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1. Introduction

Supersymmetric compactifications of type IIB string theory on spacetimes of the form

AdS5 ×X5 have yielded a number of interesting results about superconformal gauge the-

ory in four dimensions following the discovery[1] of the AdS/CFT correspondence. Here

the compact manifold X5 can be the sphere S5, or one of many possible “non-spherical

horizons” including spherical orbifolds and other Einstein spaces like the conifold base.

The presence of an AdS5 factor guarantees conformal invariance of the dual field

theory, while varying the X5 affects the spectrum of the field theory and in particular the

total number of supersymmetries. Recently a number of situations have been discussed

where instead one keeps X5 fixed (for example, to be S5) and chooses different noncompact

Einstein spaces in lieu of AdS5. Some examples of this are the five-dimensional Stiefel

manifold W4,2[2], spaces with a nontrivial H = dB[3,4] and orbifolds of AdSp[5,6,7,8].

The physical interpretation of all these spaces is not completely clear at present – for

example, some of the spaces discussed in [2,3,4] have singular behaviour at infinity leading

to boundaries of dimension less than 4.

Orbifolds of S5[9] are interesting because they allow us to design spacetimes that are

dual to a wide class of conformally invariant, supersymmetric field theories in 4 dimensions.

Some orbifolds of AdS5 have been interpreted as topological black holes[5] generalizing the

famous BTZ black hole in 3 dimensions[10], while other orbifolds represent cosmological

solutions[6]1. A particular supersymmetric AdS5 orbifold was discussed in Ref.[8] where

it was proposed to be dual to a 3-brane field theory with a pp-wave propagating on it.

Hence in this example one finds a type IIB supergravity background that is dual to a

3-brane worldvolume theory, not in its ground state but in a BPS excited state. This is

an intriguing direction in which to generalize the AdS/CFT correspondence.

The purpose of this note is to examine conditions under which orbifolds of AdS5 (with

or without fixed points) preserve some supersymmetry. The analogous conditions for S5

have been analyzed in some depth in Refs.[11,12]. One key result that helped in that

classification was a theorem relating Killing spinors on Einstein 5-manifolds to parallel

spinors on a 6d cone above them. However, one could also reproduce many of those

results by directly studying the transformation properties of Killing spinors on S5 under

the orbifolding action.

1 Much of the previous work on AdS orbifolds deals with non-supersymmetric cases, and hence

our discussion below will not be closely related to it.
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In what follows, we construct Killing spinors on AdS5 in three different coordinate

systems and examine their behaviour under various possible orbifolding actions. This en-

ables us to construct a number of supersymmetric orbifolds, including some known ones

and some that are apparently new. As we will see, different orbifolds can be conveniently

studied in different coordinates systems on AdS5. A complete classification of orbifolds of

AdS5, on the lines of Refs.[11,12], would be interesting to attempt. This would perhaps fol-

low if one could prove a theorem relating Killing spinors on a (non-compact) 5-dimensional

Einstein space to spinors on a “cone” over it with two timelike directions.

We also compute Killing spinors for W4,2 and discuss some supersymmetric orbifolds

of this space. The physical meaning of this space and its relevance to the AdS/CFT

correspondence are not very clear, and the same holds for the AdS orbifolds we consider

except in a few cases. We leave the detailed analysis of this question, along with the study

of the global structure of these orbifold spacetimes, for the future.

Like the cases discussed in Refs.[8,2], the orbifolds discussed here break the SO(4, 2)

invariance of AdS5 down to subgroups, while preserving the S5 factor and hence the SO(6)

symmetry associated to R-symmetry of the boundary CFT. One can of course combine

the orbifolds discussed here with the ones proposed in Ref.[9] to get compactifications with

still lower symmetry and supersymmetry.

