certain non-trivial ‘fibre bundle’.
Since� is valued in the upper half plane, it can naturally be interpreted as the ‘shape’
parameter (technically, ‘complex structure parameter’) of a torus, thus the moduli space
looks like a torus varying over a plane.

The above holds for SU(2) gauge group andN f = 0 (no matter). Analogous exact
results forN = 2 supersymmetry are also known for SU(Nc) gauge groups and forNf �

2Nc flavours, for which the theories are always asymptotically free. ForN f = 2Nc these
theories are finite (the�-function vanishes) and hence they are conformal field theories.
ForNf > Nc the�-function is positive and the theory becomes ill-defined.

Note that the interesting results about quantum corrections always concern the Coulomb
branch. The Higgs branch is protected from quantum corrections.

N = 1 supersymmetry: A complex array of results have been found for the quantum
moduli space ofN = 1 supersymmetric gauge theories. However, just as the classical
moduli space in this case depends on the detailed choice of matter fields, representations
and couplings, the structure ofMq too will depend on these choices. The interested reader
is referred to appropriate review articles on this topic, such as ref. [7].

4.D-branes andN = 4 SUSY

In this section we show how supersymmetric gauge theories in 3+1 spacetime dimensions
naturally arise as a subsector of superstring theory. For a more detailed review of the
relevant material onD-branes, see ref. [2].

Introducing fundamental extended objects such as strings leads to a variety of interesting
new physical consequences. For one thing, closed string excitations produce gravity, so

Pramana – J. Phys.,Vol. 54, No. 4, April 2000 549



Sunil Mukhi

string theories are theories of quantum gravity. But we will be more interested in the sector
of string theory that contains open strings.

Open strings have a pair of ends. This requires the specification of boundary conditions
at the endpoints. While it is most natural to allow these to lie anywhere in space, one can
consistently choose to restrict the endpoints onto ap-dimensional spatial hypersurface in
the 9-dimensional space where strings propagate. In fact, one can show that such choices
must necessarily be consistent: starting with unconstrained endpoints and applying known
symmetries of string theory, we end up with endpoints constrained on a hypersurface.

What is the physical interpretation of these constrained endpoints? They define a spatial
region on which the strings can end. Suppose we choosep = 0 and constrain our open
strings to end on a fixed point in space. Then, that point breaks translation invariance ex-
actly as an elementary particle would do. (For example, applying a Lorentz boost to the
theory would cause the point to start moving with a fixed velocity). Fluctuations of the
string give rise to motions and oscillations of this fixed endpoint. Hence in all respects this
string endpoint can be treated as a particle with a definite mass. Because constrained end-
points satisfy Dirichlet boundary conditions, we call the associated particle a ‘D-particle’.
D-particles can also be understood as solitonic excitations in the string theory. Hence

we have two different mental pictures of the same object: as a soliton, and as a string
endpoint. Now suppose we choosep = 2 instead of 0. Then the string endpoint sweeps out
a 2-dimensional space. The associated object looks like a membrane. Indeed, it is called
a ‘D-brane’. It too has a complementary description as an extended solitonic excitation in
string theory, much like the cosmic strings and domain walls that can be found as classical
solutions of more physically relevant field theories. For arbitraryp, we say that the string
endpoint describes aDp-brane.

For suitable values ofp,Dp-branes are stable objects in type II superstring theory. They
are charged under some generalised gauge field and hence, in the solitonic picture, they
correspond to stable solitons.

A key property of open superstrings is that their lowest excitations are massless gauge
fields. These gauge fields propagate only on the locus where the endpoints are free to move,
namely on theDp-brane. Thus, the low-energy field theory coming from the dynamics of
open strings is a gauge theory inp+1 spacetime dimensions. This is the central observation
that links string theory and gauge field theory. For our purposes we will select the value
p = 3, so we intend to realise the supersymmetric field theories discussed in the preceding
sections as modes of open strings ending onD3-branes. The underlying string theory
which has stableD3-branes is called type IIB string theory.

Because of supersymmetry, the gauge fields arising from open string endpoints lie in
supermultiplets containing scalars and fermions. The basicD3-brane of type IIB string
theory can be shown to inheritN = 4 supersymmetry from the underlying spacetime
supersymmetry of the 10-dimensional string theory. Hence the theory on the world-volume
of a singleD3-brane is anN = 4 supersymmetric gauge theory. A singleD3-brane gives
rise to abelian gauge theory. We will argue below that to get higher gauge groups one must
stack several identicalD3-branes together. We will also see that lower supersymmetry can
be obtained by combiningD3-branes with otherD-branes and ‘orientifolds’.

