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Introduction 

Let H be the upper half plane and F a discrete subgroup of AutH. When H mo d F  
is compact, one knows that the moduli space of unitary representations of F has an 
algebraic interpretation (cf. [7] and [10]); for example, if moreover F acts freely 
on H, the set of isomorphism classes of unitary representations of F can be 
identified with the set of equivalence classes of semi-stable vector bundles of degree 
zero on the smooth projective curve H modF,  under a certain equivalence relation. 
The initial motivation for this work was to extend these considerations to the case 
when H m od F  has finite measure. 

Suppose then that H modF  has finite measure. Let X be the smooth projective 
curve containing H modF  as an open subset and S the finite subset of X 
corresponding to parabolic and elliptic fixed points under F. Then to interpret 
algebraically the moduli of unitary representation of F, we find that the problem to 
be considered is the moduli of vector bundles V on X, endowed with additional 
structures, namely flags at the fibres of V at PeS.  We call these quasi parabolic 
structures of V at S and, if in addition we attach some weights to these flags, we call 
the resulting structures parabolic structures on V at S (cf. Definition 1.5). The 
importance of attaching weights is that this allows us to define the notion of a 
parabolic degree (generalizing the usual notion of the degree of a vector bundle) 
and consequently the concept of parabolic semi-stable and stable vector bundles 
(generalizing Mumford's definition of semi-stable and stable vector bundles). With 
these definitions one gets a complete generalization of the results of [7, 10, 12] and 
in particular an algebraic interpretation of unitary representations of F via 
parabolic semi-stable vector bundles on X with parabolic structures at S (cf, 
Theorem 4.1). 

The basic outline of proof in this paper is exactly the same as in [12], however, 
we believe, that this work is not a routine generalization. There are some new 
aspects and the following are perhaps worth mentioning. One is of course the idea 
of parabolic structures; this was inspired by the work of Weil (cf. [16], p. 56). The 
second is a technical one but took some time to arrive at, namely when one 

0025-5831/80/0248/0205/$07.00 



206 v.B. Mehta and C. S. Seshadri 

reduces the problem of constructing the moduli space of parabolic semi-stable 
vector bundles to one of"geometric invariant theory", the choice of weights should 
correspond to the choice of a polarization. The moduli problem of parabolic 
vector bundles gives a natural example of how the same moduli problem can have 
many natural solutions (namely, corresponding to choice of different weights) and 
this is reflected in geometric invariant theory by the choice of different polari- 
zations. (This feature also occurs in getting compactifications of generalized 
Jaeobians associated to reducible projective curves with ordinary double points [8].) 
One is also obliged to give a proof, different from that of [15], for the fact that the 
moduli space of parabolic semi-stable vector bundles is complete (Theorem 3.1). 

The notion of parabolic structures appears to be quite useful in many 
applications. It is very much related to that of"Hecke correspondences" appearing 
in the work of Narasimhan and Ramanan [6]. This has also been used to obtain a 
desingularization of the moduli variety of semi-stable vector bundles, of rank two 
and degree zero [14]. This was also responsible for suggesting in the general 
setting of geometric invariant theory, a result (cf. [11], Theorem 5.1), which states 
that if a reductive group G operates, say on a projective space IP given by a linear 
representation of G, then there exists an ample line bundle on P x G/B (G/B-flag 
variety associated to G) for which semi-stable points are in fact stable. 

The results of this paper have been announced in [13]. 

Outline of the Paper 

This paper is divided into 5 sections, we briefly describe their contents as follows : 
Section 1 is devoted to the motivation for introducing the notion of parabolic 

structures on a vector bundle. If F is a discrete subgroup of PSL(2,1R) and 
X = H +/F, we show how a unitary representation of F gives rise to a vector bundle 
on X with parabolic structures corresponding to the parabolic vertices of F. We 
also show that these unitary bundles are parabolic semi-stable, in a sense which is 
made precise. It is also shown that the category of these parabolic semi-stable 
bundles, with an appropriate notion of morphism, is an abelian category with 
every object having a Jordan-Holder series. 

Section 2 is quite short and is devoted to proving that for the moduli of 
parabolic bundles, it is sufficient to cover those cases where the weights of the 
parabolic structure are non-zero and rational. 

Section 3 is devoted-to proving that the parabolic semi-stable functor is 
"complete" in the sense of Langton [3]. In other words, if we are given a family of 
vector bundles on X with parabolic structure and the general fibre is semi-stable, 
then the special fibre, if unstable, can be modified so as to become semi-stable. This 
theorem follows very closely the proof given by Langton for proving the 
properness of the functor of semi-stable sheaves in the higher dimensional case. 

Section 4 gives the statement and method of proof for the existence of the 
moduli space. We imbed the set of all parabolic semi-stable bundles in an open 
subset of a suitable Hilbert Scheme, which has the usual properties, i.e. non- 
singular, irreducible and of a given dimension. We map this open set to a product 
of Grassmannians and Flag varieties. It is shown that the image of a stable bundle 
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is a stable point (in the sense of Mumford [5]) and that a similiar property holds 
for semi-stable bundles. Hence by the methods of Geometric Invariant Theory and 
the properness theorem of Sect. 3 we get the existence of a normal moduli scheme 
which is projective. However as the "covariant" is not necessarily a closed 
immersion, we do not know the identifications on the parabolic bundles, i.e. we 
still have to show that two bundles have the same image in the moduli space if and 
only if they have the same associated graded. 

In Sect. 4 the above problem is reduced to the existence of stable parabolic 
bundles by the device of introducing parabolic structures at extra points. This 
existence theorem, in turn, depends on computing the dimension of the moduli 
space in question. 

In order to compute the dimension, we proceed as follows: We construct the 
moduli variety over a discrete valuation ring and show that the fibres are equi- 
dimensional. The dimension of the general fibre is then computed by first 
identifying the parabolic semi-stable bundles on X with the unitary repre- 
sentations of F and then computing, by hand, the dimension of the space of these 
unitary representation.This is done in Sect. 5. 

1. Representations of F and Parabolic Structures 

Let F be a discrete subgroup of PSL(2, IR), acting on the upper half plane H such 
that H m o d F  has finite measure and F acts freely on H. Let H + denote the union 
of H and the parabolic cusps of F. Then X = H + mod F is a compact Riemann 
surface, containing Y = H m o d F .  If o :F-~GL(n, lr) is a representation of F in a 
complex vector space E, the vector bundle H x E on E has the structure of a F- 
vector bundle the action given by y(z,v)=(z,a(?)v) for ?eF ,  zeH,  and vEE. The 
quotient of H x E by the action of F is a vector bundle of rankn over Y, whose 
sections are in one-one correspondence with the F-invariant sections o f H  x E. The 
representation ~ also defines a F-vector bundle structure on H + x E, which we 
shall see also yields a vector bundle on X = H ÷ mod F. These F-invariant sections 
can be interpreted in terms of the geometry of the upper half plane by studying 
their behaviour explicitly at the parabolic cusps. We are interested in the case 
where the representation a is unitary. 

Let P e X  - Y be a parabolic cusp. (We shall call a point o fX a parabolic cusp if 
it corresponds to a parabolic cusp of Hr . )  By supposing P to be the point at o% 
(which we can do without loss of generality) we may represent a suitable 
neighbourhood of P by a set of the form U/F®, where U={z=x+iy[y~cS,  (~ot+ve 
constant} and F~, is generated by an element of the form z-~z+e,  ~ real, we may 
take e = 1 for simplicity. We then make the following: 

Definition 1.i. Let a : F ~ G L ( E )  be a unitary representation and V the F-vector 
bundle H x E on H (we shall call such a bundle a unitary F-bundle). Then the map 
F : H ~ H  x E given by F(z)= (z, f(z)) is said to be a holomorphic F-invariant section 
in H + if 

a) F is holomorphic and F-invariant in H, and 
b) representing a parabolic vertex P as above, f is bounded in every region 

of the form z = x + iy, Ixl < c~, y > 6 > 0 for all ~ and for all strictly positive 6. (We 
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note that since f is F-invariant, it suffices to assume the boundedness o f f  for some 
such that e > l ,  or the boundedness of f in the whole of the region 

{z = x + iyJy >_ 6 > 0} ; the conditions are clearly equivalent.) 
To see that this definition is the right one for F-invariance of a section in H +, 

we study it closely in terms of its representation on E. Let a~ be the restriction of 
to the isotropy group F~ at m. Then a~ is determined by its value on A = the 
generator of F~ which is given by z-~z+ 1. By choosing a basis for E, we can write 

[ exp (2~ic~ 1) 

with 0=<ei<l  , l<_i<__n. 
Let f (z)=(f l (z)  . . . . .  f,(z)) be the representation of f with respect to this basis. 

Since F is F-invariant it is F~-invariant, and hence 

f , ( ; +  1 ) / =  \ 0 ""exp(2~ie,)/ \  J,iz) 

i.e. 

fj(z+l)=exp(2rci~j)fj(z), l ~ j ~ n ,  or 

f j(z) = exp ( 2r~i~jz) g j(z) , 

where z = exp(2rriz) and gs is holomorphic in a punctured disc around P;  z is the 
local parameter at P on the compact Riemann surface X. 

In terms of this representation of F, the condition b) in Definition 1.1 is 
equivalent to saying that Os is bounded in a punctured disc C around P, which 
implies that gs is holomorphic in C. Thus we have shown that the definition is 
equivalent to saying that F corresponds to a section of the vector bundle on X 
defined by the F-vector bundle H + x E on H +. 

This leads us to define the sheaf of sections of the vector bundle pr,(V) on X as 
follows : 

r v  On Y = H m o d F  the sheaf is given by p , ( ) ,  where p : H ~ Y  is the canonical 
morphism, with the usual meaning for pr(V) ; i.e. the sections over Y of this sheaf 
are the F-invariant sections of V = H x E. For  any parabolic vertex P e X  and a 
neighbourhood U of P of the form HJF~,  where He={z=x+iyLy>6>O},  we 
have pr.(v)(u) = the "bounded" F~-invariant sections of V on H e. From the above 
considerations it follows that the F~-invariant sections z~exp(2r~icqz)ej form a 

r V basis for p.(  )p as an ¢x.e module; here e i is a basis for E and hence also for the 
sections of H x E, and a, the generator of F~ acts on e~ by ~(ej)=exp(2rric~i)e r In 

/,(v)(u) fact these sections z--,exp(2rrioqz)es generate for any suitable neigh- 
bourhood U of P. 

Let E r denote the F-invariant points in E; then any point in E r defines a 
F-invariant section of V in H +, namely the "constant section" defined by this 
point. 

Proposition 1,2. Let V be a unitary F-vector bundle on H associated to a unitary 
F-module by a : F-~GL(E). Then the canonical homomorphism j : Er--+ H°(pr(V),X) 
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which associates to any F-invariant point a F-invariant section of V in H + i.e. a 
r v global section of p,( ), is an isomorphism. 

Proof. The m a p j  is clearly a monomorphism. To show that it is surjective, we see 
easily that if F : H - , H  x E given by F(z) = (z, f(z)) is F-invariant in H +, then f is a 
constant i.e. f(z) is independent of z. For, if we define g(z) by 

g(z) = ltf(z)ll z = ~ [f~(z)iZ, 
k 

then g is a real-valued positive function on H and since F is F-invariant and E is a 
unitary F-module, we see that g is invariant under F. Hence g descends to a 
function h:Y- , IR  +. We see also that g is continuous at oe owing to its 
boundedness on any region of the form { z = x + i y l x < ~ ,  y > 6 > 0 }  which repre- 
sents a neighbourhood of a parabolic cusp. This implies that h can be extended to 
a continuous function X-,IlL Being locally a sum of functions of the form Ifk[ z, for 
J'k holomorphic, h is subharmonic. Now sinceX is compact h reduces to a constant 
which in turn implies that f itself is constant. Hence F comes from a F-invariant 
point of E, namely the constant value of f(z), showing the surjectivity ofj .  