2. Killing Spinors on AdS5

AdS5 spacetime can be described as a hyperboloid in a 6-dimensional spacetime

with 2 timelike directions. Labelling the coordinates of this ambient spacetime as

X−1, X0, X1, . . .X4, the metric is

ds2 = −(dX−1)
2 − (dX0)

2 + (dX1)
2 + . . .+ (dX4)

2 (2.1)

and the equation of the hyperboloid is:

−1 = −(X−1)
2 − (X0)

2 + (X1)
2 + (X2)

2 + (X3)
2 + (X4)

2 (2.2)

The metric on AdS5 is the one induced from the ambient space.

We will find it convenient to work in three different sets of coordinates.
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2.1. Light-Cone Type Coordinates

These consist of two pairs of lightlike coordinates and one complex coordinate. It is

defined by

z±1 = X0 ±X1, z±2 = X2 ±X−1, w = (X3 + iX4) (2.3)

and the hyperboloid is

−1 = −z+
1 z

−
1 + z+

2 z
−
2 + ww (2.4)

For this set of coordinates, it is convenient to choose an explicit basis for the Gamma-

matrices as:

Γ1 = σ2 ⊗ 1, Γ2 = iσ3 ⊗ σ1, Γ3 = σ3 ⊗ σ2, Γ4 = σ3 ⊗ σ3, Γ5 = σ1 ⊗ 1 (2.5)

Note that (Γ2)
2 = −1, while the other Γ-matrices square to +1.

From the light-cone type coordinates we go to a set of five independent coordinates

θ1, θ2, α, β, δ where 0 ≤ θ2 ≤ π, 0 ≤ β ≤ 2π and α,δ and θ1 are non-compact. These

coordinates are defined by:

z±1 = cosh
θ1
2
e±δ

z±2 = sinh
θ1
2

cos
θ2
2
e±α

w = sinh
θ1
2

sin
θ2
2
eiβ

(2.6)

By abuse of notation we will refer to these also as light-cone type coordinates, though they

are actually an angular parametrization of those coordinates which solves the hyperboloid

constraint. The metric on AdS5 in these coordinates is:

ds2 = − sinh2 θ1
2

cos2
θ2
2
dα2 + cosh2 θ1

2
dδ2 +

1

4
dθ2

1 + sinh2 θ1
2

(
1

4
dθ2

2 + sin2 θ2
2
dβ2) (2.7)

For fixed θ2 and β, the metric is proportional to that of AdS3.

For this case, we have the vielbeins:

e1 =
1

2
sinh

θ1
2
dθ2 e2 = sinh

θ1
2

cos
θ2
2
dα

e3 = cosh
θ1
2
dδ e4 =

1

2
dθ1 e5 = sinh

θ1
2

sin
θ2
2
dβ

(2.8)
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and the spin connections:

ω12 = sin
θ2
2
dα ω14 =

1

2
cosh

θ1
2
dθ2 ω15 = − cos

θ2
2
dβ

ω24 = cos
θ2
2

cosh
θ1
2
dα ω34 = sinh

θ1
2
dδ ω45 = − sin

θ2
2

cosh
θ1
2
dβ

(2.9)

Note that the tangent-space metric has η22 = −1 while the other components are +1.

We are interested in studying the Killing spinors on AdS5 in this coordinate basis.

The relevant equation is:

(∂µ +
1

4
ω
ab
µ Γab −

1

2
e
a
µΓa)ǫ = 0 (2.10)

It is fairly straightforward to compute the solutions to this equation, which are given by:

ǫ = e
1
4Γ4θ1e−

1
4Γ14θ2e−

1
2Γ24αe

1
2Γ3δe

1
2Γ15βǫ0 (2.11)

where ǫ0 is an arbitrary constant spinor.

2.2. Complex Coordinates

Another coordinate system will turn out to be useful to investigate a different class of

orbifolds. These will be called complex coordinates – they are actually complex coordinates

of the ambient 6-dimensional spacetime, a complex time and two complex space dimensions.

