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ABSTRACT

A symmetric oscillatory Poisson process is defined and its stochastic
features studied. The process representcd by the symbolic integral of
this oscillatory Poisson process is then discussed in detail. The results
obtained are apphed to the well-known stochastic problem of multiple
scattering of charged particles in their passage through matter.

INTRODUCTION

IN this paper we shall study processes which are associated with what we
shall call a symmetric oscillatory Poisson process (hereinafter referred to as
S.0.P.) defined as follows. Events occur in a Poisson manner, along the
one-dimensional ¢’ axis, i.e., if n(¢) is the stochastic variable representing
the number of events in the interval (o, t), then the probability that z# (f) = n
is given by = (n, £) = et (Af)?/n!, where A is the parameter of the Poisson
distribution and Adt, the probability that an event occurs between ¢ and
t +dt. If we associate with the i-th event a stochastic variable x; which
assumes the values + 1 and — 1 with probability p and (1 — p) respectively

i=n (t) : » - . -
then m (f) = X x;is a stochastic variable which can assume integer values

i=0
from — oo to 4 co and represents an oscillatory Poisson process (O.P.).
If p =% we call it, for obvious reasons, an S.O.P. The typical trajectory,
that is, the realised curve of # (7) in the interval o to ¢, = representing a typical
point on the f-axis, consists of lines parallel to the z-axis with jumps of unit
magnitude (positive and negative) at points where the Poisson events occur.

We shall here deal with the following:
(1) The probability distribution of m (1),
(2) Recurrence and first passage times of m,

(3) The processes represented by the symbolic 1ntegrals

. f m(z)dr and f m (1 — 7) dr,

o

(4) Application of these results to the problem of multiple scattering,
84
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(5) Generalisation of m to the case m = X' a4 where a; is a stochastic

variable associated with the i-th event, all the «;’s having the
same probability frequency function. This problem is shown
to be equivalent to that of Snyder and Scott (1949).

(6) Multiple scattering in multiplicative processes.

The object of the paper is twofold: (1) First is to explain, in physical
terms, the importance of the concept of trajectory in the computation of
first passage and recurrence times. The authors have not seen a systematic
treatment of this concept and its relevance to the problems of first passage
‘and recurrence from a physical point of view and have assumed that a summary
of the present state of knowledge is contained in Bartlett’s recent book (1955)
on stochastic processes. The sections on recurrence times in this paper
amount to an extension of the ideas in Bartlett’s book but with additional
emphasis on the concept of the trajectory of a stochastic process and conse-
quently on the necessity of a distinction that has to be made between two
“equivalent ” processes (to be explained presently) when considering first
passage and recurrence times. This aspect has not been stressed in Bartlett’s
book. The phenomenological difficulties relating to first passage and
recurrence problems have been classified and discussed in ‘a recent contri-
bution by one of us (R, 1955) and the general considerations of that paper
are applied to the solution of the problems here.

(2) The second object is to consider the problem of multiple scattering,
as an integral of a basic random process and suggest an approximation which
helps us to obtain exact solutions. The last section on multiple scattering
and multiplicative processes deals with the beginnings of one of the most
vexed problems of cascade theory in cosmic radiation, ie., the lateral spread
of showers.

1. THE PROBABILITY DISTRIBUTION OF 1 (f) FOR AN O.P.

The standard procedure is to express = (m, t + df)* the probability that
m(t + df) =m in terms of = (m, f) that probability that m () = m.

The forward differential equation of the process is then given by
om(m, 1) .

= — Am(m,t) + Mpm(m— 1, 1) + (L —p)m(m + 1, 1),
"(ma 0) =0, (m #:0) .
7 (0, 0) = 1. ey

* Throughout this paper, = denotes any probability frequency function ; distinction
between two functions will be apparent from the context. Where Fourier transforms are
defined for these functions, the same convention is adopted.

A3
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It is not easy to solve the above equation by simple iteration, since
m{(m, #) is expressed in terms of both 7(m+-1,7) and = (m — 1, 7). The
validity of defining a generating function

G, t)=Sn(m Hu™ ©)

depends upon the uniform convergence of the series with positive and nega-

tive powers of 4 in a domain including u = 1. To avoid these difficulties
we adopt the following argument.

