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STATEMENT OF THE PROBLEM

WE shall adopt the following stochastic model to represent the well-known

phenomenon of straggling of the range of fast particles in passing through
matter.

Considering only one-dimensional penetration of matter by fast particles

we assume that a particle of energy E at 7 (¢ being the thickness of matter
traversed) loses energy in two ways :—

1. Deterministically by an amount B (E) dr in passing through matter
of thickness df. Such a loss is attributed to ionisation of the atoms of matter.

2. By the random process of radiation of photons (Bremmstrahlung).
A particle of energy E drops to an energy interval (E’, E’ + 4E’) by radiating

a photon of energy E — E’ in passing through matter of thickness df with
probability R (E’| E) dE’ dr.

'We now define absorption in the following manner. If a particle drops
to an energy below a critical energy E. between ¢ and ¢ -+ df, we say
it is absorbed and its range lies between 7 and 7 + dt. Our problem is to

determine the probability distribution of the range, given the initial energy
(i.e., at t = 0) of the particle.

ForMAL SOLUTION OF THE PROBLEM

The first step is to write the stochastic equation for the probability
7 (E| Ey; t) dE of the energy of the particle having a value between E and
E +dE at ¢, given that the initial energy was E,. This has been already

done by the authors in an earlier contribution to these Proceedings (1953).
The equation is

. E Eq
DW(Elbflo: D) — _ #(E|Eqy; ©) | R(E'| E) dE'+ |7 (E'| Eo; 1) R (E| E') dE'.

(1)

* Read at the Annual Meeting of the Indian Academy of Sciences at Belgaum in December 1954.
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Using our definition of absorption we find that the probability that the
particle is absorbed within a distance ¢ can be formally written as

P(E; ) = [7(E| Baj dE = 1 = ['n (B] Ey; 1) dE @)

and it immediately follows that the probability that the particle is absorbed
between ¢ and ¢ 4 drf is bg(}%cl{) dt i.e., ?E—(gc—’—t) is the probability fre-
quency function of the range of the particle.

To proceed further and obtain the explicit solution of equation (1) and
to determine the distribution of the range, it is necessary to make simplifying
assumptions regarding the form of the cross-section R (E’| E) and of the
function B (E). In the case when R (E'| E) dE’ can be expressed as R (g) dg,
(¢ = E’|E) and B (E) is of the form BEF, equation (1) has been reduced to a
difference-differential equation by the application of the Mellin’s transform
technique. However the sclution of the transform equation is still difficult
and therefore the authors made the further assumptions that R (¢")=28 (¢'—¢),
8 being the Dirac delta function, and B(E) = 8, a constant for E > 0 and
B(E)=0 for E=0. p(s; t), the Mellin’s transform of = satisfies the
equation

WED (s 0+ 0@ps 0+ BE-Dpe—10 ()

where

a=[!R(q)dq, w(s)=[oR(q)¢* dqg

The solution of this equation was obtained earlier by the authors by an indirect
procedure. The equation with a negative sign for the last term on the right
was first solved, since in this case the stochastic variate cannot assume the
value zero and therefore no complication due to the delta function singularity
at zero energy arises. This result was used to obtain the solution for equa-
tion (1) (see Ramakrishnan and Mathews, 1953). However Srinivasan*#*
has shown recently that the solution of the integro-differential equation for
= may be obtained directly if a Laplace transformation instead of Mellin’s
is employed, though it would appear to be unsuitable at first sight. The
solution for = is

7 (E| Bo; 1) = X mn (E| Eq; 1) 4)

n={

“# Private communication. A briel outline of his derivation is given in the Appendix.
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where
7o (E| Eq; £) = ™8 (E — Eq + 1)
and
n _at m—1
(Bl Bo3 )=— "3, E | A (Eog™ — B — 195",
k=0
n=l, E>0, tg™ < Ey" — E < tg™ . (5)

We have put 8 equal to unity without loss of generality by suitably choosing
the unit of E and Ay"is given by

Ayt =1I(g" — g™ (6)

Since we have assumed f to be independent of E for E > 0, it is clear
from the very nature of the problem that there is a finite probability of the
particle having an energy exactly equal to zero [i.e., there exists a delta function
singularity for = (E| Ey; £) at E = 0], and this is the probability that the
particle is absorbed, provided we consider absorption to take place as soon
as the energy is reduced to zerof. This probability has been shown to be

P©O;1 = 3P, n; 0),

P, 0;: 1) = et H (t — E,)

~1 410 —
PO, m; 0 ="" ¥ AR (" Eolt—gb", (" < Eod™ < 147
k=0

N
where o also has been put equal to unity by a proper choice of the unit of 7.