Thus we define:

u = X−1 + iX0, v = X1 + iX2, w = (X3 + iX4) (2.12)

in terms of which the hyperboloid is

−1 = −uu+ vv + ww (2.13)

The coordinate w is the same as was used for the light-cone type coordinates. This time

it is convenient to go to five independent coordinates θ1, θ2, α
′, β, δ′ where 0 ≤ θ2 ≤ π,

0 ≤ β, α′, δ′ ≤ 2π and θ1 is non-compact. These coordinates are defined by:

u = cosh
θ1
2
eiδ

′

v = sinh
θ1
2

cos
θ2
2
eiα

′

w = sinh
θ1
2

sin
θ2
2
eiβ

(2.14)
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Again, although these angles parametrize the complex coordinates in a way which solves

the hyperboloid constraint, we will refer to the angles themselves as complex coordinates.

Note that these coordinates can be obtained from the previous ones by the formal

replacement α = iα′ and δ = iδ′, which interchanges one space with one time direction.

This replacement in Eq.(2.7) also gives us the metric in these coordinates. It is evident

that the vielbeins are formally the same as before, though the tangent-space metric now

has η33 = −1. Careful inspection shows that the spin connections also turn out to be

exactly the same as in Eq.(2.9), as the sign changes introduced by the interchange of a

space and a time direction eventually cancel out. The change of tangent space metric

necessitates a slightly different basis of Γ-matrices. We multiply Γ2 of Eq.(2.5) by −i and

Γ3 by i. Hence the new set of Γ-matrices (which we label Γ′ to avoid confusion with the

previous set) becomes:

Γ′
1 = σ2 ⊗ 1, Γ′

2 = σ3 ⊗ σ1, Γ′
3 = iσ3 ⊗ σ2, Γ′

4 = σ3 ⊗ σ3, Γ′
5 = σ1 ⊗ 1 (2.15)

This time, (Γ′
3)

2 = −1 while the others square to +1. The advantage of this choice is that

we find (formally) the same Killing spinor as in Eq.(2.11), but now with the Γ′-matrices:

ǫ = e
1
4Γ′

4θ1e−
1
4Γ′

14θ2e−
1
2Γ′

24αe
1
2Γ′

3δe
1
2Γ′

15βǫ0 (2.16)

2.3. Horospherical Coordinates

Let us finally recall[13] the Killing spinors in horospherical coordinates, which consist

of five independent real coordinates, r, x1, x2, x3, x4 in terms of which the metric is:

ds2 = (dr)2 + e2r(−(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2) (2.17)

Choosing the Γ matrices as

Γ1 = iσ3 ⊗ σ2, Γ2 = σ3 ⊗ σ1, Γr = σ3 ⊗ σ3, Γ3 = σ1 ⊗ 1, Γ4 = σ2 ⊗ 1 (2.18)
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the Killing spinor is found to be[13]:

ǫ = e
1
2 rΓr(1 +

1

2
xαΓα(1 − Γr))ǫ0

=





















e
r
2 (ǫ

(1)
0 + x+ǫ

(2)
0 + (x3 − ix4)ǫ

(3)
0 )

e−
r
2 ǫ

(2)
0

e−
r
2 ǫ

(3)
0

e
r
2 (ǫ

(4)
0 + x−ǫ

(3)
0 + (x3 + ix4)ǫ

(2)
0 )





















(2.19)

where α = 1, 2, 3, 4, x+ = x1 + x2, x− = x1 − x2 and

ǫ0 =











ǫ
(1)
0

ǫ
(2)
0

ǫ
(3)
0

ǫ
(4)
0











(2.20)

The transformation between these horospherical coordinates and the light-cone type coor-

dinates z±1 , z
±
2 , w is: is

er = z+
2 , x+ =

z+
1

z+
2

, x− =
z−1
z+
2

, x3 =
(w + w)

2z+
2

, x4 =
(w − w)

2iz+
2

, (2.21)

3. Orbifolds of AdS5

3.1. Half-supersymmetric Orbifolds

Now we will examine the orbifolding actions which are natural in the various coor-

dinates. In the light-cone type coordinates, one natural action follows from the following

transformation:[8]:

z±1 → e±2π/kz±1 , z±2 → e±2π/kz±2 (3.1)

which can be expressed as a simple translation:

