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Treatment of Be* (15s~!)2S Auger resonance with different
decouplings of the dilated electron propagator

MILAN N MEDIKERI and MANOJ K MISHRA*
Department of Chemistry, Indian Institute of Technology, Powai, Bombay 400 07’6, India

Abstract. The diagonal 2ph-TDA and quasiparticle decouplings of the dilated electron
propagator (based on an underlying bi-variational SCF) are utilized to calculate energy and
width of the Be* (15~ )28 Auger resonance for the first time. Comparison with experimental
and other theoretical results reveals that the renormalized infinite order diagonal 2ph-TDA
decoupling seems to offer a less balanced approach to the treatment of resonances than
the second-order decoupling. The diagonal quasiparticle approximation to the self energy
is seen to offer an effective and economic alternative to the non-diagonal propagator
calculations.
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1. Introduction

The electron propagator theory (Linderberg and Ohrn 1973; J6rgensen and Simons

11981) has provided an effective route to the calculation of electron detachment

(Cederbaum and Domcke 1977; Herman et al 1981; Ohrn and Born 198 1; von Niessen
et al 1‘584) and attachment (Simons 1977, 1978) energies and is well established as a
powerful tool for the correlated treatment of electronic structure (Ortiz 1992) and
dynamics (Meyer 1989; Cederbaum 1990; Meyer et al 1992). The dilated electron
propagator (Mishra 1989) where electronic co-ordinates have been scaled by a
complex scaling (Junker 1982; Reinhardt 1982; Ho 1983) factor (n = xe™) has emerged
as a convenient method for the direct calculation of energies and widths of shape
resonances in electron-atom (Winkler 1979; Donnelly and Simons 1980; Mishra et al
1981a, 1983; Winkler et al 1981; Dpnnelly 1982a; Medikeri et al 1993) and electron—
molecule scattering (Donnelly 1982b, 1985, 1986).
The spectral representation of the matrix-dilated electron propagator,
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provides for the simultaneous calculation of both the energy (real part) and width
(twice the imaginary part) of electron detachment Auger (EY — EY¥~ (1)) and electron
attachment shape resonances (EY *1(n) — EY) from its appropriate poles. The pole
structure of the dilated electron propagator has been discussed in detail elsewhere

G, E)=
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(Donnelly and Simons 1980; Mishra et al 1983c) but it is obvious from (1) that since
" resonant eigenvalues (E, — i(['/2)) have a negative imaginary part to account for their
finite life time (Das and Melissinos 1986; Mishra 1994) and the target ground state
energy EJ is completely real, the poles corresponding to the Auger resonances will
have a posmve imaginary part and their trajectory as a function of variations in the
scaling parameter o or 6 will move in the first quadrant of the complex energy plane.
The complex poles in the first quadrant displaying quasi-stability with respect to
variations in # are associated with Auger resonances (Palmquist et al 1981 Mishra
et al 1983c).

These complex poles are searched through an iterative diagonalization procedure
(Donnelly and Simons 1980), necessitating multiple passes through large self energy
lists (von Niessen et al 1984) and the quest for quasi-stability of the resonant poles
necessitates the construction of the dilated electron propagator for a large number
of 5 values with 4—6 « and approximately 30 6 values per o being fairly representative.
These two features, coupled with non-hermiticity and the complex (as opposed to
real) nature of the underlying arithmetic makes the dilated electron propagator
calculations approximately 100 times more demanding than their real counterparts.
Exploration of effective and economic decouplings like the quasiparticle approximation
(Holneicher et al 1972; Kurtz and Ohrn 1978; Ortiz and Ohrn 1980; von Niessen
et al 1984; Ortiz 1990; Medikeri and Mishra 1993) is therefore an acute necessity for
the dilated electron propagator calculations.