The above process can be considered as a superposition of two Poisson
processes, having the parameters Ap and A (1 — p) but while one of these

has a value + 1 associated with each event the other has the value — 1
assigned to each event.

Using this argument we immediately obtain the frequency function
m (m, 1) as :

r=co B .
mom = 31wt RO o RA=pAT g
=0 0r —m

In the summation, the lower limit of r 1s zero if m is positive and — m if m
is negative. In particular if we assume p =13, ie, m(¢) is an S.O.P,,

7 (m, 1) = e M I, (A), @
where I, is the modified Bessel’s function of the first kind of order 1. Note

that = (m, £) == (— m, 1), i.e., the distribution is symmetric about the value

m=10. Then ¢{m (1)} = 0f and {m? (1)} = M, the same as the mean square
deviation of z(f) with parameter .

2. RECURRENCE AND FIRST PASSAGE TiMBs OF m

We now ask for the probability F (m, ¢) dr that the variable m () reaches
the value m for the first time between ¢ and +dt. Foranym #0, F (m1)
can be obtained by writing (m, ) in terms of F (m, t) which is easy for any
Markoff process. By simple arguments, we have

it
mm, )= [ F(m, Dw(m|m, t - 7)dr @)
* ¢ .
where = (m|m, ) is the probability of having a state m at ¢, given that the
state at 0 is 7n. In our case as the variable (7) is purely additive, this pro-
bability is identical with « (o, 7) and hence we can immediately obtain a sol-
tion for F (m, 1) by resorting to the Laplace transform technique. Defining

T Throughout this paper e denotes the expectation value,
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p (m, s) and f(m, s), as the Laplace transforms of = (m, #) and F (m, t) res-
pectively, we have o ‘ ‘

pm ) =f(m9p (09 ©
or

f(m, s) =p (m, )[p (0, 5) = f(— m,s). (D
Now from (1) | |

pim =15 +xr>1\z_\—/;\s/ L J{)ff_)_z E=tis ®)
Hence

Fom ) =f(—my5) = EEAZVEF D=, ©

which yields

F(m,t)#:F(mm,t)m——m—IM. ‘ (10)

This expression is valid for all m except m = 0. In the latter case a
first passage is said to occur only if the state has changed from o at some
point between o and ¢ and then returned to o for the first time at ¢ and this
is more appropriately called a “recurrence ”. Continuance in the state o
from o to ¢ + dr does not constitute a recurrence between ¢ and 7 -+ dt. - On
the basis of this definition, we find that the state o may be realised at ¢ either
by a first passage to o at some 7 < ¢ and a subsequent realisation of the state
o at ¢ or directly by a continuance of the state o throughout the interval o to 7.
We are thus led to the equation

w (0, t) = fth (0, 7y (o, t — 7)dr + e M (1D

so that

P09 =f0,9p0,9) + 5y
On using (5) we obtain

f(o’s)=S+A~?g/—*Es;—A)2:'X2 12)

and hence

F(O, .t). = >\6“.'\t f -——-—-—IJ‘ E‘M-)‘ df. ' h ; - (13)
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F (o, t) dt gives the probability that the state o recurs between # and

t 4 dt and F (o, f) therefore gives the probability frequency function of the
“ Recurrence Time *,

If we try to obtain the mean value of the first passage time by multiplying
‘the R.H.S. of (10) by ¢ and integrating with respect to z or directly from
f(m, s5), we are led to the interesting result that the first, and consequently
higher, moments of the first passage times are infinite for any m.

¥
- 3. THE PROCESS REPRESENTED BY THE SYMBOLIC INTEGRAL f m(7) dr
]

t ,
To study the process symbolically represented by the integral f m(7) dr
1}

we adopt the phenomenological interpretation of integrals of random func-
tions given recently by one of us (R., 1955 5, ¢). A typical realised tra-
jectory of m (7) is given in Fig. (1).

To——

«(:0 " "l"=t
Fi6. 1. Typical trajectory of m (7) in the interval (o, 7).