δ → δ +
2π

k
, α→ α+

2π

k
(3.2)
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From Eq.(2.4), this clearly has no fixed points, since the hyperboloid does not pass through

z±1 = z±2 = 0. In order for the Killing spinor ǫ to be invariant under the above transfor-

mation we must require that the constant spinor ǫ0 satisfy

e
π
k
(−Γ24+Γ3)ǫ0 = ǫ0 (3.3)

which means the matrix (−Γ24 + Γ3) must annihilate ǫ0. In the basis chosen in Eq.(2.5),

we have:

−Γ24 + Γ3 = 2

(

0 0
0 σ2

)

(3.4)

and hence the Killing spinors that are preserved, in this basis, are the ones for which

ǫ0 =









ǫ
(1)
0

ǫ
(2)
0

0
0









(3.5)

This in particular gives a direct proof that the orbifold discussed in Ref.[8] preserves half

the supersymmetries.

The above orbifold action is generated by an SU(1, 1) matrix in the full isometry group

SO(4, 2) of AdS5, hence the surviving symmetry group is the commutant of SU(1, 1) in

SO(4, 2) which is SU(1, 1) × U(1). This is analogous to the fact that the simplest half-

supersymmetric orbifold of S5 (corresponding to D3-branes at an ALE singularity) has an

R-symmetry group SU(2) × U(1).

Turning now to the complex coordinates, it is natural to consider orbifold actions of

the type

u→ γdu, v → γav, w → γbw (3.6)

where γ = exp(2πi/k) and a, b, d are some integers. These are quite analogous to corre-

sponding orbifolds of S5. The result is also analogous: the orbifolding action above leaves

the Killing spinor invariant if

(−aΓ′
24 + dΓ′

3 + bΓ′
15) ǫ0 = 0 (3.7)

The above matrix has eigenvalues (a+ b− d), −(a+ b+ d), (a− b+ d) and −(a− b− d).

If one of a, b, d is zero then we have two vanishing eigenvalues and 1
2 -supersymmetry.
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Note, however, that because of the signature of the spacetime, all the 1
2 -supersymmetric

cases are not equivalent. The case with d = 0 has a circle of fixed points uu = 1, while the

cases with a = 0 or b = 0 have no fixed points and are equivalent to each other.

In the case d = 0, the orbifold generator lies in an SU(2) subgroup of SO(4) ⊂ SO(4, 2)

hence the symmetry of the quotient space is SU(2) × U(1). On the other hand, for

a = 0 or b = 0 the orbifold is generated by an element in an SU(1, 1) subgroup of

SO(2, 2) ⊂ SO(4, 2) and the surviving symmetry is SU(1, 1)× U(1).

Next, it is useful to examine the orbifold described in Eq.(3.1), in horospherical coor-

dinates. The action becomes:

r → r + a, x+ → x+, x− → e−2ax−, x3 → e−ax3, x4 → e−ax4, (3.8)

Hence the Killing spinor transforms as

ǫ→ e−
1
2a(1⊗σ3)





















e
(r+a)

2 (ǫ
(1)
0 + x+ǫ

(2)
0 + e−a(x3 − ix4)ǫ

(3)
0 )

e−
(r+a)

2 ǫ
(2)
0

e−
(r+a)

2 ǫ
(3)
0

e
(r+a)

2 (ǫ
(4)
0 + e−2ax−ǫ

(3)
0 + e−a(x3 + ix4)ǫ

(2)
0 )





















(3.9)

Thus the Killing spinors that are preserved by this orbifold, in this basis, are the ones for

which

ǫ0 =









ǫ
(1)
0

ǫ
(2)
0

0
0









(3.10)

