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A different kind of shape changing �intensity redistribution� collision with potential application to signal
amplification is identified in the integrable N-coupled nonlinear Schrödinger �CNLS� equations with mixed
signs of focusing- and defocusing-type nonlinearity coefficients. The corresponding soliton solutions for the
N=2 case are obtained by using Hirota’s bilinearization method. The distinguishing feature of the mixed sign
CNLS equations is that the soliton solutions can both be singular and regular. Although the general soliton
solution admits singularities we present parametric conditions for which nonsingular soliton propagation can
occur. The multisoliton solutions and a generalization of the results to the multicomponent case with arbitrary
N are also presented. An appealing feature of soliton collision in the present case is that all the components of
a soliton can simultaneously enhance their amplitudes, which can lead to a different kind of amplification
process without induced noise.
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I. INTRODUCTION

It was suggested a long time ago that solitons could be
used to carry data at a very high bit rate in optical commu-
nication systems, because of their ability to overcome the
dispersion limitation through a balance between the self-
phase modulation and dispersion effects �1�. In fact soliton
pulses are known to have many other desirable properties,
such as their robustness against small changes in the pulse
shape or amplitude around the exact soliton profile leads to
treat such changes only as small perturbations on soliton
propagation �2–4�. Strictly speaking, the soliton properties
can exit only in an ideal fiber. Indeed, in a standard telecom-
munication fiber, the propagation of light pulses gives rise to
a host of perturbing effects which inhibit the desirable prop-
erties of solitons �5�. One of the strongly perturbing effects
that comes inevitably into play is the linear attenuation of
light along the fiber �which is of the order of 0.2 dB/km at
carrier wavelength 1.55 �m�, which does not permit us to
keep a constant balance between the self-phase modulation
and the group-velocity dispersion �5�. Although the funda-
mental soliton propagation cannot be obtained in standard
fibers, pulse propagation over relatively long distances �and
even transoceanic distances� can still be obtained through an
appropriate combination of dispersion management and op-
tical amplification �now mostly based on Er-doped fiber am-
plifiers and Raman amplifiers� �6–8�.

All the existing amplification processes involve three ma-
jor ingredients: The first one is a pump wave, which serves as
a photon reservoir. The second one is an amplification me-
dium, that is, a special material in which the pump wave is

mixed with the signal. The third ingredient is a physical
mechanism that can cause a transfer of photons from the
pump to the signal. Only three types of physical mechanisms
have been exploited so far in optical amplifiers, namely the
laser process used in laser optical amplifiers �e.g., Er-doped
fiber amplifiers, semiconductor optical amplifiers� �9�, the
stimulated Raman scattering �used in Raman amplifiers�
�5,8� and parametric wave mixing �used in parametric ampli-
fiers� �5,8�. Such optical amplifiers do permit us to fully
compensate the fiber losses, but the amplification process is
unavoidably accompanied by an undesirable effect of noise
generation which is commonly referred to as the “amplified
spontaneous emission” �ASE� �10–12�. Hence one of the
most important characteristic parameters of the optical am-
plifiers developed so far is the so-called “noise figure,”
which serves as a measure of the amount of noise generated
during the amplification process �13�. The ASE increases
with the amplifier gain, and there exists an unavoidable
amount of noise, known as the amplifier noise figure limit of
3 dB �13–15�. The ASE is one of the major effects that se-
verely degrades the transmission quality of ultrashort light
pulses over long distances �5,7,16�. To radically resolve the
problem of ASE limitation in high-speed long-distance trans-
mission systems, it is clear that the conceptual approach of
optical amplification based on the three ingredients men-
tioned above needs to be partially or totally reformulated.

In the present work, we examine shape changing �inten-
sity redistribution� collisions of vector solitons in mixed
coupled nonlinear Schrödinger �CNLS� equations, and report
some results that suggest the possibility of constructing a
different approach of signal amplification. The difference lies
in viewing the collision process of solitons as a fundamental
physical mechanism for transferring energy from the pump
to the signal. The collision involves two vector solitons. One
of the two solitons, say S1, is chosen to be the signal, while
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the other soliton �S2� serves as the energy reservoir �pump
wave�. The major virtue of this type of collision-based am-
plification process is that it does not induce any noise, as it
does not make use of any external amplification medium.