Before doing this, let us note one amusing fact. A soliton has ‘collective coordinates’ for
the symmetries that it breaks. In particular, extended solitons (branes) break translational
invariance in the directions transverse to their own world-volume. For example, suppose
aD3-brane is arranged to lie along(x1; x2; x3). It breaks the remaining 6 translational
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Figure 1. Two parallelD3-branes.

symmetries in the9+1 dimensional string theory, along(x4; x5; � � � ; x9). So it should have
6 massless scalar fields on its world-volume. And it does, becauseN = 4 supersymmetry
requires precisely 6 scalar fields in a vector multiplet!

We see that the 6 scalar fields in theN = 4 supersymmetry multiplet, whose presence
was deduced from the supersymmetry algebra long before superstrings andD-branes were
understood, are most naturally interpreted as translational collective coordinates of aD3-
brane. Moreover, the SO(6)R-symmetry comes from transverse rotational invariance: the
10-dimensional Lorentz group SO(9,1) is broken by theD3-brane into SO(3,1)� SO(6).
ThusR-symmetry (a key property of field theories with extended supersymmetry) gets
re-interpreted as a spacetime symmetry!

Now consider two parallelD3-branes (figure 1). Both are aligned along(x 1; x2; x3) but
they can be at arbitrary locations in the other six directions. We let the vector~v denote the
relative location of one brane with respect to the other along these directions.

From the previous discussion we should expect that together, theseD3-branes support
a U(1)� U(1)N = 4 supersymmetric gauge theory. The two vector multiplets arise from
open strings having both ends on the first brane or both ends on the second brane. But
now we also have two more types of open strings: those beginning on the first brane and
ending on the second, and those beginning on the second brane and ending on the first.
The corresponding states are charged as(1;�1) and(�1; 1) under U(1)� U(1). Under
the diagonal U(1) they are neutral. With respect to the other U(1), they have exactly the
charges of massiveW -bosons! In fact their mass is

mW � T j~vj; (23)

whereT is the string tension. In suitable units, this is related to the Yang–Mills coupling
constant for theD3-brane gauge theory byT � 1=g 2YM. (Note that~v in this section is a
distance, while in the previous sections it was the VEV of a scalar field. The translation
between these two involves a change of units and some rescaling.)

Particles obeying a mass-charge relationship like the one above correspond to quantum
states in the gauge theory that do not break all the underlying supersymmetry (as a generic
state would do) but preserve a fraction of supersymmetry. Such states are known as ‘BPS
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Figure 2. Nc parallelD3-branes.

states’, and the corresponding particles are necessarily stable by virtue of the supersym-
metry that they preserve.

Thus, two parallelD3-branes realize the Coulomb branch ofN = 4 SU(2) gauge theory
(apart from a decoupled centre-of-mass U(1)) [8]. When the parallelD3-branes coincide,
the stretched open strings shrink to zero length, andj~vj = 0. There, SU(2) is restored. This
is the origin of the Coulomb branch.

SinceD-branes are indistinguishable objects, the parameter space isR
6=Z2, as we pre-

dicted from purely field-theoretic considerations. Thus we see that in string theory, the
Weyl group factor in the gauge group comes fromD-brane statistics!

ForNc parallel, separatedD3-branes we have the following picture. The total number
of stretched strings between pairs ofD3-branes isNc(Nc � 1). AddNc strings that begin
and end on the same brane, and we end up withN 2

c fields altogether. This is the dimension
of the groupU(Nc) � SU(Nc) � U(1). So,Nc parallelD3-branes describe the moduli
space ofU(Nc) � SU(Nc)�U(1) N = 4 supersymmetric gauge theories (figure 2).

We have already identified some stable BPS states(W � bosons) in these theories. These
carry electric charge under the U(1) factors. Now let us use string duality to extract more
information. The type IIB string in 10 dimensions has a pair of massless scalar particles:
the dilaton', and the axion~'. These appear naturally in the complex combination

�s =
~'

2�
+ 4�ie�' =

~'

2�
+

4�i

gs
: (24)

We have used the fact, well-known to string theorists, that the string coupling is determined
by the expectation value of the dilaton field:gs = e'.