Furthermore, the meta-stable nature of resonances affords considerable interaction
between the target and the decaying electron and reliable treatment of resonances
calls for the incorporation of higher order or renormalized decouplings in the
construction of the dilated electron propagator. A popular approximation for
achieving this end has been the diagonal 2ph-TDA decoupling. Considerable
experience with the real propagator calculations has shown that the diagonal and
full 2ph-TDA decouplings being infinite order renormalized summation of the most
important ring and ladder diagrams, offer enhanced level of correlation in the
treatment of ionization energies and electron affinities (Cederbaum and Dorncke 1977,
Ohrn and Born 1981; von Niessen et al 1984).

To attend to these concerns and afford greater correlation with effective economy
in the treatment of resonances, we have recently grafted the diagonal 2ph-TDA-
(Medikeri et al 1993, 1994), quasiparticle diagonal 2ph-TDA and quasiparticle second-
order decouplings (Medikeri and Mishra 1993b) on to the dilated electron propagator
technique as well. The effectiveness of these new decouplings of the dilated electron
propagator has, however, been explored only through their employment in the
treatment of electron attachment shape resonances. In fact, except for a few exceptions
(Palmquist et al 1981; Mishra et al 1983c) almost all applications of the dilated
electron propagator, including our own, have focused almost exclusively on the
treatment of shape resonances.

Application of the diagonal 2ph-TDA and qua51part1cle decouphngs to the treatment
of electron detachment (1s~!) Auger resonance in Be* offers a complementary test
for the effectiveness of these decouplings and is the principal concern of this paper,

The bi-orthogonal dilated electron propagator and its implementation has been
discussed in detail elsewhere (Mishra et al 1981a; Medikeri et al 1993) and in the
following section we offer only a skeletal outline of equations and the computational

strategy of immediate relevance to this work. A brief discussion of our results concludes
this paper.
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2. Method

The Dyson equation for the bi-orthogonal matrix electron propagator G(, E) may
be expressed as (Mishra et al 1981a)

G™'(n,E)= Gy (1, E)— Z(n, E), ()

where Gy (7, E) is the zeroth order propagator for the uncorrelated electron motion,
here chosen as given by the bi-variational SCF approximation (Mishra et al 1981b;
Froelich and Lowdin 1983; Léwdin ez al 1989). The self-energy matrix Z(, E) contains
the relaxation and correlation effects.

Solution of the bi-variational SCF equations for the N-electron ground state yields
a set of occupied and unoccupied spin orbitals. In terms of these spin orbitals the
matrix elements of G, !(#, E) are

(Go_l(”’ E))ij=(E"8i)5ij’ (3)

where ¢; is the orbital energy corresponding to spin orbital i. Through the second
order of electron interaction, the elements of the self-energy matrix are

Cik [ Im) lm | jk>

2 1
%,(’1, E)= Ekgm Neam (E+e—g—¢,) “)
where |
" Ngm = ) — mp<mpd — < > <ny > + <y <{n,,>, (5

with {n, > being the occupation number for the kth spin orbital and the antisymmetric
two-electron integral

Gltkly =n fll',-(l)%@[(l — Py,)/ry] X YD (2 dx, dxy. (6)

The lack of complex conjugation stems from the bi-orthogonal set of orbitals resulting
from bi-variational SCF being complex conjugate of each other (Mishra et al 1981b).
For the diagonal 2ph-TDA (Cederbaum and Domcke 1977; Ohrn and Born 1981;
von Niessen et al 1984) decoupling of the dilated electron propagator (Medikeri et al
1993) ' ‘

2ph—TDA _—1 CGik || Im) {Im || jk)
izj (n,E)—2k§melm(E+3-k""8l‘—8m)—A, (7)

whpre
1
A =§<ml Iml> (1 — <> — {my>) — km | km) ({n > — (n, D)
— kI KD (<mye > — <mp)). ®)

The usual dilated electron propagator calculation proceeds by iterative diagonalization
of

L(,E)=e+Z(n, E). )

with propagator pole E being a complex value such that one of the eigenvalues
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{e.(n, E)} of L(n, E) fulfills the condition E = ¢,(n, E) (Donnelly and Simons 1980).
The quasiparticle approximation for dilated electron propagator results from a
diagonal approximation to the self-energy matrix Z(n, E) with poles of the dilated
electron propagator being given by

E(n) =¢&+X;@ E), (10) |

which is solved iteratively beginning with E=g¢; and X, may correspond to any
perturbative or renormalized decoupling (Medikeri and Mishra 1993).