On the other hand, the study of physical and mathematical
aspects of CNLS equations is of considerable current interest
as these equations arise in diverse areas of science like non-
linear optics, optical communication, biophysics, Bose-
Einstein condensates, and plasma physics �3,4,17–19�. The
fundamental integrable N-CNLS system is given by the fol-
lowing set of equations:

iqj,z + qj,tt + 2���
l=1

N

�l�ql�2�qj = 0, j = 1,2, . . . ,N ,

�1a�

where qj, j=1,2 , . . . ,N, is the complex amplitude of the jth
component, the subscripts z and t denote the partial deriva-
tives with respect to normalized distance and retarded time,
respectively, � represents the strength of nonlinearity ��
�0� and the coefficients �l’s define the sign of the nonlin-
earity. System �1a� can be classified into three classes as
focusing, defocusing, and mixed types depending on the
signs of the nonlinearity coefficients �l’s. The focusing case
arises where all �l’s are equal to 1 and the corresponding
system admits bright soliton solutions �20–25�. These bright
solitons are found to undergo fascinating shape changing �in-
tensity redistribution� collisions �21,23,24� �for other details
see, for example, Refs. �26–28�� and such collision proper-
ties are not observed in systems with defocusing nonlinearity
which arises for all �l=−1 in Eq. �1a�. The latter system
possesses either dark solitons in all the components or dark-
bright solitons which undergo standard elastic collision
�25,29,30�. Also special analytic solutions for the focusing
and defocusing types are given in Refs. �31,32�. The third
case arises for mixed signs of �l’s �that is, +1 or −1�. For
convenience, we define �l’s for this mixed case as

�l = 1 for l = 1,2, . . . ,n ,

=− 1 for l = n + 1,n + 2, . . . ,N . �1b�

Here onwards we refer to Eq. �1� with the above choice of
�l’s as mixed CNLS equations.

From a physical point of view, system �1� with N=2 cor-
responds to the modified Hubbard model in one dimension
�33�. A similar equation, for N=2, is observed in the context
of electromagnetic pulse propagation in left handed materials
�34�. The above set of equations �1� is found to be com-
pletely integrable �33,35,36� and the corresponding Lax pair
was obtained in Ref. �33�. In their pioneering works Ma-
khankov et al. �33,35� have shown that Eq. �1�, for N=2,
admits particular bright-bright, bright-dark, dark-dark type
one soliton solutions depending upon the asymptotic behav-
ior of the complex amplitudes qj, j=1,2. Since then very
few works have appeared in the literature to analyze the
problem further �25,29,37–39� �for a detailed review of ex-
isting results one can refer to Ref. �38��. Particularly, in a
recent work �38�, Kanna et al. have obtained stationary so-
lutions of mixed CNLS equations with singularities by fol-

lowing an algebraic approach �22,40,41�. It was observed
that despite the points of singularities the solutions behave
smoothly in a finite region of the temporal domain. Then the
natural question arises as to whether multisoliton solutions
exhibiting regular behavior over the entire space-time re-
gions exist and, if so, what is the nature of soliton interac-
tions?

Being motivated by the above fundamental and intriguing
aspects, in the present paper we perform a detailed study on
the bright soliton collision dynamics arising in the mixed
CNLS system. In particular, we point out that bright solitons
of regular type do exist, provided the soliton parameters sat-
isfy certain conditions and that the underlying solitons un-
dergo interesting shape changing–intensity redistribution col-
lisions. The singular solutions turn out to be special cases
�with specific parametric choices� of the general soliton so-
lutions. An important feature which we identify in the colli-
sion process of regular solitons in the mixed CNLS case is
that after collision a soliton can gain energy in all its com-
ponents, while the opposite takes place in the other soliton.