Definition 1.3. Let V~ and V z be two F-vector bundles associated to unitary 
F-modules E a and E 2. We say that F :V1- ,V z is a F-homomorphism in H + if 

a) it is a holomorphic F-homomorphism in H, and 
b) at every parabolic vertex assumed without loss of generality to be oe, 

F :H x E1- ,H x E 2 represented by F(z)=(z,f(z)) where each f(z) : E ~ E  2 is a 
homomorphism of E 1 into E2, satisfies the condition that f is bounded in the 
region H~={z=x+iyJy>6>O}  for every 6 > 0  (or even some 6>0).  

Looking closely at this definition, we see that the family f(z) : E~ -~Ez, zeH,  of 
homomorphisms satisfies (since F is a F-homomorphism) the following 
properties : 

f(Tz)(yv)=7[f(z)v ] for ~ F ,  w E  1 

o r  

o r  

f(yz)(vv ) = [Tf(z)7-1](70,  ye F, ve E,  

f(Tz) = ) ' f ( z ) ? ' - I  

In terms of the actions of F on E 1 and E2,  w e  see that the action of F on 
Hom(Ea, Ez) is given by 7(g) = ~'(g)Y- 1, so that the above condition is equivalent to 
the condition that f :H- ,Hom(E1,E 2) be a F-invariant map, i.e., f(vz)=Tf(z). 
This means that F defines a F-invariant section of F-vector bundle (V* ®V2) 
= Horn(V1, V2). Then the condition b) in Definition 1.3 states that the F-invariant 
section of V~ ®V z defined by F is in fact bounded at oe, and is hence a F-invariant 
section of V~ ®V 2 on H +. By Proposition 1.1 this reduces to a constant. Hence we 
deduce : 

Corollary 1.4. I f  V~ and V 2 are two unitary F-vector bundles associated to unitary 
F-modules E 1 and E2, then the map j : H o m ( E  1, E2)~Hom(V1,V2) is an isomor- 
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phism. Thus the functor (Unitary F -modu le s )~ (Un i ta ry  F-bundles) given by 
E ~ V  = the F-vector bundle H + x E on H +, is full and faithful. 

Looking at F-homomorphisms on H + of Va into V 2 in terms of the vector 
r V r bundles p , ( 1 )  and p,(V2)  defined on X, we consider their behaviour in a 

neighbourhood of P e X -  Y coming from a parabolic vertex, say oo. Let Foo be 
generated by 7 : z ~ z + l ,  U o = H a m o d F  ~ = a  punctured disc around 0, 
U = U0u(0); U represents a neighbourhood of P in X. We choose bases (e l . . .%)  
and (d 1 ...d,) of E 1 and E 2 respectively, and set 

7(ei) =exp(eZ~i~Oej, 1 < j < m ,  

7(dk) = exp(e 2~it~) d k, 1 < k < n. 

We order the ej and flk in ascending order, 

0 < ~ 1  < ~ 2 . . . < ~ m <  1, O<fll<fl2...<fln<l. 
If U is sufficiently small, we have natural bases Oj=z--,exp(2rci~z)e i, 1 < j < m  and 

r V r V 7'k=Z~exp(21tiflkZ)d k, l < k < n  for p , ( 1 )  and p , ( 2 )  in U respectively. 
Representing the F-homomorphism F : H × E I ~ H × E  2 by F(z)=(z , f ( z ) ) ,  
f ( z ) :E1--*E 2 with respect to ej and d k is given by 

j ( z ) (e j )= ~ jjk(Z)dk, 
k=l 

the Jik(z) being a m × n matrix. The F-homomorphism condition on F requires 

f(Tz ) = yf(z)7-1 

or  

that is, 

fjk(TZ) = exp( -- 2=i[c~j -- flk]) fjk(z) 

or  
( e x p ( -  2rtioq) 0 \ [exp(2~ifla ) 0 ) 

f jk(Z + 1)= ".. ] ( f  ~k(Z))~ . . 
0 exp( - 2~ic~,,) / \ 0 exp (2~ifl,) 

It follows that f~k(Z)= exp(--2r~i[-~j--fig] z)gjk(r), where z = exp(2rciz). The fact that 
fiR is bounded in H a = {z = x + iyly > 6 > 0} implies that gjk is holomorphic at ~ = 0 
and in fact, if --C~:+flk<0, then gjk(0)=0. Thus gig(Z) represents the 
F-homomorphism of p~,(V1) into r V p , ( 2 )  at P. 

We see thus that a F-homomorphism on H + of V 1 into V: is one which defines 
a homomorphism of pr(v  0 in to  pr,(V2) whose matrix 9~k(~) in a neighbourhood of 
a parabolic vertex P ~ X -  Y satisfies gjk(O)= 0 whenever -c~j + flk < 0, where the ~j, 
fig, and gig arise from the local representation of the bundles and the homomor- 

r V r V phism at P. Conversely given a homomorphism of p , ( 1 )  into p , ( 2 )  which 
satisfies the condition gjk(0)=0 whenever - -~j+f lk<0,  at parabolic cusps as 
above, we get a F-homomorphism of V 1 into V 2 on H +. 
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We can interpret the condit ion for a F -hom omorph i sm  on H + [or  for a 
homomorph i sm  ofp r (v1)  into pr,(Vz) ] geometrically as follows. Take first the case 
of  a F-isomorphism. Since F is a / ' - i somorph i sm,  the modules E 1 and E 2 must be 
equivalent. It then follows that m = n  and el = i l l ,  e2 =f12 ' " e , = f l n ,  once we have 
assumed the normalizat ion 0 < ~ 1 < ~ 2 . . . < 1  and 0<fl~_-<fl2. . .<l .  Writ ing 
W l = p r , ( v l )  and Wz=pr,(V2) as product  bundles g x W 1 and g x W 2 in a 
ne ighbourhood of  P, F induces the linear m a p :  

g(O):(W~)e~(W2) e at P ,  

which we have written as the matrix (gtk(O)) in terms of the basis chosen for W 1 and 
W z at P. The n x n matrix (gjk(O)) has the property that gtk(O) = 0 whenever - c~ t + ek 
0 i.e. aj > ek" Thus gjk(O)=0 whenever a t > %. 

Let the (at) have distinct elements:  

0~ 1 ~ 0 ~  2 . . .  ~ O ~ k i  

O~kl+ 1 Z O ~ k l  + 2  " ' "  ~'~ (Xk 2 

Consider the decreasing flag in (WOe defined by 

FI(WI)pz(W1)p 
F2(W1)p= subspace spanned by 0~,+1 . . . . .  O n 

Fa(I4~) e = subspace spanned by 0k2+l . . . . .  O n etc.. 

We see that the condition gjk(O)----0 whenever c~j > c~ k means that 

g(0) [F~(W1)p] C F~(W:),,  

or that g(0) preserves the flag structure at P. Hence a F- isomorphism of V~ to V 2 
on H + is the same as an isomorphism of W~ to W 2 which preserves the flag 
structure at each parabolic cusp. We note that the flag structure is given by the 
weights aj normalised in the order 

Now in the general case of  a F-homomorphism,  the a t and fik will differ. 
In t roducing the flag structures on W 1 and W 2 at P, we see that a 
F -homomorph i sm is equivalent to a homomorph i sm G of W~ into W 2 which has 
the property that at P, denoting by gv the map (WOp-~(W2) P, we have 
gp[Fj(W 1)e] C F k + 1 (W2)e whenever ~j > ilk, where ej are defined as 

0( 1 --~- 0~ 2 . . .  ~ O ~ k t  ~ ( X  1 

0~kl  + 1 = "' • = (Xk2 --'~ ~ 2  etc. 

and similarly for the ilk. We have k 1 =d imFl (WOl , -d imF2(W1)  e . . . . .  k, 
= dim F~(WOe. This leads us to define parabolic structures: 

Definition 1.5. Let X be a compact  Riemann surface with a finite set of  points 
Px . . . . .  Pn and W a vector bundle on X. 
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I) A parabolic structure on W is, giving at each Pi, 
a) a flag We=FIW e D FzWe... D F~Wp, 
b) weights :q . . . . .  e, attached to  FIW P . . . . .  F,W v ,uch that 

0<=0C 1 <0~ 2 . . .<~ r<  1. 
We call k l = d i m F 1 W p - d i m F 2 W  P .. . . .  kr=dimFrW P the multiplicities of 

~I, " " ,  O~r" 

II) A morphism G :W1--*W 2 of parabolic vector bundles (i.e. vector bundles 
with parabolic structures) is a homomorphism of W 1 into W 2 such that for any P, 
denoting G on the fibre at P by fir, we have gp[Fi(W1)p]CFj+I(W2) P whenever 
O~" i > i l  j ,  

III) A quasi-parabolic structure is just condition a) above. 
We note that since the definition of a morphism of parabolic vector bundles 

depends on the weights, only isomorphisms of quasi-parabolic bundles can be 
defined. 

We also remark that the above definitions can be given for a smooth projective 
algebraic curve over an arbitrary field k. However if k is not algebraically closed, 
then quasi-parabolic structures on vector bundles on X will always be assumed to 
be concentrated at k-rational points of X. Weights and multiplicities for a quasi- 
parabolic structures are defined as in Ib) above. 

Sub and Quotient F-Bundles 

Let V 1 and V 2 be unitary F-bundles, given by unitary F-modules E1 and E 2. 

Definition 1.6. A F-homomorphism F:V] ~1/~ identifies V 1 as a F-sub bundle of 
V z if F is injective in H and F(oo), its value over any parabolic cusp, is also 
injective. 

Thus V~ is a F-sub-bundle of V z if it is a sub-bundle of V z through a 
F-homomorphism F. Representing F(oo) at a parabolic cusp on H + as a matrix 
fjk(O0) and applying the F~-invariance criterion we get, 

[exp(2~iill) 0 (exp(-- 2~i~Q 0 

f~k(°O) = I 0 ""exp(2rciil,))(fJk(°°)), v "'exp(-- 27cic%))" 

Thus the (m x n) matrix f~k(OO) must have rankm, and from the above equation we 
deduce that fjk(oO)=0 whenever e~=ilk" This means that {e j} is a subset of {ilk}" 
Let G :W1 ~ W  2 be the homomorphism of bundles on X given by F : V~ ~ V  2. As F 
is a F-sub bundle homomorphism, we see that 

a) G is a sub bundle homomorphism, 
b) given Jo and taking the greatest k o such that G[Fjo(WOp ] (Fko(Wz)e, we 

have the weight of the flag Fko(W2) e = the weight of the flag Fjo(W1) P i.e. aio =ilko" 
Hence we define the notion of parabolic subbundle; 

Definition 1.7. A parabolic vector bundle W~ on X is a parabolic sub bundle of a 
parabolic vector bundle W z on X, if 

a) W 1 is a sfib bundle of W 2 and 
b) at each parabolic vertex P, the weights Of Wl are a proper subset of those of 

W 2. Further, given l ~ j o < m ,  and taking the greatest k o such that 
Fjo(Wx)e£Fko(Wz) e, the weight c9o = the weight ilko" 
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We have a similar description, leading to a similar definition for quotient 
parabolic bundles. 

Definition 1.8. A homomorphism G : W 1 --)-W 2 of parabolic bundles makes W 2 a 
quotient parabolic bundle of W 1 if 

a) W 2 is a quotient bundle of W1 under the homomorphism G, and 
b) at every parabolic vertex P, for t < k o < n, let Jo be the largest j such that 

G [Fjo(W 1)~,] = Fko(W2)e [that is G( Fjo + 1 (W 1)e) ~e Fko(W2)p ] .  Then the weight a~o of 
Fjo(W~) e = the weight flko of Fko(W2) P. 