Another apparently trivial kind of 1
2 -supersymmetric orbifold is apparent from

Eqn.(2.19). Suppose we choose ǫ
(2)
0 = ǫ

(3)
0 = 0. Then the Killing spinor becomes in-

dependent of x±, x3, x4. As a result, periodic identifications in these coordinates preserve

the Killing spinor. This is essentially what was noted in Ref.[13], and corresponds to the

fact that the identification of these coordinates breaks conformal invariance by introduc-

ing a scale, hence the conformal part of the superconformal invariance goes away. Thus

such orbifolds preserve half the supersymmetries. (One can further deform the space in

the x3, x4 directions and add a nontrivial B-field, preserving the remaining supersymme-

try, as was done in Ref.[3,4]. In this case one does not expect the deformed manifold to

have a Killing spinor, since the field strength dB also contributes to the supersymmetry

variation.)
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3.2. One-fourth Supersymmetry

We have already considered orbifold actions, in complex coordinates, of the general

type

u→ γdu, v → γav, w → γbw (3.11)

where γ = exp(2πi/k) and a, b, d are some integers. We saw that the relevant matrix acting

on Killing spinors has eigenvalues (a+ b− d), −(a+ b+ d), (a− b+ d) and −(a− b− d).

Hence if all of a, b, d are nonzero then at most one of these eigenvalues can be zero and in

that case we have a 1
4
-supersymmetric orbifold. For the 1

4
supersymmetric cases we have

no fixed points for the orbifold action.

The orbifold generator lies in an SU(2, 1) subgroup of SO(4, 2), hence it preserves

only a U(1) symmetry. This is the analogue of the U(1) symmetry preserved by 1
4 -

supersymmetric orbifolds of S5, which is realized as a U(1) R-symmetry in the boundary

theory.

Another class of 1
4 -supersymmetric AdS5 orbifolds comes from quotienting by a pair

of transformations each of which preserves half the supersymmetry. If (k, k′) are co-prime

there are two inequivalent cases:

u→ γu, v → γ−1v

v → γ′v, w → γ′−1w
(3.12)

and
u→ γu, v → γ−1v

u→ γ′u, w → γ′−1w
(3.13)

where γk = (γ′)k
′

= 1.

Another interesting 1
4 -supersymmetric orbifold arises by combining the periodic iden-

tification in x2, x3, x4 in the horospherical coordinates, with the orbifolding action of

Eq.(3.8). Here the constant Killing spinor satisfies ǫ
(2)
0 = ǫ

(3)
0 = ǫ

(4)
0 = 0.

We have encountered a number of supersymmetric orbifolds, but it turns out that each

of them is natural in a certain coordinate system and not so easy to describe in another.

Thus, it becomes hard to combine the different actions discussed in the previous section

and find more general orbifolds. For example, one of the simplest orbifolds described in

complex coordinates in Eq.(3.6) arises by choosing k = 2, d = a = 1, b = 0. This just

corresponds to the reflection u→ −u, v → −v. In terms of the light cone type coordinates

9



this means z±i → −z±i , which cannot be carried out using the independent coordinates

defined in Eq.(2.6), which only cover the region z±1 > 0.

In contrast, the orbifold corresponding to k = 2, a = b = 1, d = 0 can be realized in

the light cone type coordinates. In this case we have v → −v, w → −w. This corresponds

to the action

z+
1 → z−1 , z+

2 → −z−2 , w → −w (3.14)

which in terms of the independent coordinates in Eq.(2.6) is just

δ → −δ, α→ −α, θ1 → −θ1 (3.15)

This acts on the Killing spinor in Eq.(2.11) as follows. In our basis, this Killing spinor is