This paper is organized as follows. Section II contains the
details of Hirota’s bilinearization procedure �42� for the
CNLS equations to obtain soliton solutions. Though the so-
lutions obtained in this paper admit both singular and nons-
ingular behaviors, we call them soliton solutions ascribing to
their soliton nature in some specific region. In Sec. III, we
obtain the one and two soliton solutions. Section IV is de-
voted to a detailed analysis of shape changing �intensity re-
distribution� collisions exhibited by these soliton solutions.
The procedure to obtain one and two soliton solutions is
extended to multisoliton solutions in Sec. V. The results of
two component case are generalized in a systematic way to
the multicomponent case with arbitrary number of compo-
nents following the lines of Ref. �24�. The final section is
allotted for a conclusion. In Appendix A we present the sin-
gular stationary three soliton solution for mixed 3-CNLS
equations. The multicomponent multisoliton solutions of
mixed N-CNLS equations, for arbitrary N, is given in Appen-
dix B.

II. BILINEARIZATION OF MIXED CNLS EQUATIONS

The set of equations �1� has been shown to be completely
integrable �33,36�, admitting certain types of single soliton
solutions �33,35�, for the N=2 case, as mentioned in the
Introduction. Here we are concerned with bright-bright mul-
tisoliton solutions whose intensity profiles vanish asymptoti-
cally and with the nature of soliton interactions.

Let us apply the bilinearizing transformation �42�

qj =
g�j�

f
, j = 1,2, . . . ,N �2�

to Eq. �1� similar to the focusing case �l=1, l=1,2 , . . . ,N
�24�. This results in the following set of bilinear equations:

�iDz + Dt
2�g�j� · f = 0, j = 1,2, . . . ,N , �3a�
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Dt
2�f · f� = 2��

l=1

N

�lg
�l�g�l�*, �3b�

where �l is given by Eq. �1b�, � denotes the complex conju-
gate, g�j�’s are complex functions, while f�z , t� is a real func-
tion, and the Hirota’s bilinear operators Dz and Dt are defined
by

Dz
nDt

m�a · b� = � �

�z
−

�

�z�
�n� �

�t

−
�

�t�
�m

a�z,t�b��z�,t����z=z�,t=t��. �3c�

The above set of equations can be solved by introducing the
following power series expansions for g�j�’s and f:

g�j� = �g1
�j� + �3g3

�j� + ¯ , j = 1,2, . . . ,N , �4a�

f = 1 + �2f2 + �4f4 + ¯ , �4b�

where � is the formal expansion parameter. The resulting set
of equations, after collecting the terms with the same power
in �, can be solved recursively to obtain the forms of g�j�’s
and f .

III. SOLITON SOLUTIONS FOR N=2 CASE

The mixed system �1� with N=2 and �1=1, �2=−1 is of
special physical interest. To start with, we consider this par-
ticular case.

A. One soliton solution

In order to write down the one soliton solution we restrict
the power series �4� to the lowest order,

g�j� = �g1
�j�, j = 1,2, f = 1 + �2f2. �5�

Then by solving the resulting set of linear partial differential
equations recursively, one can write down the explicit one
soliton solution as

�q1

q2
� = ��1

�1�

�1
�2� � e�1

1 + e�1+�1
*+R

�6a�

=�A1

A2
�k1R sech��1R +

R

2
�ei�1I, �6b�

where

�1 = k1�t + ik1z� = �1R + i�1I, �6c�

Aj =
�1

�j�

����1��1
�1��2 + �2��1

�2��2��1/2 , j = 1,2,

eR =
���1��1

�1��2 + �2��1
�2��2�

�k1 + k1
*�2 , �1 = − �2 = 1. �6d�

Note that this one soliton solution is characterized by three
arbitrary complex parameters �1

�1�, �1
�2�, and k1=k1R+ ik1I,

where the suffixes R and I represent the real and imaginary
parts, respectively. The quantities k1RA1 and k1RA2, give the
amplitude of the soliton in components q1 and q2, respec-
tively, subject to the condition

�1�A1�2 + �2�A2�2 =
1

�
, �6e�

and the soliton velocity in each component is given by 2k1I.
The position of the soliton is found to be

R

2k1R
=

1

2k1R
ln	���1��1

�1��2 + �2��1
�2��2�

�k1 + k1
*�2 
 . �6f�

From Eq. �6b�, it is clear that singular solutions start occur-
ring when ��1

�1��= ��1
�2��. In this case, one can easily observe

from Eq. �6d� that the quantity eR becomes 0, and one gets
the solution

�q1

q2
� = ��1

�1�

�1
�2� �e�1 �7�

which is unbounded. Such an unbounded solution is depicted
in Fig. 1�a� for k1=1+ i, �1

�1�=�1
�2�=1, and �=1.