We remark that if W z is a parabolic vector bundle or X and W~ a sub-bundle 
o f W  2 in the usual sense, then we can define a canonical parabolic structure on W x 
which makes it a patabolic sub-bundle of W z. This is possible because we get a 
canonical "induced" flag in (WOe from that of (W2) e and we attach the same 
weights to the induced flag. We proceed similarly in the quotient situation. Thus, 
given an exact sequence of vector bundles 0--, W~-~W- ,  W 2 ~ 0 ,  with W parabolic, 
we get a parabolic structure on W 1 and W 2 which makes it an exact sequence of 
parabolic vector bundles. (We call 0---+Wl---~W--~W2---+0 an exact sequence ~f  
parabolic vector bundles if it is an exact sequence of vector bundles, W~ is a 
parabolic sub-bundle of W and W 2 a parabolic quotient bundle of W.) 

Parabolic Degree 

Let L be a complex line bundle on X. Its first Chern class determines an element of 
HZ(x ; 77) which is canonically isomorphic to 77. The integer associated to L in this 
fashion is called the degree of L. The degree of L can be computed by taking a non 

zero meromorphic  section s of L and taking the algebraic sum ~ Ordps of the 
PeX 

orders of s at point of X. 
It is well known that this sum is independent of the meromorphic section s. 

(A) Now if V is a vector bundle on X of rank n, we define degV = deg V ,  where 

/ ~ V  is the nth exterior power of V. 

Let now V be a unitary F-line bundle on H + defined by a : F ~ G L ( 1 )  for a 
character a. Let flQ be the generator of the isotopy group FQat a parabolic cusp Q. 
Then a(fle)= exp(2~i0e) for some 0~, 0 < 0Q < 1. Put W =p,(V). 

Proposition 1.9. D e g W = -  ~0Q, where the summation is taken over all the 
parabolic cusps Q in X. 

ProoJ~ Let f be a meromorphic section of V in H ÷. (Such a section exists because a 
meromorphic section of W exists.) Then f is a meromorphic function such that 
f(sz)=a(s)f(z) for s6F. Then d f / f  is a 1-form which is F invariant and hence 
defines a meromorphic 1-form on X. Now for any point QeH, 

R e s p ~ = O r d Q f ,  where Q-~P~X. 
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For  any Q e H  + - H ,  f=z°g (O)  where z=exp(2n i z )  is the local parameter at P e X  
corresponding to Q. Hence we get 

At a point P e X  such that P comes from Q e H ,  the section g o fW o n X  is the same 
as f and O r d Q f = O r d e g ,  whereas at a parabolic cusp P, we have 

O r d o f  = Ordeg + 0. 

Now ~, R e s e ( d f / f )  = 0. Hence ~ 0 O + ~ Ord eg = 0. But 2 0 r d p g  is 
P~X Q ~ P, Q parabolic PEX PEX 

the deg of W, which proves the proposition. 

Corollary 1.10. Let  V be a unitary F-bundle, w=pr , (v )  whose weights at a 
parabolic vertex P are ~1 . . . . .  :t r with multiplicities k 1 . . . . .  k r Then 

degW +  ~. (kla 1 + ... + kra~)=0. 
p parabolic 

Proof. This is immediate from Proposition 1.9 and the definition of degW as 

de (Aw) 
The above corollary leads us to define the parabolic degree of a parabolic 

vector bundle. 

Definition 1.1I. Let W be a parabolic vector bundle on X, with weights at a 
parabolic vertex P e X  given by cq...c~,, whose multiplicities are k 1 ...k~. Then the 
parabolic degree o f  W is defined by 

p a r d e g W = d e g W + ~ ( ~ k i c q ) .  

Thus if W comes from a unitary F-bundle, then par degW = 0. Note that parabolic 
degree is defined even if the curve X is defined over a field which is not 
algebraically closed. 

Proposition 1.12. Let  V be a F-vector bundle on H + associated to a unitary 
F-module E. I f  W is a F-subbundle o f  V on H + which is locally unitary (cf. 
Definition 1.13), then we have pardegpr,(w)=<0, I f  E is an irreducible unitary 
F-module, then par degpr,(w) <0. 

k k 

Proof. By taking A W C A V, where k-- rk W, we can assume that rk W = 1. Now 

WC V and @ V  is again unitary. Assume that par degp~,( W) > 0. 
tf f is a F-invariant meromorphic section of W, then 

pardegpr,(W) = 2 0 r d ~ , f +  2 0,, where R is any subset of H + mapping 
~PcR P parabolic 

bijectively onto X and 0 e is defined at each parabolic vertex P by f ( z )  = ~O~,g(~), 
being the local parameter for P e X .  It follows that as f "  is a F-invariant 

meromorphic section of @ W, we have par degp W = m par degpr,(w) for all 
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positive m. So replacing V and W by + V and + W ,  we may assume that 

pardegpr,(W)~>0. Hence degpr,(w)>>0 and consequently r p,(W) has a non con- 
stant section s which vanishes at least at one point of X. But then s is a global 
section of pr,(V) which is identified with E, and hence S is a constant, which is a 
contradiction. Hence pardegpr,(W)<0. 

We now show that pa rdegpr (W)<0  if E is irreducible as a F-module. Again 
we may assume that W is a F-line bundle on X. If pardegpr,(w)=0,  then a 
generalisation of Abel's theorem enables us to conclude that r p,(W) is obtained 
from a unitary character of F. Without loss of generality we may assume W is the 
trivial F-line bundle on It +. This implies that we have a F-invariant section s of 

k 
A W which is non zero every where, which can be identified with an every where 

k k 

non zero F-invariant section s of A V. As A V is unitary, s is given by a 
k 

F-invariant element o f / ~  E. It is easy to see that s is a decomposable element of 

E because at each point P of H, s(P) is a decomposable element of A W r as all 

elements of ( / ~ W ) a r e  decomposable. Hence s(P)isa decomposable element in 

(AV)p=AEforeachP .  Lets=sA...,",Sk, withs~E. NowsbeingF-invariant, 

the subspace F of E spanned by the s i is s stable under F. This contradicts the 
irreducibility of E as a F-module, unless F=E. Hence pardegpr,(w)<0.  This 
proves Proposition 1.12. 

As a consequence of Proposition 1.12 and following Mumford (cf. [4]), we 
make the following 

Definition 1.13. i) Let V be a locally unitary F-bundle on H + (i.e. V is a F-vector 
bundle on H + defined at each parabolic cusp P by a unitary representation of Fe). 
Then V is F-stable (F-semi stable) if VF-sub bundle W of V in H + we have 

pardegp,r(w) pardegpr,(v),  
rkpr,(w) < rk~(V-~rKp,t ~ ~resp. =<). 

ii) Equivalently, a parabolic vector bundle V on X is said to be parabolic stable 
(parabolic semi-stable) if for every parabolic sub-bundle W of V we have : 

par dcgW par degV,  <)  
rkW < )-k-~7 tresp. • 

Proposition 1.12 shows that a unitary F-bundle V is parabolic semi-stable and is in 
fact parabolic stable if the F-module E is irreducible. 

Remark !.14. If V i sa  parabolic vector bundle on a curve X which is defined over 
an arbitrary field k, then V is defined to be stable (semi-stable) if for some 
algebraically closed overfield (2 of k, V~ is stable (semi-stable) over Xe where 

Va= V X ~ and X~=X X ~2. Note that the parabolic structure on V extends 
k k 
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uniquely to a parabolic structure on l~}r Note also that the definition of stability 
(semi-stability) given above is independent of the field ~ (cf, Proposition 3, 
Sect. 2, [33). 

We shall prove in Sect. 5 that a stable parabolic vector bundle on X = H + / F  
comes from an irreducible unitary representation of F. The category of unitary 
F-vector bundles is isomorphic to the category of unitary F-modules, and is hence 
abelian. The following proposition confirms this result. 

Proposition 1.15. Let S be the category of all parabolic semi-stable vector bundles 
on X of parabolic degree 0. Then S is abelian. Over t1~, the category S of F-semi 
stable vector bundles on H + is abelian and every homomorphism f : V  1 -*V 2 in S is of 
constant rank at every point of H +. 

Proof. We shall only prove the first statement. Let f : V ~ W  be a morphism in S. 
Then f can be factored as 

O ~ V  1 ~ V ~ V 2 ~ O  
,L~ (1) 

0 ~'- W2 ~-- W+-- W 1 0 

k 
where j is of maximal rank, i.e. A J  4:0 where k = rkV 2 -- rkW r 

Now as p a r d e g V = 0  and V is semi-stable, we have pardegVx <0  and hence 
par degV 2 >0. Similarly, par degW 1 <0. Now the weights of V 2 = weights of W1 
and hence par degV 2 = par degW 1, which forces par degV 2 = par degW~ = 0 and 
deg V 2 = degW v It easily follows now that j is an isomorphism. In particular f is of 
constant rank at every point of X and f has both a kernel and cokernel, It also 
follows from (1) that V,~ =0  if V is stable and that W~ = W  if W is stable. In 
particular f is an isomorphism if both V and W are stable and every non zero 
endomorphism of a stable object in S is an automorphism. 

Remark 1.16. Let the category S be as above. If VeS,  then it is easily seen that 
there exists a filtration of V, 

V = V, DV._ 1D...V 1 DV 0 = 0 ,  

where each V~ is a parabolic sub-bundle of V and each V]V i_ 1 being a stable 
parabolic bundle on X of parabolic degree O. Thus for VeS,  we can define 

g r V =  @ Vi~'  l_ 1, where (Vii) is a filtration of V as above. It follows easily from the 

Jordan-Holder theorem that grV is unique upto isomorphism. 

Remark I.I7. Let Vbe a parabolic vector bundle on X with parabolic structures at 
P1 .. . . .  P,. We call the parabolic structure at one of the points, say PI, special if the 
flag at P1 consists only of F 1Vpl = Vel. Let e be the weight of F~ Ve. Let V' be the 
parabolic vector bundle obtained from V by forgetting the parabolic structure at 
P r  Then the functor V-* V' is fully faithful and par deg V' = par deg V -  rk V. ct. This 
gives a method of altering the parabolic degree by introducing special parabolic 
structures at extra points. 
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2. Variation of Stability for Vector Bundles 
with Fixed Quasi-Parabolic Structures 

Let ~" denote the category of all parabolic vector bundles of rank r with fixed 
quasi-parabolic structure at a point P ~ X ,  fixed ordinary degree d 1, fixed parabolic 
degree 0 and varying weights 0<c~ 1 < ~ 2 . . . < ~ r < t ,  with fixed multiplicities 
ml, ...,mr, SO that we have 

~, mi~ i + d 1 = 0. 
i 

We denote by f2 the subspace of IR ~ formed by these 0t=(~ 1 .. . . .  ~r) and call it the 
weight space associated to U. It is clear that f2 is a bounded convex subset of IR'. 
We have 

Proposition 2.1. Given weights (Oto) , there exists a neighbourhood U of ct o such that 
for all V~ ¢/- one has the following: 

V is (Oto) stable (i.e. V is parabolic stable with respect to the weights Oto) =~ V is (or) 
stable for all ot~ U. 

Proof  Let Ve ~ .  Then if WC V, the condition for a-stability is: 

deg W ~k mi~cfi~ 
+ < 0 = par deg V. 

rk W rk W 
Let x(V, W, ot) denote the negative of the left hatld side above. Then there exist 
constants C1 and C 2 such that 

deg W <  C 1 ~ x(V, W, 0t) < 0 

and 

deg W> C2 :::~z(V~ W~ a) ~ 0 

for any ~ ~. Hence assume, 

C 1 =< deg W__< C 2 . (A) 

Then z(V, W,~) varies only over a finite number of linear forms in at. Hence there 
exist a constant 6 > 0  and a neighbourhood U' o f~  o such that for all V~ ~ ,  Vbeing 
ao stable and WC V satisfying condition (A), we get: 

Z(E W,,ot)__>6 for all ~ U'.  