Numerical evaluation of this expression has been done for various
values of the initial energy E,, with ¢ = %. In the energy loss of fast electrons,
the fraction of energy lost by the electron in each radiative collision is usually
between 1 and % (see for example, Heitler, 1943). So the value we have
chosen corresponds fairly to physical facts. The results are tabulated below
and also illustrated in a graph.

t It is necessary to assume a non-zero value for E, if the mechanism of energy loss is such that
the energy of the particle approaches zero only asymptotically, for example when g(E) is of the form
gEE, k> 0. But in our model the constant rate of loss causes the energy to drop to zero within a
distance Eg/8, and so the range can be defined as the distance in which the energy drops to zero.
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TaBLE I
P (0, )
™S EO
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o |
1 024 -003
2 381 139 -038  -005  -00I
3 814 -489 232 066  -021  -00l
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’i‘ 0'1 /mf
= gl
3.
[
o
37-
o
.| g
S 4
! Ly
03-
.2 -
.1 5
o 1 2 3 4 5

Fig. 1. P(0; n, the probability that the particle has been absorbed between 0 and 7.
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Fig. 2. OP(0; p)/d:, the probability frequency function of the range ¢
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Fig. 3. The probability frequency function of the random variable +/E,, ¢ being the range.
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The probability frequency function of the range, as mentioned before,
is ?P/dt and the moments of the range R of the particle are given by
EO
e{R"}:aftT%?dt, r=1,2 ... ®)
We have not computed any of the moments, as the distribution itself is
known.§ The graph of dP/dz, obtained by graphical differentiation of the
P — ¢t curves is given to show the form of the range distribution. If dP/d¢ is
directly plotted against 7, the curve for a given initial value of the energy
E, extends from ¢ =0 to ¢t = E,, and the curves for the larger values of E,
appear to be flatter than those for small values. But a plot of the distribution
of 1/E, gives a much better idea of the sharpness of the distribution. It is
clearly seen that the distribution rapidly becomes sharp for increasing values
of the initial energy E,. One feature that is easily noticed from the curves
is that the mean range R does not increase in proportion to the energy. In
fact, R/E, decreases as E, increases.

JANOSSY’S SIMPLE ALTERNATIVE STOCHASTIC MODEL OF STRAGGLING

It is interesting to compare our model with a simpler alternative model
discussed by Janossy (1950) in his book on Cosmic Rays.

A particle undergoes a collision with probability adf in traversing material
of thickness df and loses energy of magnitude e per collision. Thus if E,
is its initial energy, it is absorbed if it undergoes N collisions where N is
an integer such that (N — 1) e < E;<< Ne. The probability that the Nth
collision occurs between ¢ and ¢ 4 dt is given by the Poisson law.

P(N; dt =t DT oy ©)

and this is the distribution of the range. It is interesting to note that for very
large N the distribution tends to a Gaussian one with respect to 7 in the
neighbourhood of the maximum which is very sharp and occurs at t=(N—1)/a.

Normally, when we speak of a Gaussian approximation to a Poisson
distribution we mean that e-% (a#)¥/N ! assumes a Gaussian form with res-
pect to N if af is very large. Here in (9) we are speaking of a distribution

§ Usually in stochastic problems the cxpressions for the first few moments are easily obtained
in simple form, while the frequency function itself may be very complicated. In such cases, the
moments are computed to get an approximate idea of the distribution. But the present case is
among the few where the expressions for the moments are no simpler than the expression for the
frequency function. :
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with respect to ¢ and hence it seems worthwhile to indicate the derivation
of the asymptotic Gaussian form for large N.

Putting at
at=N—1+4 ar
we have
e (@)™ _ ey (N — DY ar N\,
wW=DprT¢ T W-n! 1+ /2 Q) ¢ (10)
We immediately note that for large N,
e—-(N—l) (N —_— l)N——l 1

N=-DI T V@<=
and

N~-1
oT Y o (N
oo (1 + —”—i) ~ e {aT)Y2(N-1)

in the region ar < < N. When or is comparable to N — 1 (10) becomes
vanishingly small. Thus (9) tends to a Gaussian distribution with the mean
(N — D/a.
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APPENDIX

In a private communication, S. K. Srinivasan has shown that it is possible
to obtain = (E| E,; #) directly by applying a Laplace transformation to the
differential equation satisfied by =, (E| Eq; ) where =, (E| Eq; £) dE is the
joint probability that the particle has undergone » radiative collisions
in the interval (0, ) and its energy is between E and E 4 dJE at 1.
The equation for =, is

dmn (B3 1) _ E

ot — amp (E; 1) + gﬂn—l(il"; lf) + DDE {B (E) 7y (E; 1)} (11)

with B(E)= =1 for E>0 and B(E) =0 for E =0,

and
o (B; ) = et (B — Ey + 1).

A Laplace transformation now yields

Pul50) = apy (55 1) + apnns (543 1)+ a5 ) (12
when it is borne in mind that B(E) =0 at E =0, so that the term
[B(E) my, (E; t)e~5F];_o which occurs in the Laplace transform of the last
term of equation (11) vanishes. It is interesting to note that it is this peculiar
feature of the function B (E) that renders the solution possible. Otherwise
this extra term introduces complications which cannot easily be resolved.

A further Laplace Transform with respect to ¢ reduces the equation
to a simple iterative relation

pu (85 1) = o=y Prea (545 ) =

which immediately gives

n
pp (55 1) = a® e SBQ" [T —— 1

o @ T F — qu (14)

The solution for = can be obtained from this at once by inversion.
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