Since the modes propagating on theD3-brane are excitations of open strings, they ‘in-
herit’ this coupling. In fact, the complex combination�YM of Yang–Mills coupling and
theta-angle which we encountered in eq. (19) is equal to the complex combination� s
above:

�YM =
'

2�
+

4�i

g2YM
= �s =

~'

2�
+

4�i

gs
: (25)

Hence, in particular,g2YM = gs.
Now, it is believed that type IIB string theory has a group of duality symmetries, SL(2,

Z), under which

�s !
a�s + b

c�s + d
;

�
a b
c d

�
� SL(2;Z): (26)
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This group of transformations includes, as a special case, a simple integer shift of the axion,

~'! ~'+ 1

which tells us that it is an angle-valued field. It also includes the more nontrivial strong–
weak coupling duality (‘S-duality’)

�s ! �
1

�s

which for zero axion acts asgs ! 1=gs, inverting strong and weak coupling in the string
theory.

UnderS-duality, we know how all the massless fields of type IIB string transform. Since
D-branes carry charges under specific massless fields, this also tells us how the branes
transform. In particular one finds thatS-duality converts the fundamental type II string
into aD1-brane or ‘D-string’, but leaves theD3-brane invariant.

It follows thatN = 4 supersymmetric gauge theory must have a symmetry under

�YM !
a�YM + b

c�YM + d
;

For vanishing�-angle, this includes a transformationgYM ! �(1=gYM), which inter-
changes a weakly coupled gauge theory with a strongly coupled one.

In addition, we saw that this duality acts on the string theory to interchange a fundamen-
tal type IIB string with aD-string. But we know that the end-point of a fundamental string
when it terminates on a brane behaves like an electrically charged particle of the brane
world-volume theory. It is also known that the endpoint of aD-string when it terminates
on a brane, behaves like a magnetically charged particle [9,10]. Thus when acting on a
D3-brane,S-duality must interchange electric with magnetic fields.

Thus, stringyS-duality implies strong–weak, electric–magnetic duality ofN = 4 su-
persymmetric gauge theory. This in turn implies the existence of a definite spectrum of
monopoles and dyons as a consequence of the existence of electrically chargedW -bosons,
which can be identified as perturbative states. While this result was originally argued from
field-theoretic considerations [11], this way of understanding it through string theory is
very powerful and conceptually illuminating. (It is not as rigorous, though, since the string
duality that we invoke remains a conjecture, which is in some ways harder to prove or
justify than the field-theoretic duality.)

Here we have seen perhaps the simplest example wherein, by realising a field theory in
terms of world-volume excitations on a brane, one can derive properties of this field theory
using known (or conjectured) properties of the underlying string theory. These results are
nonperturbative, since the duality acts non-perturbatively.

For general gauge groups SU(Nc), one re-discovers in this way a rich and complex
spectrum of BPS monopoles and dyons, which field theorists had been slowly discovering
over the last two decades.

ForNc � 3, SU(Nc) gauge theory also admits exotic BPS dyons whose existence had
been conjectured (but not demonstrated) by field theorists. Such dyons have electric and
magnetic charge vectors that are not proportional. String theory can be used to show that
they must exist. One starts with the fact that type IIB string theory admits BPS junctions
where a fundamental string meets aD-string and a bound-state of the two comes out from
the junction point (figure 3). More general junctions also exist.
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string
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bound state

Figure 3. A three-string junction.

Following the observation that string junctions are stable, BPS objects, [12], it was ar-
gued [13] that an exotic dyon is obtained by suspending such a string junction between
D3-branes. Such dyons exist in all SU(Nc) N = 4 supersymmetric theories, forNc � 3,
and are stable.

With this impetus, field theorists began to generate the appropriate classical solutions
for such field-theoretic solitons, and quite a lot is known about them by now.

5. Brane probes andN = 2

Type IIB symmetric is invariant under orientation-reversal of the closed string. This sym-
metry, denoted by
, generates aZ2 group and has a definite action on the fields of the
theory (and therefore, as we have seen, also on the branes). Let us compactify IIB string
theory on a 2-torus, with coordinates(x8; x9), and take the quotient by the symmetry

 I89, whereI89 denotes reflection of the two toroidal directions:

I : (x8; x9)! (�x8;�x9)

As we might expect,
 creates unoriented closed strings out of oriented ones, andI 89
makes the two toroidal space dimensions into the orbifoldT 2=Z2 (details about orientifolds
can be found in ref. [2]).

The reflection symmetry has 4 fixed points onT 2. Let us focus on one of them, say the
one at the origin. This is a point on the 2-torus, but it is independent of the other 7 spatial
directions and is therefore a 7-dimensional hyperplane that extends along those directions.
We call it an ‘orientifold 7-plane’.