Now for any V~ ~ and WC V, 

Ix(~ w , ~ ) -  z(v, w,~')I < 0t~-~ ' I  ~ , 

where 0 is an absolute constant. 

Hence [ot-~t'[<2- ~ implies that x(V,W, ot)__>6, which in turn implies that 

6 
z(~ w,~ ' )>  ~. 

1 [[ denotes here the Euclidean norm in ~" 
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Choose an open set U C U' with aoe U and such that 1~-~o1<6/20 whenever 
6 

e e  U. Hence if Ve~U, the (~o) stability of V implies that Z(E W,~)> ~ for WC V and 

W satisfying condition (A). If deg W> C 2 then V would not be (a0) stable. If deg W 
=<C 1 then in any case V is (~) stable. The proposition follows. 

Definition 2.2. Let k be a positive integer, 1 _< k_< r and choose integers n~l ..... nik 
such that nii =< m h, .... n~k__< m~, where m 1 . . . . .  m r are the multiplicities of the quasi- 
parabolic structure on ~ .  Choose a positive integer d with d < - d 1. Then consider 
the set of all ~e ~ with ~2 nlcq~ = d and let D be the union taken over all possible 

k 

integers d with 0 < d <  - d  1 and over all {nil, .... nix } with ni~ <=mi~, .... nik<mi~. We 
call D a distinguished subset of f2. 

Proposition 2.3. Let K be a compact subset of f2 - D. Then there exists 6 > 0 such 
that for any Ve ~U, W C V and ~ e K, we have [z(V, W,, ~)t > & Hence for any Ve ~ ,  if V 
is a-stable of any e e K  then there exists 6 > 0  such that z(V, W,,~)>6>0 for all 
o ~ e K C ~ - D .  

l , oo/We and 
\ 

expression ~ n ~  is never an integer. Therefore the linear form represented by 
k 

z(V, W,,~) ~ 0  on K. Now there exists C>O such that: 

ldeg Wt > C=~ b~(V, W,e)I > 1. 

Now as V ranges over f -  and W ranges over all parabolic sub-bundles of V with 
the condition that [deg WI _-< C, the set of linear forms in a represented by z(V, W, a) 
is finite. Each such form does not vanish on K. This finishes the proof. 

Proposition 2.4. Let (~'-D)i  be a connected component of ~ - D .  Then for any 
VeU,  we have that the eL stability of V implies the ~ stability of V whenever both a 
and a 1 both belong to (g2-D)v Moreover, if Ve¢/" and a e f 2 - D ,  then ~ semi- 
stability of  V implies the ~ stability of V. 

Proof We have seen that there exists an absolute constant 0 such that 

Iz(V, W, ~ ) -  z(V, W, a~)l < Ola-atl .  
Further, there exists 5 > 0 such that z(V, W,, c¢) => 5 > 0 whenever Ve ~F- is ¢z stable and 
at belonging to any compact subset K of f 2 -D .  Hence we deduce that if a and i~ 1 

belong to K and 1~-ahl__< b~o' then V is a stable if and only if V is a a stable. Now if 

~ and ~2 are two points of a connected component of ~2-D, then we can join a~ 
and e2 by a finite sequence of open subsets Vj such that V~ is open in ((2 - D)i and 

each V~ is relatively compact and is contained in a disc of radius ; .  Hence it 

follows that V is ~ stable if and only if V is ~' stable. The second part of the 
proposition is obvious from the definition of the set D. 

Definition 2.5. Given weights ~e(2, denote by o~ the set of all couples (V, W) with 
WC V, Ve ~ and z(V, W, ~ )#  0, or equivalently parabolic degree of W with respect 
to  ~t 4:0. 
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Lemma 2.6. Let K be a compact subset of 0 such that ~ is independent of ae K. 
Then 

1) par deg W with respect to a = 0 if and only if par deg W= 0 with respect to [i 
whenever a, [it K and for any V~ *IY, WC V. 

2) There exists an absolute constant 6 > 0  such that Ix(V, W,a)]>6 whenever 
x(V, W,a~0,  for a~K,  V ~ "  and WC V. 

Proof 1) is clear from the assumption. Now Ix(V, W, c0t > 1 for any aef~ whenever 
]deg WI >> 0. Hence there exists C > 0 such that I)~(V, W, a)[ > 1 for any a e g2 whenever 
Ideg WI > C. The set of all linear forms )~(E W, a) with ]deg WI < C is finite, denote it 
by S. Hence there exists 6' such that I)~(V, W,a)]>6' whenever zeS ,  a e K  and 
(V, W)~ ~ .  Hence if 6 = inf(1, 6'), we get Ix(V, W, a)] ~ 6 whenever (E W)~,~-~ for any 
aEK. 

Corollary 2.7. Let K be a compact subset of  (L Then we have the following : 
1) For any a in a connected component of  K and for any (V, W)e ~a, the sign of  

the form x(V, W,a) is the same. 
2) Let K o be a connected component of K. Then for Ve ~t/~, V is a-stable if and 

only if V is [I-stable for a,[i~K o. Similarly, V is ot semi-stable if and only ij V is [i 
semi-stable for a, [ie K o. Further, if V is a semi-stable, the family of sub-bundles W of 
V such that pardegW=0 is independent of aEK, so that if Ve "U and V is a semi- 
stable gr V is independent of  a~ K. 

The proofs are immediate. 
Recall that if d is any positive integer less than -d~  and n~<m~, 

n~ < m~ ..... n~ <mz~ are positive integers, where m~ ..... m, are the weights of f ,  
then we have defined (Definition 2.2) a subset of f2 as consisting of those weights a 

with ~ nze~ = d. Call this subset (distinguished subset) D. Now we have 
k 

Lemma 2.8. Let OtoE ~. Let E o be the intersection of all the distinguished subsets D i 
passing through ot o. Then there exists a compact neighbourhood U of a o such that if 
K =  UC~Eo, then ~ is independent of aeK.  

Proof Since there exist only a finite number of distinguished subsets, we can find a 
compact neighbourhood U such that U does not meet any distinguished subset Dj 
with a o not in D~. It follows that for K =  Uc~E o, aEDk~PeD k for a, p e K  and any 
distinguished subset D k. It follows now that if we define G~ to be the family of 
distinguished subsets passing through a, for any ae  K, then Ga is independent of a 
for aeK.  Let now VeU and W c V b e  such that a 0 pa rdegW=0 if and only if 
x(V, W, a0)=0. But z(V, W,a)=0 defines a distinguished subset. Hence for any a e K ,  
x(V, W,a)=0 implies that a pardegW=0.  Hence it follows that for a0eK,  a o 
pa rdegW=0 if and only i ra  par degW=0, for at o, a eK.  This proves the Lemma. 

Corollary 2.9. Let ae ~2. Then there exists a' such that 
1) a' is rational, i.e. has rational components. 
2) For V~ ~tf, V is a stable (semi-stable) if and only if V is a' stable (semi- 

stable). 
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3) I f  V is ~t semi-stable, then its subbundles of  par deg 0 with reference to ot are 
the same as those for ~'. In particular c t -  gr V=0t' - gr V. 

Proof This is a consequence of the fact that the distinguished subsets are defined 
over Q. If ~tet2 and E~ is the intersection of all distinguished subsets passing 
through at, then there exists ~t' in E~ with at' rational. This ~t' has the required 
properties. 

Remark 2.10. By Corollary 2.9, for the construction of the moduti of parabolic 
vector bundles, we could have assumed that the components (~) of ~t are all 
rational. We now show that the components can be taken to be non-zero. Assume 
we are given weights at a point P e X ,  

Choose a real positive constant fl such that if ~'~= a t + fi, 1 < i <  r, then 0 < ~'1 
<'a~... < ~'~. Let S be the category of all parabolic semi-stable bundles of fixed rank 
and fixed ordinary degree and parabolic degree 0 with respect to a. Let S' denote 
the same category, but with respect to at'. Now par degV>0 for any V~ S'. We 
assume that fl was chosen such that the pattern of stability and semi-stability is the 
same in S and S'. Now take a line bundle L such that deg(V®L)<0 for any V~S. 
Let S~ be the category {V®L},  VES. Again S, and S' have the same pattern. 
Choose a point Q 4: P and introduce a special (cf. Remark 1.17) parabolic structure 
at Q so that the new parabolic degree is zero, say for the new category S 2. Once 
again it follows that S 2 and S, and hence S 2 and S have the same pattern of 
stability and semi-stability. 

3. Properness of  the Variety of Parabolic Semi-Stable Bundles on X 

Let X be a smooth projective curve over an algebraically closed field k. Let P 6 X  be 
a fixed point. We consider the category of all parabolic semi-stable bundles on X 
with fixed rank, weights 0<cq  < ~ 2 . . . < a r < l  and fixed parabolic degree. The 
quasi-parabolic structure at P is given by: 

V v = F I ( V p )  D F 2 ( V p ) . . .  D F,(rv). 

We put k~=dimFi(Vp)-dimF~+l(Vv), l_<i_<r-1  and kr=dimF~(Vv). 
If Wis a finite-dimensional vector space over k, we denote by ~(~40, or just ~ ,  

the set of all flags of type as above, i.e. the set of all flags W= 14'] 3 W2... 3 I~ with 
dim Wi-d im I,t~+ 1 =kl, 1 <_i<_r- 1 and dim W~=k,. 

By a family of  parabolic vector bundles on X, parametrized by a k-scheme S, we 
mean: 

i) a vector bundle V on X × S, and 
k 

ii) a section of ~ ( V ) / P  × S, where o~(V) is the flag variety on X x S and P ~ X  is 
the point where the parabolic structure is situated. 

Let R = k[ [T] ]  with quotient field K. We shall prove: 

Theorem 3.1. Let V be a parabolic semi-stable bundle on X K = X  x K. Then there 
k 

exists a parabolic bundle W on X R = X  x R such that the generic fibre of  W is 
k 

isomorphic to V and the special fibre of  W is semi-stable on X R x k =X. 
R 
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Before the proof, we recall the notions of "fl sub-bundles" according to 
Langton [3] and "strongly contradicting semi-stability" (S.C.S.S.) according to 
Harder-Narasimhan [2]. Let E be a parabolic vector bundle on X of rank n and 
parabolic degree d. For any subbundle F of E, we define 

par degF 
p(F) = r k F  

Similarly, we define 

fl(F) = (par deg F) (rk E ) -  (par deg E) (rk F) 

= n par d e g F -  d rkF .  

It is easily seen that E is semi-stable (stable) if and only if/~(F) =< p(E) (/~(F) < #(E)) 
for all F C E. Equivalently E is semi-stable (stable) if and only if fl(F)<= 0 (fl(F)< 0) 

for all F C E. Now assume E is unstable, i.e. not semi-stable. Let/z 0 = sup/~(F) and 
FcE 

fl0 = sup fl(F). Define 
FcE 

S =  { F C E f# (F)=  tto} 

and 

T =  {F C E[fl(F) = rio}- 

It is clear that if F belongs to Sc~ T, we have 
i) F is semi-stable, and 

ii) for every F 1 CE with F C F  1 CE, we have #(F)>/~(F1), or equivalently, for 
:V 

every Q c E ,  we have/~(Q) </~(F). 

Now we claim that SnTcons is t s  of a single element. To show that Sc~Thas at 
most 1 element, we quote 

Lemma 3.2 (cf. Harder-Narasimhan [2], Lemma 1.3.5). Let  F a and F 2 be 
subbundles o f  E such that F 1 is semi-stable and /~(F2)>/t(G ) for  every G with 

F 2 C. GCE.  Then if F 1 is not contained in F2, we have/~(F2)>#(Fx). 