explicitly given by

ǫ =



















































cos θ24 e
θ1
4

{

cosh α−δ
2 ǫ

(1)
0 + i sinh α−δ

2 ǫ
(2)
0

}

e−i
β

2

−i sin θ2
4
e

θ1
4

{

cosh α+δ
2
ǫ
(3)
0 + i sinh α+δ

2
ǫ
(4)
0

}

ei
β

2

cos θ2
4
e−

θ1
4

{

cosh α−δ
2
ǫ
(2)
0 − i sinh α−δ

2
ǫ
(1)
0

}

e−i
β

2

+i sin θ2
4 e

− θ1
4

{

cosh α+δ
2 ǫ

(4)
0 − i sinh α+δ

2 ǫ
(3)
0

}

ei
β

2

cos θ2
4
e−

θ1
4

{

cosh α+δ
2
ǫ
(3)
0 + i sinh α+δ

2
ǫ
(4)
0

}

ei
β

2

−i sin θ2
4 e

− θ1
4

{

cosh α−δ
2 ǫ

(1)
0 + i sinh α−δ

2 ǫ
(2)
0

}

e−i
β

2

cos θ24 e
θ1
4

{

cosh α+δ
2 ǫ

(4)
0 − i sinh α+δ

2 ǫ
(3)
0

}

ei
β

2

+i sin θ2
4 e

θ1
4

{

cosh α−δ
2 ǫ

(2)
0 − i sinh α−δ

2 ǫ
(1)
0

}

e−i
β

2



















































(3.16)

Now one finds that, setting ǫ
(1)
0 = ǫ

(2)
0 and ǫ

(3)
0 = −ǫ(4)0 , the expression for ǫ above goes

over to ǫ′ satisfying

ǫ′ =

(

σ1 0
0 −σ1

)

ǫ = (σ3 ⊗ σ1)ǫ (3.17)

This coincides with the Lorentz transformation of ǫ under the action in Eq.(3.15)2

2 The action in Eq.(3.15) inverts the sign of the vielbeins e1, e3, e4, e5, hence it must be repre-

sented on spinors by a matrix P which anticommutes with Γ1, Γ3, Γ4, Γ5. Thus P is proportional

to Γ2 = iσ3 ⊗ σ1. Since P 2 = 1, it follows that P = σ3 ⊗ σ1.
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Thus we see (as expected from the analysis of the same orbifold in complex coordi-

nates) that this orbifold preserves half the supersymmetries. But now that we know the

preserved Killing spinors in the basis appropriate to light-cone coordinates, we can combine

this orbifold with the orbifolding along lightlike directions defined in Eq.(3.1) and deter-

mine if there is any residual supersymmetry. Indeed we have seen that Eq.(3.1) preserves

Killing spinors of the form Eq.(2.11) where the constant spinor ǫ0 has the form:

ǫ0 =









ǫ
(1)
0

ǫ
(2)
0

0
0









(3.18)

while Eq.(3.15) preserves Killing spinors where ǫ0 has the form

ǫ0 =











ǫ
(1)
0

ǫ
(1)
0

ǫ
(3)
0

−ǫ(3)0











(3.19)

Choosing now ǫ
(1)
0 = ǫ

(2)
0 in the first of these equations and ǫ

(3)
0 = 0 in the second, we

find that both the transformations together preserve 1
4

of the supersymmetry, namely the

Killing spinor for which

ǫ0 =







1
1
0
0






(3.20)

This is a Z×Z2 orbifold of AdS5. It is much more difficult, if not impossible, to express the

Zk orbifold given in complex coordinates by v → γv, w → γ−1w, γk = 1 in terms of light-

cone coordinates. Luckily it is not necessary to do this. These orbifolds preserve the same

Killing spinors for all k. Since we have shown that for k = 2 there is a 1
4 -supersymmetric

Z × Z2 orbifold obtained by combining with the action Eq.(3.1), it follows that there is

also a Z × Zk orbifold with 1
4 -supersymmetry for all k.

4. The Stiefel Manifold W4,2

Although not directly related to orbifolds of AdS5, the noncompact Stiefel manifold

W4,2[2] is an interesting 1
4 -supersymmetric coset spacetime. We will speculate later on its
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possible relation with AdS5 orbifolds. In the present section we will compute its single

Killing spinor and comment on orbifolds of this spacetime.