3. Results and discussion

Results from our calculations using various decouplings of the dilated electron pro-

pagator discussed earlier are portrayed in figures 1 and 2. The marked disparity

between the theta trajectories for the uncorrelated SCF ‘and propagator poles makes
apparent the magnitude of correlation and relaxation effects attending the Auger
resonance formation. From figure 2 it is seen that the diagonal 2ph-TDA approximation
predicts higher energy and smaller width (longer lifetime) for the Be* (1s~*)2S Auger
resonance. The choice of basis set and the optimal a value (0-85) are those from an
earlier study (Mishra et al 1983c). The theta trajectories for the quasiparticle diagonal
2ph-TDA for this optimal alpha shows multiple inflection points and cusps and
therefore we have plotted theta trajectories for other nearby alpha values in figure 3.
Because of multiple regions of quasi-stability in many of: these trajectories, the quasi-
stable value of the Auger pole for this decoupling has been elicited from the alpha
trajectory for 6 =0-17 radians, the angle for which there is a clear stability in the

. only regular trajectory («x = 0-75) from this decoupling. The theta trajectories for other

o values also display some stability for this 6, o = 0-17 radians, in the sense of much
more rapid decrease in AE as.a function of the same uniform A# stepwise (i.e. numerical
stability at least to first order). This alpha trajectory for the quasi-particle 2ph-TDA
decoupling is displayed in figure 4. The distances narrow as we approach « = 0-85
and then increase again. This quasi-stable value in the alpha trajectory has been
taken the best estimate of the resonant Auger pole form this decoupling. -

The values for the energies and widths of the Be* (1s~1)2S Auger resonance from
these calculations along with experimental and other theoretical results are collected
in table 1. It is clear from the figures and table 1 that, results from both the diagonal
2ph-TDA and quasiparticle diagonal 2ph-TDA seem to move away from the second
order results towards those from the uncorrelated zeroth order bi-variational SCF
calculations. Instead of being an improvement on the second order results, they

deviate even more from the experimental (Bisgard et al 1978; Rodbro et al 1979) and

other more reliable theoretical calculations (Kelly 1974). This behaviour of the
diagonal 2ph-TDA where they offer little or no improvement on the second-order
results has also been observed in our shape resonance calculations (Medikeri et al
1993a,c). We hasten to mention that Auger decay is a correlated event and its
description. at the SCF level is not meaningful. We have included the energy and
widths from bi-variational SCF, only to assist in assessing the role of correlation and
relaxation in the characterization of the Auger resonances as also to highlight the

relatively poor quality of diagonal and quasiparticle diagonal 2ph-TDA results for

this case.
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Table 1. Energy and width of the Be* (1s™')?S Auger resonance.

Method reference Energy (eV) Width (eV)

Many-body perturbation theory (Kelly 1974) 0-09

Electron propagator with 12547 002
Siegert boundary condition (Palmquist et al 1981)

Experiment (Bisgard et al 1978; Rodbro et al 1979) 123-63

Second-order dilated 12498 005
electron propagator (Mishra et al 1983) .

Quasiparticle second-order 12498 0-05
dilated electron propagator (this work)

Diagonal 2ph-TDA dilated 12543 0-02
electron propagator (this work)

Quasiparticle diagonal 2ph-TDA 12790 0-54
dilated electron propagator (this work)

Zeroth-order dilated 128-80 024

electron propagator (this work)

The diagonal 2ph-TDA is an apppealing approximation for reasons mentioned
earlier and discussed in much greater detail elsewhere (Ohrn and Born 1981; von
Niessen et al 1984, and references therein). However, it is also known that though
it is consistent upto second order, it is incomplete in third and higher orders. This
has led to a somewhat mixed result where the diagonal 2ph-TDA does not always
offer an improvement over second-order results. The imbalance is compounded by
the use of an uncorrelated reference state since many important third- and higher-
order diagrams which should have been non-zero become zero in such calculations
(Cederbaum and Domcke 1977). This imbalance has been noted by von Niessen et al
(1984) and Ohrn and Born (1981) have reviewed this with many numerical examples.
It is in this context that we call attention to a similar imbalance in the diagonal
2ph-TDA approximation even in the case of dilated electron propagator calculations
and that care must be exercised in its use.