Now any element of S of maximal rank belongs to T and any element of T of 
minimal rank belongs to S. Thus SnTcons is t s  of only 1 element, say B. It follows 
that B is "S.C.S.S." in E according to Harder-Narasimhan [2] and that B is the 
"fl-subbundle" of E according to Langton [3]. We list the properties of B that we 
shall need : 

1) fl(G)<fl(B) for all G C E  with GCB. :V 

2) If F C E and fl(F) = fl(B), then F D B. 
Now letX, k, and R be as above and let ~ be the generic point of X considered 

as a closed subscheme ofX R. Let z be the generic point o fX R. If E is a rank r vector 
bundle onXR, then E¢ is a flee module over (Px~,¢ of rank r and E C E  z, which is a 
vector space of rank r over 6xR,~. 
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We have 

Proposition 3.3 (cf. Lang ton  [2], Propos i t ion  6). Let  E K be a vector bundle on X K 
and M E Er~, ~ a free module over (gxR" ~ o f  rank = rank E r - -  r say. Then there exists a 
unique torsion-free sheaf E on X g  such that the generic f ibre o f  E is E K and the 
special f ibre o f  E is torsion-free on X k = X  with M = E~. 

Note  that  E and the special fibre of  E are vector  bundles on Xg and X 
respectively. Note  also that  if we are given a parabol ic  structure on E K, we can 
extend it uniquely to a parabol ic  structure on E. Locally, E is obta ined as follows ; 
assume X affine, then E is defined to be the sheaf associated to the module  Mc~N, 
where N is F(XK, EK) and M is a free module  of  rank  r over  (gxR,¢, and MCN~.  

N o w  let E be a vector  bundle on X R. Then E~ is a free module  over  Cx~ ' ¢ Let  
E~ be a sub-sheaf  of  E, locally free and such that  the sheaf C, given by 
0--*E 1 - * E ~ C ~ 0 ,  is a vector  bundle on X. Then if (e 1 . . . . .  e,) is a basis for E, it is 
easy to see that  (e 1 . . . . .  e ,  ne~+ 1 . . . . .  zre,) is a basis for El,  ¢, where r = rank C and u 
is a pa ramete r  for R. Conversely,  start ing f rom a basis (e~ . . . . .  e,) for Ee, let E 1 be 
the vector  bundle on X R determined by the free module  which has for a basis 
(e 1 . . . . .  e., ne~ + 1 . . . . .  he.) over (gx~ ' ~. Then E~ is a subsheaf  of  E and the co-kernel  of  
E 1 ~ E  is a vector  bundle on X of  rank r. Thus  given a vector  bundle E on X m there 
is a canonical  bijection between:  

1) quotient  sheaves (~ of E which are vector  bundles on X, and 
2) sub sheaves E 1 of  E which are locally free and a basis for E~,~ is given by 

(e 1 . . . . .  e .  nG+ 1 . . . . .  he.), where (e 1 . . . . .  e.) is a basis for E¢. 
N o w  suppose that  E r  is a parabol ic  semi-stable vector  bundle on X of rank  n. 

Extend E K to a parabol ic  vector  bundle E on Xg by choosing any sub-module  of  
EK,¢which is free over  (gxR ' ~. Assume t h a t / ]  = restriction of E to X is unstable. Let  
B C E be the fi-subbundle of E and  look at the sequences 

O ~ B ~ E ~ F I  ~O , (1) 

O ~  E 1-* E ~ ff 1-*0. (2) 

Tensor  (1) with (9 x and  as Tor~'~-((gx, P l ) = P l ,  we get 

0--*F 1--*/21 ~ E ~ F  i -~0. (3) 

Split (3) into 

0 ~ P 1 - * / ~ 1 ~ / 3 ~ 0  and O ~ B ~ E - ~ F I ~ O .  

Proposition 3.4. I f  G1C/~ l, then fl(G1)Nfl(/~), with equality holding only if 

aIuFi =gr 
Proof From O~B~E-~FI-~O we get fl(B_)+fl(_.Fi)=fl(E) and as fl(/~)=0 and 
fl(]3) > 0, we get fi(F I) < 0. First assume that G I_C F r Then as E/B ~ F I, we get that 
(?'i corresponds to a bundle (~ with BCGCE and G/B~G r Thus fl(G)__<fl(]3). 
Hence fl(G_l) = f i (G) -  fl(/~) ~ O< fl(/]). So assume that  G 1 ( P 1. Put  J1 = ~ i w P 1 and 
11 = Glc~F r Then I i C F 1 C J r  Since r I C F 1, fl(/_.-1)<0 by the above a rgumen t ;  
hence fl(Gi) < fl(G 1 ) -  [3(11). But f l ( G i ) -  fl(I1)--< f l ( J1) -  fl(F1). N o w  with E I / F  1 ,~ B, 
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J 1 3 P l  corresponds to a subbundle J C B  with J ~ J f f F  v Consequently /3(Y0 
- fl(F1) = fi(J) < fl(/~), with equality holding only if J = B, i.e. only if J1 = El. 

Now we proceed to the proof of Theorem 3.1. Let E K be a semi-stable 
parabolic bundle on X~ extended to a bundle E on X R. If/2 = restriction of E to X, 
is semi-stable, we are through. If/~ is unstable, define E °) to be the kernel of the 
map E-~P t -~0, where F1 is defined by the sequence 0 - ~ / ~ - ~ / ~ P  1,/~ being the 
fl-subbundte of/2. Continue in this fashion to get a sequence of bundles E ~") on X R, 
all of which are generically isomorphic. If ~ is semi-stable on X for some m, we 
are through. Assume that /~(") is unstable on X for all m and we derive a 
contradiction. Denote by /~(m) the/3-subbundle of/~('~ and put /3"  = fl(/](")). We 
have/3, .>0 for all m and by Proposition 3.4, the {/3,.} form a strictly decreasing 
set. Since the set {/3,.} is discrete, we must have /3,.--=/3,.+1=/3,~+2 from some 
integer onwards. Thus /~,.)~/(v")=/2("), where /((,.)=ker/2~")~/2 ¢"-1). So 
rankB(")+rankR(")~r=rankE.  But rank R ~ " ) = r - r a n k / ]  ("-1), so rank/~ ("~ 
>rank/~ ("-1) for all m>0.  Now as rank/ ] (" )<r  for all m, we get that rank/~ ~") 
stabilizes. Thus rank/~(") + rank R (") = r for all m >> 0. Hence/](,.)n/((,.) = 0 for all 
m>0,  which means that the canonical map /2~,.)~/2(,.-1) maps /~(=) into /~(,.-~) 
injectively. Further, as/3(/~c,.)) and rank/~,.) are constant, we get that degree/~(") is 
constant for all m>0.  In particular the canonical map /~(")~/~¢,.-~) is an 
isomorphism for all m>0.  Without toss of generality, we may assume that the 
isomorphism holds for all m. 

The proof of the next lemma is taken from Langton (cf. [3], Sect. 5, Lemma 2). 
We include the proof here for the sake of completeness. Note that although the 
discussion in [3] applies only to ordinary vector bundles, the extension to 
parabolic vector bundles is immediate. 

Lemma 3.5. Suppose we are given an infinite sequence of inclusions of  bundles on 

X R : 

E ("+ 1)___~ E(")..--. E(O), 

where each E (") has degree 0 and the maps induce isomorphisms generically. Assume 
that if E m) is free with basis (e 1 . . . . .  e,) over the ring (gxR ~, then E ~") is free with basis 
(e 1 .. . . .  e,, n"e,+ 1 .. . . .  nine,) over Ox, e" Denoting by F¢"i-the image of  F.("+ 1) in E("), 
assume j'urther that the induced mapsF(")-@ ("- 1) are isomorphisms for all m. Then 
/3(P%__<0. 

Note that all the assumption hold in our previous considerations. 

Proof For any integer m, denote by X,. the infinitesimal neighbourhood of X of 
XR 

order ( m - 1 )  in Xg, i.e. X , , -  (re")" If G is any sheaf on X R, denote by G" its 

reduction modn".  Denote by (el ..... ~,) a basis for p~o) and extend it to a basis 
(~, ..... ev, ~+  1,..., ~,) for/2e. This lifts to a basis (e 1 ..... e~) for E~ °). Hence E~ ") is a 
free module on (e~ . . . .  , ev, nmev+ 1 .. . . .  n,.e,). Reduce the inclusion E ("~ C E (°) to X"  to 

et (,,)_~ co) g a map E,, E , , .  Let F,, denote the image of this map. In particular F~ = ~(o) 
Now for any l>0 ,  E~ ~ is a torsion free sheaf on X", i.e. for all U open in X,,, 
E~)(U)CE~),~. This is obvious as both E m and/](0 are torsion free on X~ and X 
respectively. Moreover, F,, C E" is a subbundle, i.e. F,.(U)= Em(U)c~F,.,~ for any 
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UCX open. Now define sheaves Q., by 

E~mm) --~ Em--. Q,n--~ O . 

It is easy to see that the inclusion E~")-~E also has Qm as its cokernel. Hence we get 
an exact sequence 

O~ E(m) ~ E ~Q,,,~O . (1) 

Tensor (1) by Cx~ n,.(gx-- ~ to get 

O~Q,.~E~")--*E,.~Q.,~O, (2) 

which breaks up into 

O~Q, .~E~")~F. ,~O and O~Fm--*E,.~Q,.--*O. 

m _ m. Pull the homomorphism Let Jm,m' be the closed immersion X m, ~X, .  for ' <_ 
(m).__~ __, E m F m E m t o X  re,roger 

(m) "* __~ E m, --*Jm,m,(F,,,) Era.. (3) 

The sequence (3) can be factored as follows: 

,Em, 

\ / 
j* m,(Fm) 

So there exists a map:  

j *  m,(Fm) -~ Image ( E ~ - ~  Em,) ( Image (E~,')-~ E m, ). 

Putting m' = 1 and "* - "* Jm, 1--Jra, we get 

if(F,.) ~ Image(/~(")~/~) C F.  

Hence we have Image(/]~")~/~)=P and so j*(F, . )~F~O.  Further, in 
Em~E~m'~Q,.~O, compose E~")~Fm~O with F,.CE,,, to get the canonical map 
E~")~E Reducing to X we get r a  - - m "  

t (4) 

, Et") ,j*(V,,,) ,0 

Denote by k ~") the kernel of/7:~,.)~/~m-1) AS pt , . -~)~p~m-z) is  injective, /~tm) is 
also the kernel of/]Cm)~/SL Going back to the inclusion E (m) C E ("-  ~) C E ~"- 2) .... we 
have 

O'-~E(m)-->E (m- 1)-+L(m)--*O s a y ,  (5) 

where L ~m) is a line bundle over X, This results from the basis of E (m) and E ~"- ~) as 
modules over OxR,¢. Reduce (5) to X to get 

O---~ L(m)-.~ Elm)--~ E( m- 1)-~L~m)_+O, 
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Hence we get a backward map E t ' -  1)~/]~,,) whose kernel is precisely the image of 
/]~,.)~/~m- 1), or ~ " -  1) But, recalling that k ~m- 1) is the kernel of/]~m- l~__./]~m- 2) 
and that p(m-1)~F~,,-2) is injective, we get pc,,-1)c~/~(,,-1)= 0 or that the map 
/~ , , -1)~/~ , , )  is injective for all m. By degree and rank considerations, we get 
/~ , , )~ /~ , ,+  1) is an isomorphism for all m. Hence, in the diagram (4), we get that 
the kernel of/~(") to/~, which is k ~"~ by the above argument is also the image of 
/~__./~m). Thus the map j*(F,,)~P, which was surjective, is also injective for all m. 