This case corresponds to an analytic continuation of the compact manifold variously

denoted T1,1 or V4,2, which is the base of the conifold geometry and hence appears in

the study of D3-branes at conifolds[14]. It can be thought of as the coset space (AdS3 ×
AdS3)/U(1), and also as a (timelike) U(1) fibration above Euclidean AdS2 × AdS2. The

natural coordinates for W4,2 are (θ1, φ1, θ2, φ2, ψ) where 0 ≤ ψ < 4π, 0 ≤ φi < 2π while θi

are noncompact. In terms of these, the metric of W4,2 is

ds2 = −
1

9
(dψ + cosh θ1 dφ1 + cosh θ2 dφ2)

2

+
1

6
(dθ2

1 + sinh2 θ1 dφ
2
1) +

1

6
(dθ2

2 + sinh2 θ2 dφ
2
2)

(4.1)

which explicitly exhibits the U(1) fibration, with ψ being the fibre coordinate.

This spacetime breaks the maximal SO(4, 2) isometry to SO(2, 2) × SO(2), much as

its compact version breaks the maximal SO(6) isometry of S5 to SO(4) × SO(2). From

the metric one can read off the vielbeins:

e1 =
1√
6
dθ1 e2 =

1√
6

sinh θ1 dφ1

e3 =
1√
6
dθ2 e4 =

1√
6

sinh θ2 dφ2

e5 =
1

3
(dψ + cosh θ1 dφ1 + cosh θ2 dφ2)

(4.2)

and compute the spin connections:

ω12 = −
2

3
cosh θ1 dφ1 +

1

3
dψ +

1

3
cosh θ2 dφ2

ω13 = ω14 = ω23 = ω24 = 0

ω34 = −
2

3
cosh θ2 dφ2 +

1

3
dψ +

1

3
cosh θ1 dφ1

ω15 = −
1√
6

sinh θ1 dφ1 ω25 =
1√
6
dθ1

ω35 = −
1√
6

sinh θ2 dφ2 ω45 =
1√
6
dθ2

(4.3)

A convenient basis for the Γ-matrices this time is

Γ1 = σ1 ⊗ 1, Γ2 = σ2 ⊗ 1, Γ3 = σ3 ⊗ σ1, Γ4 = σ3 ⊗ σ2, Γ5 = iσ3 ⊗ σ3 (4.4)
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In this basis, the Killing spinor equations become

∂

∂θ1







ǫ(1)

ǫ(2)

ǫ(3)

ǫ(4)






=







0 0 1√
6

0
0 0 0 0
1√
6

0 0 0
0 0 0 0













ǫ(1)

ǫ(2)

ǫ(3)

ǫ(4)






(4.5)

∂

∂φ1







ǫ(1)

ǫ(2)

ǫ(3)

ǫ(4)






=









i
3 cosh θ1 0 i√

6
sinh θ1 0

0 i
3

cosh θ1 0 0

− i√
6

sinh θ1 0 −2i
3 cosh θ1 0

0 0 0 0















ǫ(1)

ǫ(2)

ǫ(3)

ǫ(4)






(4.6)

∂

∂θ2







ǫ(1)

ǫ(2)

ǫ(3)

ǫ(4)






=









0 1√
6

0 0
1√
6

0 0 0
0 0 0 0
0 0 0 0















ǫ(1)

ǫ(2)

ǫ(3)

ǫ(4)






(4.7)

∂

∂φ2







ǫ(1)

ǫ(2)

ǫ(3)

ǫ(4)






=









i
3

cosh θ2
i√
6

sinh θ2 0 0

− i√
6

sinh θ2 −2i
3 cosh θ2 0 0

0 0 i
3

cosh θ2 0
0 0 0 0















ǫ(1)

ǫ(2)

ǫ(3)

ǫ(4)






(4.8)

∂

∂ψ







ǫ(1)

ǫ(2)

ǫ(3)

ǫ(4)






= −

i

6







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3













ǫ(1)

ǫ(2)

ǫ(3)

ǫ(4)






(4.9)

A remarkable simplification takes place on observing that a spinor with ǫ(1) = ǫ(2) = ǫ(3) =

0 automatically satisfies the first four equations. Inserting this form in the last equation,

we find
∂

∂ψ
ǫ(4) =

i

2
ǫ(4) (4.10)

from which the corresponding Killing spinor is

ǫ = e
i
2ψ







0
0
0
1






(4.11)

It is easy to see that there are no other solutions to the coupled set of equations. For each

of the components ǫ(1), ǫ(2), ǫ(3), there is an irrational factor
√

6 in one or other equation,

which implies that we can never get a solution that is single-valued in the angles φ1, φ2.