As seen from the results discussed earlier, the imbalance in the diagonal 2ph-TDA

~approximation seems to be aggravated in the present investigation by the quasiparticle
approximation to this decoupling. The problem with quasiparticle diagonal 2ph-TDA
could be again due to the inconsistent way in which non-diagonal diagrams which
contribute to both the initial (2p-h term) and final (2h-p term) state correlations are
excluded. This seems to lead, in this case, to a requirement of large rotation pushing
the resonant pole higher into the complex energy plane thereby increasing its width
in this approximation. The ADC (3) type consistent extended 2ph-TDA decouplings
offer obvious advantages but are beyond our computational capability at this time.

A comparison of (4) and (7) makes obvious the somewhat more complicated and
expensive nature of the diagonal 2ph-TDA implementation, since the calculation of
the denominator shift in (7) necessitates eéxtra calls for recovery of the transformed
two electron integrals needed to compute A. On the other hand, as evidenced in both
figures 1 and 2, as also in table 1, the diagonal quasiparticle approximation which
obviates the need for construction of the full non-diagonal self energy matrix (and
_thereby repeated diagonalizations as well) offers results for the second-order

decoupling which is more or less mdxstmgulshable from 1ts much more expensive full
non-diagonal counterpart.
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Our results therefore seem to indicate that the extra effort in implementing the
diagonal 2ph-TDA approximation for the dilated electron propagator calculations
is unwarranted at least from the experience gained in this and some other investiga-
tions (Medikeri et al 1993, 1994). We should however mention that results presented
here are not sufficient by themselves to draw definitive conclusions regarding the
techniques used and based on earlier experience (Cederbaum et al 1978, 1980) the
dilated diagonal 2ph-TDA could be quite effective in the treatment of Auger satellites.
These Auger satellites however cannot be investigated using the pole search procedures
currently employed for the dilated electron propagator calculations (Donnelly and
Simons 1980; Donnelly 1982a; Mishra et al 1983a). Iterative diagonalization of the
L(E) matrix where E**! is selected as the ¢, nearest to E" automatically locks on to
the principal poles and does not permit the treatment of inner valence Auger satellites.
The poles may also be searched as complex E values for which

det|G~1(E)| = det|E, — L(E)| =0,

but effective algorithms to find zeros of a complex function of complex argument are
known to be demanding. The promise of extending the domain of applications of
the dilated electron propagator to the treatment of Auger satellites, however, merits
serious consideration and an effort along these lines is underway in our group.

Finally, our investigations do seem to indicate that the dilated electron propagator
technique may be profitably employed in the investigation of Auger resonances. There
is a need for employing consistent 2ph-TDA approximations like the ADC(3)
decouplings and while the simplicity of the diagonal 2ph-TDA/diagonal quasiparticle
2ph-TDA decouplings retain the same appeal as in the case of real electron propagator,
our results in this case seem to imply that these approximations should be employed
with due care. The effectiveness of the quasiparticle second-order approximation even
for a core Auger hole calculation, however, is a pleasant surprise and we conclude
by recommending this welcome economy in all dilated electron propagator calculations
but with an additional caveat that such approximations are known to break down
for systems with low symmetry and large number of electrons (von Niessen et al
1984) and there is a need to exercise due caution in their use. It is also useful to recall
that all quantum chemical calculations are only as good as the quality of the primitive
basis set employed. The coordinate space span of the primitive basic set is critical to
the description of resonances (Medikeri et al 1994). The present basis set was chosen
since it has been used in a similar context in a large number of earlier applications
(Mishra et al 1983a,b; Medikeri et al 1993, 1994; Medikeri and Mishra 1993). An
exhaustive study of the basis set effects in the characterization of Auger resonances
is another obvious extension which is being investigated in our group.
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