"~ __~ Consider Jm,m,(Fm) Fro,, for any m'<_m. Let W be the cokernel, we get 
j*~,(Fm)~Fm,~W-~O. Reduce to X to get j,~(F,,)~j,,,(F~,)~jm,(W)~O. But the 
first arrow being an isomorphism, we get that j* , (W)=0 and hence W=O. We 
want to show now that "* j,,,,.,(F~)~F,,, is injective. We have j*(F,.)C/~ for all m, 
hence for x~X m, (Fm)xnn(Em)xCn(Fm) x. We will show that 

m' m' (Fm)~C~n (E,.).Cn (Fro) x for all m'<m, which will prove that j*,m.(Fm)-.Fm, is 
injective. Assume by induction that (F,.)S~n"(E.,)~, C n"(Fm) ~ for all n with n <m' .  
Let " '  a e  (Fm)f~n (E,.),. Then aE n " ' -  a(F,.) x and consequently a = n " ' -  lb = nm'c, 

E~ 
where bE(F,.)~ and ce(E,.)~,. It follows that n ~ ' - ~ ( b - n c ) = 0  in (E , . )x-n"(E)~ '  

hence b - nc e nm- m' + I(E)~, or b - nc = n" - " '  + 19, where g e (E,.)~. Thus 

b = n(c + n " - " g ) E  (F,.)S~n(E.,). C 7~(F,.)~. 

So b = nh, with he (F,,)~ and a = n"'  - l b = n " ' -  l(nh) = n"'h with h e (Fm) ~. Hence 
m' a~n  (Fro) ~. 

Thus we have a sequence of bundles F m on X m with j,.,m,(Fm)~ F m, for any m, m' 
, <  with m =m. By [E.G.A., III,  5.1.5 and 5.1.3] there exists a locally free subsheaf F of 

E with F = lim F,,, where limF,, is the completion of F along X and j* (F )=  F, where 
j is X ~ X  R. Now F~ is a subsheaf of E~ and hence inherits a parabolic structure, 
which extends uniquely to a parabolic structure on F. Now as E~ is semi-stable, we 
must have par degF~ <0,  which implies that par degj*(F)= P < 0, or that fl(F)<0, 
which completes the proof  of Lemma 3.5. But j * ( F ) = F  has positive parabolic 
degree, which is a contradiction. Hence E~ extends to a semi-stable parabolic 
vector bundle E on X~, thus completing the proof of Theorem 3.1. 

4. Existence of the Moduli Space 

Let X, as usual, be a smooth projective curve of genus g >= 2 over an algebraically 
closed field k. Consider the set of all parabolic semi-stable bundles of rank k, fixed 
quasi-parabolic structure at a given point P, fixed weights 0<c~ 1 <a2 . . .  <~r < 1 
with all (~i) rational, fixed degree d and parabolic degree 0. Denote this set by 

S(k,~,d,O) or just S. Recall that if V~S, then gr(V) is defined to by O VJVi- 1, 
i 

where V= V. D V n_ 1.,, D V0 = 0 is a filtration (cf. Remark 1.15). Define V and V' to 
be equivalent if gr V= gr V'. 

We shall prove the following theorem: 

Theorem 4.1. 1) On the set of equivalence classes of S, there exists a natural 
structure of a normal projective variety of dimension k2(g- i ) +  1 + dim ~-, where 
is the flag variety of type determined by the quasi-parabolic structure at P~X. 
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2) Let X=H+/F  as in Sect. 1 with Q~H + the parabolic vertex of H + 
corresponding to the point P~X. Let FQ be the stabilizer. Then the above variety is 
isomorphic to the equivalence classes of unitary representations ofF with the image 
of the generator of F a being conjugate to the diagonal matrix (exp2ni~ 1, 
exp2~ia 2 .. . . .  exp2z~iar), each ai being repeated k i times, where (ki) are the multipli- 
cities of (ai). 

Further, in 2) the parabolic stable bundles correspond precisely to the irreducible 
unitary representations of F. 

Proof As the statement of the theorem refers to parabolic structures at only one 
point of X, at the end of the proof  we shall indicate the changes that have to be 
made in order to handle the case of parabolic structures at more than one point. 

We first note that the set S is bounded, i.e. there exists m o such that for all 
m>m o, we have H'(V(m))=O and H°(V(m)) generates V(m) for all VeS. This 
follows from observing that the degrees of all indecomposable components of Ve S 
are bounded both above and below and then by applying a lemma of Atiyah [1]. 
Furthermore, by the same reasoning, it follows that for any real number 0, the set 
of all subbundles W of elements of S with degree W> 0 is also bounded. 

Choose an integer m such that:  
1) m> g+ l 
2) HI(W(m))=O and H°(W(m)) generates W(m) whenever W~S(k,~,d,O) or 

WC K V~ S(k, a, d, 0) and deg W_-> ( -  g - 8) k. 
2nO 

Choose an integer N with N >  , where 0 is a positive constant with 

degW(m)<=O for any WC t~ V~S(k,a,d,O) and n is the common dimension of 
N 

H°(V(m)), VeS(k,~,d,O). Also choose e =  - .  Let E be a vector space over k of 
m - g  

dimension n, also denote by E the trivial bundle over X of rank n. Denote by 
Q(E/~), or just Q, the Hilbert Scheme of coherent sheaves over X which are 
quotients of E and whose Hilbert Polypomial is that of V(m), V6 S. Denote by R 
the open subset of Q consisting of those points qeQ such that if E - ~ 0  is the 
corresponding quotient, then H ' ( ~ ) = 0 ,  H ° ( ~ ) ~ E  and o~q is locally free. It is 
known (cf. [10]) that R is a non-singular variety of dimension k2(g- 1)+ 1 + n 2 -  1. 
If the sheaf G on X x Q is the universal quotient, denote its restriction to X x R by 
U ,  which is a vector bundle on X x R. Denote by ~ ( U )  the flag variety over X x R 
and use the same letter to denote the restriction o f  ~(~U) to (P) x R. Call the total 
space of this flag bundle/~, with projection z~ : R ~ R .  

We see that R has the local universal property for parabolic bundles, i.e. if ~ is 
a parabolic vector bundle on X x T with H'C#/~t) = 0 and H°(U~/~) generating ~ for 
all te  T, the Hilbert Polynomial of ~ = P for all te T, then for every t o e T there is a 
neighbourhood U of t o and a map f :  U ~ R  such that ~W is the pull-back via f of 
the universal bundle~ ~ on X x R. Further f is unique upto an action of SL [H°(~//~t)]. 

Denote by RS~(R9 the set of points qe R such that the corresponding parabolic 
bundle on X is semi-stable (stable). We shall prove that R s~ and R ~ are open subsets 
of R. 

Denote by G the group SL(E). Then G acts on Q and it is easy to see that R is a 
G-invariant subset of Q. G also acts on/~. 
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If PeX is the point where every V~S(k, ot, d,O) has a flag 

v,, = F, v~ ~ F2(V~)... D Fr(V~), 

define t i = d imF 1Vp- dimF~V., 2 ___ i < r and t 1 = k, Let H.,k(E), or just H~, k denote 
the Grassmannian of k dim quotients of E and denote by Z the product space 

H,,N,k × (I Hn,, . 
i = l  

In order to define a linear action of G on Z, we have to define a polarization of Z. In 

general if a variety X is a product ~X~ with each PicX~ = 2~, then by choosing an 
i 

ample generator for PicX~, we can write an ample line bundle on X by (ai), where 
each a~ is a positive integer. Hence we can define a polarization on X by (q~), where 
each q~ is a positive rational number. We give Z the polarization: 

We require a characterisation of stable and semi-stable points of Z for this 
polarization, In fact, more generally if 

3! 

W= [l H,,k,(E) 
k - - i  

and W carries the polarization (51 ..... 3N), then we see easily from the com- 
putations of (§ 4, Chap. 4, [5]), that a point w of W represented by 

qoi:E-,Vi, 1<_iNN, dim V~= ki 

is stable (resp. semi-stable) if and only if for any proper linear subspace M of E, we 
have 

(*) dimE {~=~ 6i'dimq~(M)} >dimM {z~ 6~k,}(resp. > ). 

We define a map T : R ~ Z  as follows: 
If q~R, then by writing E~ffq--,0,  we get Ee,~(~q)e ~0 ,  1 <iNN, where the 

P~ are N arbitrarily chosen points on X, different from P. This gives the 

"co-ordinates" of T(q) in H,,k(E) N and for the co-ordinate in 15I H,,t,(E ) we take 
i = l  

the quotients 

F,(V~) E--,Vp=F~(Vp) , E--, F~(ve) ..,E-+ --.  
Fz(Vp)' " F~(Vp) 

It is easy to see that T is a G-map from/~ to Z. With this map T, we have 

Proposition 4.2. 1) qe  R~ ~ T(q)~ Z ~. 
2) qe~S~T(q)cZ~. 
3) qeR, q 6 R ~  T(q)6Z ~. 
4) qeR~,q6R~T(q)~Z~. 
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Note that 3) and 4) will prove that/~'" a n d / ~  are open subsets of/~. Here Z ** 
and Z ~ are the semi-stable and stable points of Z for the action of G on Z and the 
polarization defined above. 

Proof For every subspace M of E, denote by M~ the images of M in V(m)e,, 1 < i 
< N  and by N i the images of M in F~(Ve), FI(Ve) FI(VP 
- F 2 ( ~ )  . . . . .  F r ( V p )  

If dimM =p, we have to prove that [because of (,) preceding Proposition 4.2] 

[ ]) 
n(~=~ dimMi+e(1-er)dimNl+e~(e~-e~-~)dimN~)~=2 

(I) >p Nk+e (1 -e~ )k+  ~ ti(c~i-ei_l) . 
i=2 

and > holds if V is stable. 

Now for any V, wt V= wt Vp is defined by 

wt V e = ~ 1(dim F 1 Vp - d i m F  2 Ve) + ~2(dimFa V~, - d i m F  3 lip) 

+ ~, dim F, V e . 

Hence 

dim V r -  wt V e = (1 - ~1) (dimE1 - dimF2) + (1 - c%) (dime 2 - d i m F s )  

+(1 - a t )  dimF, 

= (1 - el) (dimF1 - dimE2) + (1 - Ca) [(dim F1 - dim F2) 

- (dim F 1 - dim F 3)] 

+ (1 - e,_ 1) [(dim F ~ - dim F 2 ) -  (dim F ~ - dim F, _ ~)] 

+ (1 - ~,) (dim F~) 

= (1 - ~,) d imF 1 + (~2 - cq) (dimF1/r)  + . . .  + ( ~  a,_ 1) (dimF1/F~) 

after re-arranging the terms. 
Hence, we have 

el ( 1 - a ' ) d i m F 1  + i~2 (a i - a i - l ) t i ]  =e[dimVe-wtVe]" 

Similarly, 

(1 - cQdimN 1 + ~ ( a i - a i_  1)dimNi = d i m N t  - wtNl .  
i = 2  

Thus condition (I) of semi-stability (stability) becomes 

n[i=~dimMi+e(dimNl-wtN1) ] >p[Nk+e(k-wtVe)] 

(>  for stability). 
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Now for any subspace M of E, denote by W(m) the vector bundle generated 
generically by M. We have W(m)C V(m) for all V~S and MCH°W(m). For any 
M C E, define 

aM=n ~ dimMi+e(dimNl-WtNO 
i = 1  

-p[Nk+e(k-wtV)],  where d imM=p.  

Define 

ZM = n[N rk W+ e(rk W -  wt tV)] 

- dim H ° W(m) INk + e(rk V-  wt V)]. 

We have to show % >0(>  0) for V semi-stable (stable). 

Case 1. Assume that M=H°W(m), M generates W(m) and H'W(m)=O 

Then we have aM =)~M" 
Further, 

ZM h°k(m)IN+ ~ wtW] h°W(m)[ wtV] 
krkW - C r k W  1 rkW N + e - e , ~ ] .  