For a given realisation of random-points along the 7 axis in the interval

o to t, the corresponding realised value of y (), which we shall denote by
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¥R (7), is equal to me () dr" where m® () is the realised value of m ().
0

YR (7) represents the area enclosed by the realised curve of the stochastic
variable m (") as +' varies from o to . In computing the area, the area
below the = axis has to be taken as negative. Thus we plot the realised curve
of y (7) in the interval o to ¢; see Fig. 2.

y (T)—>

LY
() Tt

F1c. 2. Typical trajectory of v (@) =fm (z’) d7’ in the interval (o, 7).
. _

We note that it is continuous and its slope at any point = is the realised
value of m® (7) at that point. y therefore is a continuous stochastic variate
and we can define the probability = (y, £) dy that ¥ (?) lies between y and
Y+ dy. The obvious method of obtaining the equation for m(y, 1) is to
study the variation of the area referred to above by increasing ¢ to z -+ dr.
Since the increase in area is m (t) dt we note that the process ¥ (#) is non-
Markovian and hence we are constrained to introduce the function = (m, y) dy,
the joint probability that m (f) = m and y (¢) lies between yand y + dy.
The process defined by the pair m (f) and y (f) is Markovian and. by simple
arguments we obtain | ' o
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dmr (WS}J’, ) = — Mr(m, p, f) *P-é—\ fm(m— 1, y, D4n(im+1,y, D}
|  mmyp o
—m Ty e (14
and |
7 =+§:w (m, y, 7). (15)

It is difficult to solve this equation in view of the occurrence of 7 and
to avoid this complication we take recourse to the method of regeneration
points which yields an integral equation for = (7, t) directly.

b4

DR (e R e g S S U f— )

° dr+ 3@ eM. (16

This equation is obtained by using the now familiar arguments of the regene-
ration point method that the first Poisson point occurs between + and = +dr
with probability e*7 Adr and the realised value of y when events are counted
~from + differs from that of ¥ when counted from r =0 by + (¢ — 7)

according as we assign + 1 or — 1 to the Poisson point at . Differentiating

the above equation we obtain what is known as the backward differential
equation of the p.ff. of y(@:

D‘”%Q=*A’5(J’;i)+§{w(y—t, )47+ 1 1) (17

This equation is easier to solve, The equivalence of (14) and (17) is difficult
to prove. But therein lies the advantage of dealing with equation (17)!
Defining the Fourier transform of m(y, f) as

Plu 1) = fojv O, 2) e Y gy, (18)

equation (16) reduces to

4

p(u, z) = fe—xr%{e-iu(t—r) +e iu(t_ﬂ}p (u, t — 'r) dr + e M. (19)

0

Diﬁ‘erentiating this with respect to ! we obtain

DACK, : : @
——-L?(‘z” )=—-Ap(u,r)+§{e‘1“t+e‘z“t}p(~u,t)e B
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Hence
A iut _ i

P (u, t) = exp {— MAm (6™ —e t)} (21

Inversion of this expression yields
z v AR -y n 4 (n — 2r)An-1
sy =ctop) et D1t B () (- yrEr=2d
n=1 r=0

H®y + n—2r ). 22)

The mean value of y of course is zero. Its variance may be obtained
directly from (21); we find o2 = As3/3.

11
3 (@). THE PROCESS REPRESENTED BY THE SYMBOLIC INTEGRAL _/ m{t—ry .7
0

On examining equation (17), we observe that it can be interpreted a. the
forward differential equation of another stochastic process which unlike

t
/ m (7) dr is a quasi-Markovian (the significance of the qualification * quasi *’
/ ‘

will be explained presently) basic random process characterised by discrete
jumps. For if we define a stochastic process by attributing a random
variable x; to a point occurring at =; where x; can take the values -- ; with
equal probability %, then y* (f) = 2 x; defines a stochastic process progressing
with 7 whose forward differential equation is given by (17). Its typical
trajectory is given in Fig. 3. '

According to the theory of equivalent processes developed by one of us
(R.), y*(¢) can be represented by the symbolic integral

@O =/ tm (t — 7)d+ (23)

Le., the integral is associated with the inverse trajectory of m(+). The con-
cept of an inverse trajectory and the equivalent processes arising therefrom
has been fully discussed by one of us in a series of three papers (R., 1955 b, ¢, d)
and no purpose would be served here by a repetition of that discussion.
Suffice it to say, that y* (¢) and y (¢) are two distinct processes, which pro-
gress with 7 in strikingly different ways as is revealed by the nature of their
trajectories. But their probability distributions are identical ar every 1.
-y (?) is non-Markovian as has been explained in the derivation of (14) and
(15).  y*(#) is quasi-Markovian (as distinguished from Markovian), i.e.,
the state of y* (¢) at ¢ 4 dr can be predicted, if we know the state at ¢ provided
we assume we also know the origin of the process lies gt t = 0, an information
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y(T) s>