When ��1
�1��� ��1

�2��, eR becomes negative �so R becomes
complex�. In this case, singularity occurs, whenever

1 − �eR�e2�1R = 0, �8a�

or

�1R =
1

2
ln� 1

�eR�� . �8b�

Again a singular solution in this case is plotted in Fig. 1�b�
for k1=1+ i, �1

�1�=0.8, �1
�2�=1, and �=1.

However the bright soliton solution is always regular as
long as the condition ��1

�1��� ��1
�2�� is valid in which case eR is

always real and positive, as the denominator �1+e�1+�1
*+R� in

FIG. 1. Intensity plots of singular one soliton solution of Eq. �1�
for N=2: �a� for the case ��1

�1��= ��1
�2��; �b� for the case ��1

�1��
� ��1

�2��.
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Eq. �6a� is always positive definite �as �1R is real� for this
choice. This regular one soliton solution is shown in Fig. 2
for k1=1+ i, �1

�1�=1, �1
�2�=0.2, and �=1.

It is also interesting to note here that the polarization vec-
tor evolves in a hyperboloid defined by the surface �A1�2
− �A2�2=1/� �33�, whereas in the Manakov case it is a sphere
�that is �A1�2+ �A2�2=1/�� �24�. This allows Eq. �1� to admit a
rich variety of singular and nonsingular solutions and makes
significant difference in the collision scenario of bright soli-
tons arising in the two systems as we will see in the follow-
ing sections.

B. Two soliton solution

To obtain the two soliton solution the power series expan-
sion �4� is terminated at the higher-order terms

g�j� = �g1
�j� + �3g3

�j�, j = 1,2, �9a�

f = 1 + �2f2 + �4f4. �9b�

Then by solving the resultant linear partial differential equa-
tions recursively, we can write the explicit form of the solu-
tion as

qj =
�1

�j�e�1 + �2
�j�e�2 + e�1+�1

*+�2+�1j + e�1+�2+�2
*+�2j

D
, j = 1,2,

�10a�

where

D = 1 + e�1+�1
*+R1 + e�1+�2

*+�0 + e�1
*+�2+�0

*
+ e�2+�2

*+R2

+ e�1+�1
*+�2+�2

*+R3. �10b�

Various quantities found in Eq. �10�, are defined as below:

�i = ki�t + ikiz�, e�0 =
	12

k1 + k2
* , eR1 =

	11

k1 + k1
* ,

eR2 =
	22

k2 + k2
* ,

e�1j =
�k1 − k2���1

�j�	21 − �2
�j�	11�

�k1 + k1
*��k1

* + k2�
,

e�2j = �k2−k1���2
�j�	12−�1

�j�	22�
 �k2+k2
*��k1+k2

*� ,

eR3 =
�k1 − k2�2

�k1 + k1
*��k2 + k2

*��k1 + k2
*�2

�	11	22 − 	12	21� ,

�10c�

and

	ij =
���1�i

�1�� j
�1�* + �2�i

�2�� j
�2�*�

�ki + kj
*�

, i, j = 1,2, �10d�

where �1=1 and �2=−1. This solution is characterized by
six arbitrary complex parameters �1

�1�, �1
�2�, �2

�1�, �2
�2�, k1, and

k2. Note that the form of the above two soliton solution re-
mains the same as that of the Manakov case �where �1=
+1, �2= +1� �21,24�, except for the crucial difference that in
the expressions for the parameters 	ij in Eq. �10d�, �1= +1
and �2=−1.