Thus, as expected, there is a single Killing spinor for this manifold, proving explic-

itly that it has 1
4 -supersymmetry. The Killing spinor has the very simple form given
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in Eq.(4.11), and is quite similar to a solution obtained in Ref.[15] in the context of 7-

dimensional Einstein spaces.

Because this Killing spinor depends only on ψ, any orbifold of W4,2 by an action under

which spinors transform trivially (such as a translation in the angles) will preserve it. One

example is provided by the Zk × Zk′ transformation:

θ1 → θ1 +
2π

k
, θ2 → θ2 +

2π

k′
(4.12)

This introduces conical singularities into the Euclidean AdS2 factors that make up the

base of W4,2, but as usual one expects that string propagation on this space is smooth.

5. Discussion

We have constructed Kiling spinors in various coordinate systems and thereby discov-

ered a number of supersymmetric orbifolds of AdS5. One should attempt to understand

the global properties and causal structure of such spacetimes. Some of them are already

known to be topological black holes.

One interesting proposal emerges from our discussion. There is an AdS5/Z2 orbifold

with a circle of fixed points, very similar to the S5/Z2 orbifold obtained by placing D3-

branes at a Z2 ALE singularity. Both are cases of 1
2 -supersymmetry. Now for the latter,

it is known[14] that blowing up the circle of fixed points is a relevant deformation which

causes the theory to flow to the 1
4
-supersymmetric theory obtained by replacing S5/Z2

with the Stiefel manifold V4,2. The corresponding conformal theories flow from N = 2 to

N = 1 and can be obtained very simply by rotating branes in a brane construction[16,17].

One could perhaps expect an analogous blowup of our AdS5/Z2 orbifold to lead to the

non-compact Stiefel manifold W4,2 discussed in Ref.[2]. The physics of this would be quite

different from the compact case and possibly very interesting3.

In comparing our results with those of Ref.[8], we find that we have reproduced the

Z-orbifold discussed there and explicitly shown that it is 1
2
-supersymmetric, which is im-

portant for the identification proposed with pp-waves on a brane. However, it is not clear

if we have found the Z × Z orbifold that also finds brief mention in their work. This is

supposed to be dual to a 3-brane with a pp-wave together with a D-instanton, and one

would expect it to be 1
4 -supersymmetric. We have found two 1

4 -supersymmetric orbifolds

3 This proposal arose in discussions with Debashis Ghoshal.
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that include the action in Eq.(3.1). One is found by adjoining the Z action which com-

pactifies one or more of the spatial coordinates in the brane, as discussed below Eq.(3.13).

The other is obtained by adjoining a Zk action, as discussed after Eq.(3.20). In neither of

these cases does the second orbifold group appear symmetrically with the first, while the

authors of Ref.[8] seem to suggest that such an example should exist. We hope to return

to this point in the future, along with a study of the physical interpretation, in terms of

the brane worldvolume theory, for the various orbifolds we have constructed here.

The compactification of type IIB string theory on AdS5 × S5 possesses a remarkable

“symmetry” between the two factors. Geometrically, the only difference is that while S5

solves a quadratic equation in R6, AdS5 solves a quadratic equation in R4,2. This “sym-

metry” is not reflected in the emergence of this background as the near-horizon geometry

of D3-branes, where R6 has a physical interpretation as the flat space transverse to the

3-branes, but R4,2 does not appear. One may speculate that such a symmetry may be

visible or partly visible in F-theory, which can sometimes be given a 12-dimensional inter-

pretation. This philosophy has been partially explored in Ref.[8] using earlier observations

in Ref.[18]. It would be interesting to find out whether such a symmetry can be exploited

to systematically classify the supersymmetric orbifolds of AdS5.
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