T O 't—: 4

T
FiG. 3. Typical trajectory of y* (1) = [ m(z — 1) dr inthe interval (0, . The ordi-

) 0
nates have been scaled down for convenience of representation.

unnecessary in Markovian processes. Otherwise, ¥* (2) has all the character-
istics of the Markovian process in that no information between 0 and ¢ is
needed, provided the state at ¢ is known. It is obvious from the definition
of y*(t) = 2 x; that its backward differential equation is just the forward

differential equation of y (). Hence the solution for = (y, t) gives the distri-
bution function of y*(f) also.

First Passage and Recurrence Times of y (2) and y* (r)

The above distinction between y(¢) and y* () may seem academic if
we are interested only in the distribution function. But as has been stressed
by one of us, the distinction is fundamental, since the integral of a y () process
is different from that of a Y* (1) process and they are not even equivalent.
The distinction is as vital when we consider first passage and recurrence
times of the two processes. We shall consider the problems separately.

¥ (r)-—Since the trajectory of ¥ () is continuous as shown by R., we
have to define a function F (», 1), where F (y, £) dt represents the probability
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that v (7} erovses the value v, between rand 1 ¢ s, or in other words, will
LK
assume exactly the vadue v, sometime between 7 and 1 0 . _/ B, nydr - 1
&

for all values of v. The problem of determining F (v, 1) is fraught with very
great difliculties which have not been adequately resolved till now, But R,
has given a simple eapression for the mean number of recurrences in an
mterval o to 7. We sy that v recurs between £ and 1 1 or when 1) erosses
yin the interval Jr of it has crossed the same value earlier. 1t s of course
assumed that continuance v the value v (this happens only when m is o in
some intervall does not constitute crossing, Ax regards the problem of
reeurrence, we i only obain, aceonding 1o R, the mean number of re-
currences in the interval (o, 7).

I the stochistiv vanable representing the number of recurrences of the
state v is denoted by R (v, ), its mean vidue s piven hy

AR v 1 X m, v, 1), (24)
Denoting the interval between the neth and (2 © Dieth recurrences by Ty, we
note that T, s & stochastic variate and the  distribution  functions of the
various Ty are ditferent for ditferent values of 7. So there is no meaning in
speaking in general of aomem recurrence time. When the mean number of
recurrences is very Lirge, /e fR (13 1) can be taken to be roughly an estimate
of the mean recurrence tune,

P Though tjectory of y*(7) is characterived by discrete jumps,
as the magnitude of the jumps is a continuous variate, »* (1) is also a contj-
nuous variate,  Irepresents, of course, # basie random process. R, has
shown that in the case of such processes we have to define F(r, 1) dvdr, as the
probability that v {73 jumps into o value between v and » 1 dy, in the interval
dr for the first Gme. Note the necessity of uttaching an infinitesimal dy 1o
the function F, to give it the significance of o probability magnitude. R, hag
shown that for basic rundom processes represented by a continuous stochastic
ariate, every state between poand v { oy s entered only once-a rather
surprising, result, which on o closer examination is found to be satisfactory
both mathematically and phenomenologically; ¥ (p, 1) is therefore given by

Fann ’;{w (v ot by oLl (25)

Since every state is entered only once, the probability = (1, 7) can be expressed
neatly in terms of F(y, 0.
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o ,
n(y, )= [F(y, e gr, (26)
0
e~» 7 represents the probability of continuance in the state .

T )+ F O, 0. @

Substituting the value of F (y, f) as given by (25), we obtain the equation
(17) thus proving the correctness of our expression for F (y, ). The problem
of recurrence has no meaning in this process, since every state can be entered
only once.