It can also be easily verified that the singular stationary
solution for the N=2 case given by Eq. �17� in Ref. �38� can
be obtained for the specific parametric choice

�1
�1� = − e�10, �2

�2� = e�20, �1
�2� = 0, �2

�1� = 0, �11�

k1I = k2I = 0, � = 1,

where �10 and �20 are two arbitrary real parameters. For this
choice of parameters, Eq. �10� reduces to the form

q1 =
1

D̃
�− e�1 +

�k1R − k2R�e�1+�2+�2
*

4k2R
2 �k1R + k2R�

� , �12a�

q2 =
1

D̃
�e�2 −

�k1R − k2R�e�1+�1
*+�2

4k1R
2 �k1R + k2R�

� , �12b�

where

D̃ = 1 + 	 e�1+�1
*

4k1R
2 −

e�2+�2
*

4k2R
2 
 −

�k1R − k2R�2e�1+�1
*+�2+�2

*

16k1R
2 k2R

2 �k1R + k2R�2 ,

�12c�

and � j is redefined as

FIG. 2. Intensity plots of regular one soliton solution of Eq. �1�
for the N=2 case.
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� j = kjR�t + ikjRz� + � j0, j = 1,2, �12d�

where � j0’s are arbitrary real parameters. The above equation
�12� can be expressed in terms of hyperbolic functions as

q1 =
2k1R

D̂
�k1R + k2R

k1R − k2R
sinh	k2Rt + �20

+
1

2
ln� k1R − k2R

4k2R
2 �k1R + k2R��
eik1R

2 z, �13a�

q2 = −
2k2R

D̂
�k1R + k2R

k1R − k2R
sinh	k1Rt + �10

+
1

2
ln� k1R − k2R

4k1R
2 �k1R + k2R��
eik2R

2 z, �13b�

where

D̂ = − sinh	k1Rt + k2Rt + �10 + �20

+ ln� k1R − k2R

2k1Rk2R�k1R + k2R��
 + � k1R + k2R

k1R − k2R
�

�sinh	k1Rt − k2Rt + �10 − �20 + ln� k2R

k1R
�
 . �13c�

One can check that Eq. �17� given in Ref. �38� can be re-
expressed in terms of hyperbolic functions in a form similar
to Eq. �13�. Figure 3 represents the stationary singular two

soliton solution at z=0 for k1R=0.2, k2R=−0.25, �1
�1�=−�2

�2�

=−1, �1
�2�=�2

�1�=0, and �=1.
Now from the expression �10� it can be observed that the

denominator can become zero for finite values of z and t
leading to singular solutions. However, in the case of the
general two soliton solution �10�, it is possible to make the
denominator �D in Eq. �10b�� to be nonzero for any value of
t and z for suitable choice of kj and � j

�l�’s, j , l=1,2. In order
to do so we rewrite the denominator D �see Eq. �10b�� as

D = 2e�1R+�2R�e�R1+R2�/2 cosh��1R − �2R + �R1 − R2�/2�

+ e�0R cos��1I − �2I + �0I�

+ eR3/2 cosh��1R + �2R + R3/2�
 , �14a�

where the suffixes R and I denote the real and imaginary
parts, respectively. Then the solution is regular if the above
expression is positive for all values of z and t. For this pur-
pose, a definite set of criteria can be identified as follows. As
in the case of one soliton solution in Sec. III A, if we choose
the parameters �i

�j�, i , j=1,2, such that ��i
�1��2� ��i

�2��2, i
=1,2, k1R�0 and k2R�0 then

	11 � 0, 	22 � 0. �14b�

Correspondingly, from Eqs. �10c� we note that eR1 �0 and
eR2 �0, so that eR1+R2 �0. Then, e�R1+R2�/2 cosh��1R−�2R

+ �R1−R2� /2��0. There is also the other possibility 	11�0,
	22�0. But it will not lead to regular solution as in this case
eR1 and eR2 become negative thereby making R1 and R2 com-
plex.

The term eR3/2 becomes greater than zero if

	11	22 − �	12�2 � 0. �14c�

Then for this choice eR3/2 cosh��1R+�2R+R3 /2� is always
greater than zero.

However, the term cos��1I−�2I+�0I� oscillates between
−1 and 1. So in order that the middle term does not compen-
sate the other two terms at any point in space or time result-
ing in D being equal to zero, we should have

e�R1+R2�/2 + eR3/2 � e�0R. �14d�

Consequently using the expressions �10c� in �14d� one may
deduce the condition

1

2
�	11	22

k1Rk2R
+

�k1 − k2�
2�k1 + k2

*�
�	11	22 − �	12�2

k1Rk2R
�

�	12�
�k1 + k2

*�
.