This object is like a mirror: the spatial regions on the two opposite sides of it get iden-
tified. If we bring aD3-brane near it, we get new light states coming from open strings
joining theD3-brane to its mirror image (figure 4). These become massless precisely when
theD3-brane meets the orientifold 7-plane. This leads to two effects. The 7-plane breaks
the supersymmetry on theD3-brane (which was originallyN = 4) down toN = 2.
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Figure 4. D3-branes at an orientifold 7-plane.

The other effect is that out of four open string sectors on a pair ofD3-branes, one is
projected out, leading to an SU(2) gauge group rather than U(2).

The result is pureN = 2 supersymmetric gauge theory with SU(2) gauge group. This
means that the moduli space of that theory must be given by the geometric space encoun-
tered by theD3-brane. In fact, we have recovered the classical moduli spaceR 2=Z2 of this
theory!

What about quantum effects? In the presence of this orientifold plane, the type IIB
theory becomes a ‘type-I’ string theory with reduced supersymmetry. It was shown [14],
following the construction of ‘F -theory’ [15], that quantum effects split the orientifold
7-plane into two dynamical 7-branes.

These 7-branes do not allow a type IIB string to end on them. So there are no massless
‘W -bosons’ when theD3-brane touches them. However, they allow dyonic(p; q) strings
(bound states ofp fundamental strings andq D-strings) to end on them. Since the end point
of a fundamental string on aD3-brane is an electric charge, and the endpoint of aD-string
on aD3-brane is a magnetic charge, it must be true that the endpoint of a(p; q) string is a
dyon of electric chargep and magnetic chargeq. Hence when theD3-brane touches either
of theD7-branes, we get corresponding massless(p; q) dyons.

We have recovered an essential part of the Seiberg–Witten picture! The origin of the
Coulomb branch has split into two singularities where dyons become massless. There is
no point whereW -bosons become massless.

To complete the picture, we use the existence of ‘F -theory’ [15], which is a novel way
of compactifying the type IIB string where its coupling� s is allowed to vary over the
compact manifold. Since theD3-brane inherits this coupling, the gauge coupling� YM too
varies over thev-plane (wherev = x8 + ix9)) exactly as predicted by Seiberg and Witten.
The Seiberg–Witten torus, which was a mathematical artifact in their solution, is realised
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geometrically: it turns out to be the torus whose shape is parametrised by~' (the axion)
and' (the dilaton).

We can also introduceD7-branes parallel to the orientifold plane, this gives rise to
(massive) hypermultiplets coupled to the pureN = 2 gauge theory. In this way one
recovers the more general Seiberg–Witten theories incorporatingN = 2 matter multiplets,
and the Higgs branch appears as well.

One can use this stringy setup to predict new field-theoretic phenomena. The usual
Seiberg–Witten theories have a maximal flavour symmetry group SO(8), which is realised
in the case of four massless flavours. However, it was argued [16] that some configurations
of 7-branes give rise to gauge theories on the 3-brane withE 6; E7; E8 global symmetry.
This phenomenon (unlike the familiar SO(8) case) cannot occur at weak coupling. It is a
new non-perturbative field-theoretic effect predicted by string theory!

6. Large-Nc gauge theories and the AdS/CFT correspondence

D3-branes have some features that we have not yet explored. Complementary to their
description asD-objects (loci of open-string endpoints), they can also be understood as
solitonic classical solutions of type IIB string theory – more specifically, of its low-energy
limit, type IIB supergravity. Hence there is a spacetime metric describing the gravitational
field around a collection ofNc D3-branes:

ds2 = f(r)�
1

2 (�dt2 + (dx1)2 + (dx2)2 + (dx3)2)

+f(r)
1

2 ((dx4)2 + � � �+ (dx9)2); (27)

where

f(r) = 1 +
R4

r4
; r =

�
(x4)2 + : : :+ (x9)2

� 1
2 (28)

and

R � (gs(�
0)2Nc)

1

4 : (29)

This metric describes a massive object localised along three spatial directions. Some gen-
eralised gauge fields of the low-energy supergravity theory must also be excited to make
this a genuine classical solution. As a result, the solution describes a charged object. In
fact, it is supersymmetric (BPS), and has a mass–charge relationship analogous to that in
eq. (23), except that mass is replaced by mass per unit 3-volume or ‘brane tension’.