11
Generalisation of the Process [ m () dr.
0

'We were concerned so far with an S.O.P. in which with each realised
Poisson event, a value + 1 or — 1 was associated with equal probability 3.
‘We can generalise this process by associating a value o with each event, o
itself being random, with a probability frequency function ¢ (o) which is
symmetrical about a =0. For such a process we ask for the probability
distribution of the sum § of the values associated with the Poisson points
realised in an interval (o, #). It is easy to obtain the equation satisfied by
the probability frequency function = (6, £) of this sum.’

w (0, 1) = fte“’\"' )\dr/gb (@70 — a, t — 7)da + e 5(6). (28)

To solve this we define p (v, #) and » (1) as the Fourier transforms of = (4, )
and ¢ (o) respectively. Then

3
pwt)= fe " Mrpu, t — 1)y (u) + . (29)

A further Laplace transform with respect to ¢ yields the L.T. of p (u, 1) as

pur) = AJH {p (1) n @} + ]L s (30)
so that
1 .
P = T =y @y o (31)
Hence : ' , _ :
pl,ty=-exp [— A(l — 7 (w) t] (32)
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and
_ oo
7 (6, {) = ZLW f e exp [— A(1 — 7 (4) £] du. (33)

Thus the form of = (8, ¥) can be determined either analytwally or numerically,
when the form of ¢ (a) is known Again, denoting / 6dt by y, the probability

distribution of y can be found by the use of the regene1at10n point method:

t
a(y, 1) = /e-'\'f Adr/cﬁ(a)w(y —a(t—1); t— 7) da + et 3 () (34)
and the Fourier transform

PG, 1) of = (3, )

is given by
p(u, t) = fte—“ Mr [ oo & p(y, ¢t — 1) da + e, (35)
'Diﬁ"erentiatingothe above“ equation, we obtain
W0 _ (1) 2 ) (), (36)
Hence
P (u, t) = exp. [AO f t{ n (ut) — 1} di]
= exp. [ - 20D, 37
where
h(u) = ofu {1 —q@)}du'. (38)

The “ delta® approximation

Though we have introduced the function ¢ (a) we shall now show that
the following approximation is possible and yields good results if ¢ (a) is
a function which rapidly falls off to zero as « differs from 0. To put it more

300

precxsely, assuming ¢ (a) to be a symmetric function, f a?™l 4 (a)da =0

and f a2 ¢ (@) de = € {a2“} exists, but we shall adopt the approximation that

s{a®} is very small, and its higher powers can be neglected. Since e {a*"}
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is of the order of [¢{a3]" we shall assume all the moments are negligible
except e{ a%. The same results can be obtained, if we assume

$(9) =3{3 (¢~ ap) + § (a + ap)}, (9

where «g = 4/c {a® and § is the Dirac-delta function. Hence in equation
(34), if we adopt this approximation the generalised process reduces to the
simpler type given by equation (16) which is explicitly solved. We shall
call the above approximation the §- pproximation remembering that it is
not ¢ () that it is approximated to a o-function, which gives the trivial result
that there is no dispersion at all, but that ¢ (a) is a sum of two S-functions as
given in equation (39).

4. APPLICATION TO MULTIPLE SCATTERING

The above theory can be directly applied to the well-known multiple
scattering problem. When a charged particle passes through matter, it
suffers collisions with the atoms of the matter. If we interpret the Poisson
events to refer to these collisions and a to the angle of scattering in a single

12
collision then y (z) = [ 6(7) dr is the lateral displacement of the particle

provided we assume that 3 a; = 8 the tota] angular scattering, is small and
1

that the particle pursues almost a straight path with slight lateral displace-
ment in the same plane (“ ¢ — p plane); ¢is the thickness of matter traversed.
This problem has been elaborately investigated by Snyder and Scott and our

equation (37) is identical with theirs. On the d-approximation we get the
explicit solution (22).

5. MULTIPLE SCATTERING IN MUL’I‘IPLICATIVE PROCESSES

The problem of multiple scattering of a single particle is simple when
compared to the multiple scattering in multiplicative processes. Such a
situation arises for example in a cascade, L.e., if we admit the possibility of
new particles being produced on collision. The essential complication con-
sists in the randomness of the points of birth of new particles and the direc-
tions in which they are projected at the time of birth, since the lateral dis-
placement of any particle is dependent upon the above factors. Many
attempts have been made to deal with the three or two dimensional cascade
spread. It is not difficult to write down formal integral equations using the
regeneration point method. But these equations are intractable, and are
not amenable to numerical computation. We here suggest three simple

models whose stochastic features will be discussed in a later paper supported
by numerical work, -
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