�14e�

Note that the conditions �14b� and �14c� are necessary con-
ditions to obtain regular solution as their falsity will always
result in singular solution. Condition �14e� is a sufficient one
as its validity confirms that the solution is always regular. We
are unable to prove whether condition �14e� is also necessary
or not due to the complicated form of the function D as a
function of the variables t and z given by Eqs. �10b� and
�14a�. It appears that the latter can only be checked numeri-
cally for given soliton parameter values. In terms of soliton
parameters the conditions �14b� and �14c� read as

��1
�1��2 − ��1

�2��2 � 0, �15a�

FIG. 3. Stationary singular two soliton solution for the N=2
case.
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��2
�1��2 − ��2

�2��2 � 0, �15b�

while Eq. �14e� becomes

���1
�1��2 − ��1

�2��2����2
�1��2 − ��2

�2��2�
��1

�1��2
�1�* − �1

�2��2
�2�*�2

�
16k1R

2 k2R
2

�k1R + k2R�2 + �k1I − k2I�2 .

�15c�

Thus the two soliton solution satisfying these conditions rep-
resent the interaction of two finite amplitude bright solitons
with definite velocities and their collision behavior is ana-
lyzed in the following section.

For illustrative purpose we consider the case k1R�0,
k2R�0, �=1, �1

�1�=cosh��1�ei
1, �2
�1�=cosh��2�ei
1, �1

�2�

=sinh��1�ei
2, and �2
�2�=sinh��2�ei
2, for some arbitrary

�1 ,�2 ,
1, and 
2. Then, the conditions �14b�, �14c�, and
�14e� become

	11 =
1

2k1R
, 	22 =

1

2k2R
,

�k1 + k2
*�2 − 4k1Rk2R cosh2��12� � 0,

1

4k1Rk2R
+

�k1 − k2���k1 + k2
*�2 − 4k1Rk2R cosh2��12�

4k1Rk2R�k1 + k2
*�2

�
cosh��12�
�k1 + k2

*�
, �16�

where �12=�1−�2. A two soliton collision process corre-
sponding to the condition �16� is shown in Fig. 4 for the
parameter choice k1=1.0+ i, k2=1.1− i, �1=0.8, �2=0.2, 
1

=1, and 
2=0.3. This collision behavior is analyzed in detail
in the following section.

IV. SHAPE CHANGING (INTENSITY REDISTRIBUTION)
COLLISIONS OF SOLITONS

Now it is of interest to understand the collision behavior,
shown in Fig. 4, of the regular two soliton solution. Figure 4
shows the interaction of two solitons S1 and S2 which are
well separated before and after collision, in the q1 and q2
components. This figure shows that after collision, the first
soliton S1 in the component q1 gets enhanced in its amplitude
while the soliton S2 is suppressed. Interestingly, the same
kind of changes are observed in the second component q2 as
well. This collision scenario is entirely different from the one
observed in the Manakov system where one soliton gets sup-
pressed in one component and is enhanced in the other com-
ponent with commensurate changes in the other soliton.

On the other hand, conceptually, the collision scenario
shown in Fig. 4 may be viewed as an amplification process
in which the soliton S1 represents a signal �or data carrier�
while the soliton S2 represents an energy reservoir �pump�.
The main virtue of this amplification process is that it does
not require any external amplification medium and therefore
the amplification of S1 does not induce any noise.

The understanding of this fascinating collision process
can be facilitated by making an asymptotic analysis of the
two soliton solution as in the Manakov case �21,24,43�. We
perform the analysis for the choice k1R ,k2R�0 and k1I�k2I.
For any other choice the analysis is similar. The study shows
that due to collision, the amplitudes of the colliding solitons
S1 and S2 change from �A1

1−k1R ,A2
1−k1R� and �A1

2−k2R ,A2
2−k2R�

to �A1
1+k1R ,A2

1+k1R� and �A1
2+k2R ,A2

2+k2R�, respectively. Here
the superscripts in Ai

j’s denote the solitons �number�1,2��, the
subscripts represent the components �number�1,2�� and “�”
signs stand for “z→ ±�.” They are defined as