As pardegV=0, we have degV+wt V=0, and as pardegW<0, we have wt W___< 
- deg W 

Consequently, 

ZM _(h°V(m) h°W(m)l, N (h°V(m) wtW h°W(m) w t ~  
k-rkW \ rkV ~ ) t  + e ) - \  rkV "rkW rkW }k 

>(degV degW'~. N . . [h°V(m) degW t [h°W(m)degV) 
= ~rl~:17 }-k-i/V) ( + )+e~ ~ -  r ~ ]  - e  I ~ rkV ]" 

Now the R.H.S. above 

deg W t , [deg W~ ,/de e V'~ 
rkW ] +e(m+ 1-g)~ r ~ -  } -e(m+ 1-g) i  r - ~  ) 

degW) ,/degW degV) 
-~W] +e(m+l-g) l rkW rkV ]" 

, ,/degV 

= ( N + e ) (,d-~ gV 

Hence, 

gM [degV 
k-rk W\ rk V 

B u t  

d-~gnW (N - ~[m - g]). ) 

N M 
= - -  hence - - > 0 .  (2) m - g '  krk W - 

Further, from the above calculation, it follows that V is stable, the inequality in (2) 
is strict. If V is semi-stable but not stable, then by taking M=H°(W(m)), where 



230 V.B. Mehta and C.S. Seshadri 

Wfi V and par deg W=O, we get that Zu =0. And if V is unstalbe and WC V with 
par deg W>O, we get )~M <0  where again M =H°(W(m)). 

Thus the proposition is proved in case (1) and the assertions about/}ss and/}s 
being open subsets of R are established. 

We continue with the proof in the other cases. 

Lemma 4.3. Zu > 3N if degW<(-#-8)k. 
k.rk W - 

Proof We have 

n( 1 (wtW 1 ]] 
ZM > N + 

k.rkW = k\ m-g \ r k W  m-g]] 

- 1+ rkW ] N l + m L g ~ m L g  . 

[For this inequality, we use R - R  and the fact that dimH°W(m)<degW(m) 
+ rk W..] 

Now the R.H.S. in the first sentence above 

[ 1 (1-wtVl][degV degW m _ l  ] 
=N l + m _ g ~ j j L - r ~ - + m - g + l  rkW 

N [degV + l ) ( W t V  wtW/  
~-#-g~rk-V- +m-g \ r kV  rk W J 

I l (  wt  lldeg  deg  r = N  1+ 1 
m - g  - "rkVJJ I rk  V rk W g 

N deg V 

+ Irk V rk W ]" 

wt V wt W 
> -  2, the second summand in the above expression is greater As rk V rk W = 

than or equal to 4N. Likewise, the first summand is greater than or equal to 

N/deg V deg W ) 
\ rkV rkW g • 

Hence, 

XM >N{degV degW ) 
krkW= ~ rkW g - 4  . 

As we have assumed that d e g W < ( -  9 -  8)k, we have 

deg W < deg V 
rkW rkV - 9 - 7 .  

Hence we get the assertion of Lemma 4.3. 
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We now assume that  d e g W < ( - g - 8 ) k .  N o w  aM=)~M+(aM--ZM), and 

I ] aM-- XM=n ~ d imMi+e(rkNl -wtN1)  - d i m M [ N k  +e(k-wtV)]  
[ i = l  

- n[N rk W +  e(rk W -  wt IV)] + dim M'[Nk + e(k- wt V)], 

where we have put  M'=H°W(m). 
Hence 

aM--xM=n ~, d i m M i - N r k W  +n[e(rkNl-wtN1)  
[ i =  1 

- e(rk W -  wt W)] + ( d i m M ' -  d i m M )  [Nk + (k -  wt V)]. 

So we get 

CrM--XM>n d i m M i - N r k W  -n[e ( rkW-wtW)] .  
[.i = 1 

Hence 

O'M - -  X M  > H 

k.rk W = k.rk W 

Now, we have 

[ i=~dimMi-NrkW] - k [e (1 -  wtWI] 
r k W  / l " 

0 <  N r k W -  d i m M  i < r k W  
i 

[number  of  points  on X where M does not  generate W(m)], which in turn is less 
than  or  equal  to rk W. deg W(m). 

Hence 

n aM-- )~M > __ deg W(m) 
k . rkW = 

As 

deg V 
- - + m + l - g  

n rk V 

k(m - g) m - g 

n N 
k m - g "  

deg V 
l + - -  

rk V 
= 1 +  < 2 .  

m - g  
n 

We get aM - ZM > _ k deg W(m)- 2N. 
k.rk W = 

N o w  by L e m m a  4.3, we have ZM >3N. 
k . rkW - 

S o ,  

(l" M 
/,/ 

- -  > N -  k deg W(m) 
k . rk  W - 

k N -  n deg W(m) 
- k 

n deg W(m) 
> N -  

N 
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t7 M 
Now deg W(m)< 0 and N > nO, so ~ > 0, which means that a M > 0. 

So to finish the proof of Proposition 4.2, we have to treat the case where 
d e g W > ( - g - 8 ) k .  But by our choice of m, we have H'(W(m))=O and H°(W(m)) 
generates W(m). So if M = H°(W(m)), then a M =ZM and we are through by Case 1. 

So, finally, assume that M C H ° W(m) = M'. 
Now a M = ( a  M -  XM)+ XM and XM = ~M' > 0 by Case t. So it suffices to prove 

that a M - XM > O. 
We have 

So 

aM--XM=n ( d i m M i - r k W ) + e ( r k N  1 - w t N t ) -  e(rk W -  wt W) 
i= 

- ( d i m M -  dim M') (Nk + e [ k -  wt V]). 

! 

aM - ZM = (dimM' - dimM) (k + 
N \ 

) .N e(k t ~ + N ~ ( r k M / -  rk HO 
i = 1  

n n 
+ (rkN 1 - w t N  0 -  (rk W -  wt W). 

r n - g  m - 9  

Sub-case 1. Assume that N 1 = We. In this situation, we have r k N  1 = r k W  and 
wtN~ = wt W. 
Then 

aM--N ZM - ( d i m M ' - d i m M ) ( k  + k-m_gWt W]/ 

N • n 
+ ~  ~ ( r k M i - r k W ) .  

i = 1  

The absolute value of the second 
_-< n deg W(m) rk W 

N 

summand in the R.H.S. above is 

Hence 

n N rk W) n deg W(m) rk W 
N.~-7~ i ~  1 ( r k M i -  < = N . r k  V 

and 

( d i m M ' - d i m M ) ( k  + k -  wt V / > k = r k  V. 
\ m - 9  / 

Hence 

aM--XM > N--nO > 0 .  
k.rk V = n 

Sub-case 2. N 1 C, W e 
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Then 

k - w t V  t & ( r k N t _  wt W) aM-- =(d imM'-d imM)(k  + ~ / + 

N 

n n ~1 ( r k M i -  rk W). + - - ( w t  W -  w t N 0 +  N i  
m - g  

Now 0 < (rk W -  rk N1) < (dim M ' -  dimM), which follows from 

H ° W(m)p ~ W(m)p -~ 0 
u k.) 

M -~ N 1 ~ 0 

Hence 

( k-wtV !t 
aM--)~MN.rkV - > ( d i m M ' - d i m M )  1-~ m - 9  k] 

• n 1 

-(dimM'-dlmM)(rfcVm-__9) 

n ( w t W - w _ t N l /  nO 
+ m~9 \ rkV ] N" 

Now~ 

n _ h  ° V ( m ) _ d e g V + ( m + l _ g ) ,  
rk V rk V rk V 

l + d e g V  1 - w t V  
1-~ 1 +  - -  

n 1 rk V k 
hence - - -  - 

k m -  9 m - 9  m - g  

So, 1 - wt V 
1 + - -  

k nO 
aM-- ZM ~(wt  W -  wtN1) 

m - 9  N 

wt V nO 
- _>0 and (wtW-wtN1)_>~ r So a~t--)~U>~ 1 N" As wtV<k ,  w e h a v e  1 -  k - - - -  

But N > 2nO which implies that ! nO cq ~i ~1 ' N -" S° we get that aM - xM ~l 2 = ~ - > 0 ,  

which proves Proposition 4.2. 

Remark 4.3. We should like to point out the changes in the above proof if a 
parabolic structure is given at another point QeX. Similar considerations hold if 
parabolic structures are given at several points. So let the parabolic structure at Q 
be defined by 

VQ=F1VQDF2t~...3FsV Q, 

and the weights are given by 0 < i l l  <f12--. < f l j <  1. 
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In this case/~ is a fiber-space over R of fiber-type ~ x o&, where of is the flag 
variety of type given by the quasi-parabolic structure at Q. The range variety for 
the map T is 

H,,k(E)gNx f i  H,,t, x l-I H , , , ,  
i = 1  j = l  

where l 1 =k  and Ij=dimF1VQ-FjVQ, 2 < j < s .  
The constants are chosen as follows: 
M has the properties 1) re>g+ 1 and 2) H'W(m)=O and H°(W(m)) generates 

W(m) whenever W(m)eS(k, a, p, d, 0) or WC V, VsS(k, a, p, d, 0) and d e g W > ( - g  
4nO N 

- 14)k, 0 is the same as before and N is chosen so that N >  - -  and e= - -  
~l+flx m-g" 

Here S(k, a, p, d, 0) denotes the set of parabolic semi-stable bundles of rankk, 
ordinary degree d, parabolid degree 0 and weights (cq) and (/?s) at P and Q 
respectively. 

We now continue with the proof of Theorem 4.1. From Proposition 4.2 we 
know now that T maps/~ss into Z ss. By standard methods in geometric invariant 
theory, we also know that a good quotient ZS~/G exists. Let M be the image of/~ss 
in ZS~/G. By the completeness theorem (cf. Theorem 3.1), M is a closed sub variety 
of Z~/G. Let M be its normalization. Then, we contend that ~r is the variety we are 
looking for. We have only to prove that two points V and V' of/~s are equivalent if 
and only if they have the same image in M. For this it suffices to prove 

Proposition 4.4. I f  C 1 and C 2 are two closed disjoint G invariant subsets of R ss, their 
images in M are disjoint. 

Before the proof we need an auxiliary construction. Choose a point Q~X, 
distinct from P and consider the set S = S(k, ~, d, 0) defined before. On each V~ S, 
define a parabolic structure by choosing a full flag at VQ, i.e. a flag of the form VQ 
=FIVQ3F2VQ...DFkV Q. Choose weights 0<i l l  <fl2...<flk< 1 so small such that 
the following properties are satisfied: 

1) If V~ S is semi-stable for the (a, fl) structure, then it is stable. 
2) If V is (a, fl) semi-stable then V is (c~) semi-stable. 
3) V is (a) stable implies that V is (a, fl) stable for any choice of full flag at Q. 
We construct the Hilbert scheme Qa for the new category of parabolic vector 

bundles on X with parabolic structures at P and Q and denote by R~ the open 
subset of all stable parabolic bundles. We map _~ into the corresponding product 
of Grassmannians and Flag varieties and compose it with the canonical map onto 
the quotient variety. Let the image o f / ~  in the quotient variety be denoted by W. 
Now W is a set-theoretic orbit space for R~, i.e. two bundles V~ and V 2 in R~ are 
G-equivalent if and only if they have the same image in W. By the results of [11, 
Proposition 6.1], a geometric quotient o f / ~ m o d G  exists, say/~/p. Although the 
"forgetful" m a p / ~ - ~ / ~ '  is not globally defined, by the local universality of R ss, for 
all teR~ there is a neighbourhood U of t and a map f :  U~/~% which is unique 
upto G-translation. 