Something remarkable happens in the limit of largeR (which, from eq. (29) is the same
as largegsNc = g2YMNc). From the form off(r) above, this limit is equivalent to the
‘near-horizon’ limitr � R in which we probe the metric very close to the brane. In this
limit, we can make the replacement

f(r) = 1 +
R4

r4
!

R4

r4
(30)

and as a result the spacetime metric aroundNc D3-branes becomes:
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ds2 =
r2

R2
(�dt2 + (dx1)2 + (dx2)2 + (dx3)2)

+
R2

r2
(dr2 + r2(d
5)

2)

=

�
r2

R2
(�dt2 + (dx1)2 + (dx2)2 + (dx3)2) +R2dr

2

r2

�

+R2(d
5)
2: (31)

The factor in large braces is the metric of a(4+ 1)-dimensional space-time called ‘anti-de
Sitter’, and denoted AdS5, while the last term is the metric of a 5-sphere. Thus we have
shown that the near-horizon metric ofNc D3-branes is the space-time AdS5 � S5.

As Nc grows, the near-horizon region expands. In the limit of infiniteN c, the entire
spacetime (not just near the branes) is AdS5 � S5. Based on these facts, Maldacena [17]
made a novel conjecture. According to this, the following two descriptions ofD3-branes
for largeNc are equivalent:

(i) The description as the limit ofN = 4 supersymmetric gauge theory as(g 2YMNc)
becomes large,

(ii) The description as the nontrivial spacetime background AdS 5�S
5 of type IIB string

theory.
This is a duality between a gauge theory, and a theory of gravity and strings. It is remark-

able how the symmetries of the problem match up in the two descriptions. In the gravity
description, we have the symmetry groups SO(4,2) and SO(6), making up the isometries of
the maximally symmetric spaces AdS5 andS5 respectively. In the gauge theory descrip-
tion, SO(4; 2) is realised as the conformal symmetry group of3 + 1-dimensional gauge
theory, which includes the Poincar´e group. On the other hand, SO(6)� SU(4) is theR-
symmetry group ofN = 4 supersymmetric Yang–Mills theory.

If we are only interested in the leading behaviour in the limit of largeg 2YMNc, we can
really ignore string theory in favour of its low energy limit, type IIB supergravity. This is
because the massive stringy modes decouple in this limit.

Precise prescriptions have been given [18,19] to relate correlation functions inN = 4
gauge theory to computations in supergravity. This opens up the possibility of solving the
quantum gauge theory completely in the large-N c limit just using the classical Lagrangian
of supergravity!

Some of the remarkable results obtained in this direction concern the computation of
expectation values of Wilson loops [20,21], properties of baryons and domain walls [22],
and thermal properties and phase transitions in gauge theory [23]. The correspondence was
also extended to the case of lower supersymmetry:N = 2, N = 1, and evenN = 0 (no
supersymmetry) [24–26].

An interesting example of lower supersymmetry is a case withN = 1 supersymmetry
in four dimensions. This arises by placingNc D3-branes at the singular tip of a singular
noncompact manifold called a ‘conifold’. One finds in this case an interestingN = 1
supersymmetric field theory on theD3-branes, which exhibits a nontrivial flow in the in-
frared to a superconformal field theory [26]. A dual brane description of this was found
[27–29] which leads to a description of the field theory and its symmetries using strongly
coupled string theory or ‘M -theory’.
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7. Conclusions

String theory has found a new role: to help in ‘solving’ gauge theories non-perturbatively.
Such solutions range from a qualitative understanding of the theories, including their sym-
metries, to a detailed description of the moduli space in the same sense that Seiberg and
Witten initially achieved using only field theoretic techniques.

Due to a shortage of time, I could not discuss a fascinating approach to realising field
theories in terms of intersecting branes, the so-called ‘brane constructions’ [31,30]. These
provide much more general examples of the utility of string theory in understanding quan-
tum field theory.

Though such constructions exist for various different amounts of supersymmetry up to
the maximal case ofN = 4, it remains true that at present our understanding is best for
the most highly supersymmetric, and hence less interesting, gauge theories. It is impor-
tant to improve our understanding of theories withN = 1 supersymmetry, which is the
amount of supersymmetry in the MSSM (such theories are dynamically quite similar to
non-supersymmetric theories). Some partial progress has also been made towards directly
studying non-supersymmetric gauge theories using string theory. The day may not be far
off when the Standard Model will be most easily understood by representing it as a sector
of string theory.
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