Now we can prove Proposition 4.4. Assume that C 1 and C 2 are two disjoint, 
closed, G-invariant subsets of / ~  whose images in M intersect, say 
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xe~(Cl)c~(C2),  where n :/~s'--*M. Now the "inverse" images of C 1 and C 2 under 
the family of local maps R~ R are still closed, disjoint G-invariant subsets of Rp, 
say D 1 and D 2. Look at ~o(D1) and ~t~(Dz), where ~t~ :R}-+M~. Now ~p(D1) and 
~r~(D2) are closed disjoint subsets of M e_ By G-triviality, the local maps patch 
together to give a global map ~:2~/~-,M. Now ~ is a projective morphism of 
normal varieties. Assume the existence of a stable bundle in M. Then the generic 
fibre of ~ is a Flag-variety and hence connected. Thus the special fibre of fi is also 
connected. But a s  xe~(CI)(~(C2)  , we have fi-l(x)Cg~(D1)wgp(D2) and /5-1(x) 
intersects both he(D1) and ha(D2), contradicting the connectedness of fi-l(x). Thus 
the images of C 1 and C 2 in M are disjoint, completing the proof of Proposition 4.4. 

D~,D2C I~ ~ ,,,c~,m'~p~ [{,.,gC~, C 2 

M + 

The existence of a stable bundle in 2~/is proved in Sect. 5. 

Remark 4.5. One could ask whether as in [15] the morphism T : R ~ Z  ~ could be 
proved to be proper and hence a closed immersion (for a suitable choice of m, N 
etc.). If this were the case, the proof of Theorem 4.1 would have been a more direct 
application of Geometric Invariant Theory and would not require Sect. 3 and 
considerations of Sect. 5. One could extend T to a multivalued mapping T:Q--,Z, 
where (~ is a complete variety containing/~ and what is required for properness is 
to show that if qe Q and T(q)eZ ~, then qe/~s. Unfortunately, we are not able to 
prove this. 

Remark 4.6. We now show that the variety ~/ is  a coarse moduli scheme in the sense 
of [5, Sect. 1]. Evidently, we only have to show that ~/ is  the categorical quotient of 
/ ~  in the sense of [11, Definition 1.43. So let jT:/~'~-~N be any G-invariant 
morphism with P as its graph. Since y is constant on the fibres of ~:/~-+.~/,  y 
induces a set theoretic map j :  ~ ~ N wit h graph F. Consider rcx id: t~ '~ x N --~ .~/N. 
This is a surjective map which is also closed as/} '~x N m o d G  is complete in the 
sense of [1 1, Definition 4.1]. Thus ~ x id maps F onto P and hence F is a closed 
subset of M x N. Endow F with the reduced structure. Then F is birationally 
isomorphic to M as the map f induces a morphism on the stable points of AT/. The 
normality of -~/ ensures that the canonical projection of F onto /£/ is an 
isomorphism and hence f : ~ / ~ N  is a morphism. 

5. Existence of Stable Parabolic Bundles and Computation of the Dimension 

of the Moduli Space 

We keep the notations of Sect. 4 for the curve X, the point PEX, the category of 
parabolic vector bundles on X with parabolic structure at P, and M the moduli 
variety constructed in Sect. 4. In order to prove the existence of a stable parabolic 
bundle in ~/, we construct the moduli variety over a discrete valuation A, compare 
the dimensions of the special and general fibres and then use representation 
methods in characteristic zero to complete the argument. 
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First, let the curve X be defined over an algebraically closed field k of 
characteristic p > 0. Let A be a complete discrete valuation ring of characteristic 
zero with residue field k and field of fractions K. Now X lifts to a scheme X A which 
is smooth and projective over specA. The point P e X  can be regarded as a section 
a:Spec(k )~X,  which also extends to a section a A :Spec(A)~X A. 

Consider the category SA(k, a, d, 0) of all parabolic semi-stable vector bundles 
on X a of rankk, weights a, degree d and parabolic degree 0. We have the same 
vanishing theorems as in the geometric case and so we can define the quotient 
scheme QA(EIP), and also the open subset R A. Similarly we also define/~A, which is 
a fibre bundle over R A with fibre O~A, and the open subsetfi~ of R a corresponding 
to the semi-stable bundles on X a. We have the map T A :R~a~ZA, where Z A is the 
product of Grassmannians and Flag varieties over Spec(A). Let M a be the image 
o f / ~  in ZA/G. By the extension theorem of Sect. 3, any semi-stable bundle on the 
general fibre extends to a semi-stable bundle on the special fibre. So the canonical 
map/~s  to Spec(A) is surjective which implies that the map from M a to Spec(A) is 
surjective. As M a is an integral sub-scheme of R~/G, M A is hence flat over Spec(A), 
with equi-dimensional fibres. So we have that dimM~ = d i m M  k. 

Let us assume now that d imM x is "correct", i.e. d i m M x = k 2 ( g - 1 ) + l  
+ dimo~. Then it follows easily that there must exist a stable bundle in M k. If not, 
then every point of M ,  would have a non-trivial filtration by stable bundles, which 
would mean that M ,  is a finite union of the images of varieities of strictly smaller 
dimension, a contradiction. So we have only to prove that dimM x = k Z ( g - 1 ) - 1 - I  

+ d i m f f .  To that end we may assume that X = H + / F  as in Sect. 1 with P E X  
corresponding to the parabolic cusp of F in H +, which may be assumed to be oo. 
Let F~o be the stabilizer of oo and a : F ~  U(k) a unitary representation of F, with 
Be U(k) the image of the generator of Fo~. Define e = Rank (Id-B). Then we have the 
following (cf. [9]) 

dimRH~ar(F, a) = 2k (g -  1) + 2 dim R [H°(F, a)] + e. 

Let U(k) be the Lie algebra of U(k), the space of all k x k skew-hermitian 
matrices. Let AdB be the map U(k)~U(k)  given by 

M ~ B M B -  1, MeU(k) .  

Assume that 

B = A  .. A -1 , 

exp(2nic~r)/ 

where A e  U(k) and let k 1, ..., k, be the multiplicities of al . . . . .  a r. Then we have 

Rank( Id -AdB)=k  2 -  ~ k~=2 ~] kik j. 
i=1 i * i  

Let U(k) act on itself by inner conjugation. The isotropy group at B has real 

dimension ~" k~ z. Hence the dimension of the orbit through B has real dimension 
i=1 

k 2 -  ~ k 2. So we get that Rank( Id-AdB)= dimension of the space of all matrices 
i=1 
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conjugate to B. It is easy to check that the above number is equal to twice the 
complex dimension of the flag-variety ~ ,  which consists of all flags 
(V=V13V2...3V~) in a k-dimensional complex vector space V with dim V i 
-d imVi+ ~ =ki, 1 <_i<r- I and dimVr=k r 

Now let R be the set of all representations z:F--,U(k) such that if C is the 
generator of Fo~, then z(C) is conjugate to B. We know that a presentation of F is 
given by : 

29+ 1 generators (X1, Y1, X 2, Y2 ..... X ,, Yo, Z) with one relation: 
g 

1~ (XiYiX~Iy~ I) Z=Id .  
i=1  

Denoting by W the conjugacy class of B, we define a map 

Z: U(k) 2g × W--, U(k) 

by" 

g 

M1,N 1 . . . . .  Mg, Ng, P ~  ~I (MiNiMi- 1N7 l)p, 
i=1 

where M i and Nie U(k) and Pe  W. 
Then R is precisely Z- 1(ld) and thus acquires the structure of a real analytic 

space. We want the smooth locus of R and we first quote. 

Lemma 5.1 (cf. [12]). I f  zeR, then the kernel of the differential map d;( at z can be 
identified with Z~r(F, Ad, z). 

Thus we find 

dimZ~,r(F, Ad z) 

= dimHpa~(F, Ad z) + dim 

of space of coboundaries 

i ' = d m Hpar(F, ad z) + d im[U(k ) -  dimH°(F, Ad z)]. 

In particular, 

dim ZI~(F, Ad z) = 2k2(g- 1) + k 2 + dim H°(F, Ad z) + dim W. 

Now H°(F, Adz)= F-invariants of U(k). But dimH°(F, Adz) is always bigger than 
or equal to one as the scalar matrices of U(k) always belong to U(k) r. Hence by 
semi-continuity and implicit function theorems, it follows that the set of all zeR  
with H°(F, Adz) = 1 is open and smooth. Now H°(F, Adr)=  1 if and only i f ,  is an 
irreducible representation. So we get: 

Theorem 5.2. The set of all irreducible unitary representation ofF of rankk and fixed 
conjugacy class of the image of F~ is a complex manifold of dimension 2k2(g - 1) 
+(k 2 -  t ) + 2 + d i m g .  

Now U(k) acts on R and the irreducible subset R o of R is U(k) stable. The 
scalars in U(k) operate trivially and hence PU(k) acts on R o. This action is free and 



238 v.B. Mehta and C. S. Seshadri 

hence R0/PU(k ) is a complex manifold of dimension 2k2(g-1)+(k2-1)+2 
+ d i m Y -  dim PU(k). Consequently, we have 

Theorem 5.3. The equivalence classes of irreducible unitary representations ofF with 
fixed conjugacy class of the image of F~ is a complex manifold of dimension k2(g- 1) 
+ 1 + d i m ~ .  

So to complete the proof of Proposition 4.4, we have only to show that a 
parabolic bundle is semi-stable (stable) of degree zero if and only if it is a unitary 
(irreducible unitary) F-bundle. Note that the "if" part  has been proved in 
Proposition 1.12. Let T ~", T" and P be the set of irreducible unitary, unitary and all 
representations of F respectively with fixed conjugacy class of E~,. Recall the 
varieties R, /~, /~ss and R ~ constructed in Sect. 4. Now the analytic space P 
parametrizes a family of parabolic vector bundles on X and so by the local 
universality of/~ we get a family of local maps P ~ R  with T" mapping into/~,s and 
T i" mapping into R ~. Let M ~ and M s be the (invariant-theoretic) quotients of R ~S 
and R s by G. We get well defined maps 

r~o : PU(k ) -~M ~ 

T" • _ _  __+MSS 
PU(k)  ' 

~o is an injective map between complex manifolds of the same dimension and this 
~o is an open map. On the other hand, Image of ~o = (hnage of ~)¢~M ~ and hence 
Image of 7r o is also closed. So ~o maps onto M ~ and consequently ~ also maps onto 
M ~. Now for the group F, with generators and relations as given before, it is easily 
seen that the space T ~ is non-empty. Thus M ~ is non-empty, which proves the 
existence of stable parabolic bundles on X in characteristic zero and hence in any 
characteristic. This corfipletes the proof of Proposition 4.4 and also the proof  of 
Theorem 4.1. 

Remark5.4. Let V be a vector bundle on X, a smooth projective curve, of rank two 
and degree zero. Suppose we are given a parabolic (or just a quasi-parabolic) 
structure at a point P~X defined by a 1-dimensional subspace F 2 Vp of Vp. Let T be 
the torsion (gx-module defined by 

Te=V~,]FzVp[;T~2=O if Q ~ P .  

We have a homomorphism of V onto T (or (gx-modules); let W be the kernel of 
this map. Then the subsheaf W of V is locally free of rank2 and degree - 1 .  
Conversely such a subsheaf W of V determines a quasi-parabolic structure on V at 
P. If V and W vary say over schemes M and N respectively, then pairs (I4~ V) as 
above determine a correspondence between M and N. This is essentially the 
definition of a Hecke correspondence in the sense of [6c]. 

Let £ I  denote the variety of parabolic stable bundles of rank 2, degree zero and 
sufficiently small weights. Then it can be shown (cf. [6a]) that M is in fact a 
correspondence variety between the moduli space of semi-stable vector bundles of 
rank2 and degree 0 and the moduli space of stable vector bundles of rank2 and 
degree - 1. 
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