�A1
1−

A2
1− � = ��1

�1�

�1
�2� � e−R1/2

�k1 + k1
*�

, �17a�

�A1
2−

A2
2− � = �e�11

e�12
� e−�R1+R3�/2

�k2 + k2
*�

, �17b�

�A1
1+

A2
1+ � = �e�21

e�22
� e−�R2+R3�/2

�k1 + k1
*�

, �17c�

�A1
2+

A2
2+ � = ��2

�1�

�2
�2� � e−R2/2

�k2 + k2
*�

. �17d�

All the quantities in the above expressions are given in Eq.
�10� �21,24,43�. The analysis reveals the fact that, for the
nonsingular two soliton solution, the colliding solitons
change their amplitudes in each component according to the
conservation equation

�A1
j−�2 − �A2

j−�2 = �A1
j+�2 − �A2

j+�2 =
1

�
, j = 1,2. �18�

This can be easily verified from the actual expressions given
in Eq. �17�.

FIG. 4. Shape changing �intensity redistribution� collision of
two solitons in the mixed CNLS system for the N=2 case.
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This condition allows the given soliton to experience the
same effect in each component during collision, which may
find potential applications in some physical situations like
noiseless amplification of a pulse. It can be easily observed
from the conservation relation �18� that each component of a
given soliton experiences the same kind of energy switching
during collision process. The other soliton �say S2� experi-
ences an opposite kind of energy switching due to the con-
servation law

�
−�

�

�qj�2dt = const, j = 1,2, �19�

as required from Eq. �1�.
The asymptotic analysis also results in the following ex-

pression relating the intensities of solitons S1 and S2 in q1
and q2 components before and after interaction �see Eq.
�17��:

�Aj
l+�2 = �Tj

l�2�Aj
l−�2, j,l = 1,2, �20�

where the superscripts l± represent the solitons designated as
S1 and S2 at z→ ±�. The transition intensities are defined as

�Tj
1�2 =

�1 − �2��2
�j�/�1

�j���2

�1 − �1�2�
, �21a�

�Tj
2�2 =

�1 − �1�2�
�1 − �1��1

�j�/�2
�j���2

, j = 1,2, �21b�

�1 =
	21

	11
, �2 =

	12

	22
. �21c�

In fact, this way of energy �amplitude� redistribution can also
be expressed in terms of linear fractional transformations
�LFTs� as in the CNLS system with focusing nonlinearities
�24,44,45�. For example, one can identify from the
asymptotic expressions �17� that the state of S1 after interac-
tion �say �1,2

1+ =A1
1+ /A2

1+� is related to its state before interac-
tion �say �1,2

1− =A1
1− /A2

1−� through the following LFT:

�1,2
1+ =

A1
1+

A2
1+ =

C11
�1��1,2

1− + C12
�1�

C21
�1��1,2

1− + C22
�1� , �22a�

where

C11
�1� = �2

�1��2
�1�*�k2 − k1� + �2

�2��2
�2�*�k1 + k2

*� ,

C12
�1� = − �2

�1��2
�2�*�k2 + k2

*� ,

C21
�1� = �2

�2��2
�1�*�k2 + k2

*� ,

C22
�1� = �2

�2��2
�2�*�k1 − k2� − �2

�1��2
�1�*�k1 + k2

*� . �22b�

A similar expression can be obtained for soliton S2 also. The
analysis of such state transformations preserving the differ-
ence of intensities among the components, during collision,
in the context of optical computing and their advantage in
constructing logic gates is kept for future study.

For the standard elastic collision property ascribed to the
scalar solitons to occur here we need the magnitudes of the

transition intensities to be unity which is possible for the
specific choice

�1
�1�

�2
�1� =

�1
�2�

�2
�2� . �23�

As an example, in Fig. 5 we present the elastic collision for
�1=�2=0.2, 
1=
2=0.3 �see Eq. �16��, with kj’s unaltered,
j=1,2 �Note that this choice satisfies the above condition
�23��. For all other values of �i

�j�’s, the soliton energies get
exchanged between the solitons in both the components as in
Fig. 4.

The other quantities characterizing this collision process,
along with this energy redistribution, are the amplitude de-
pendent phase shifts and change in relative separation dis-
tances. Their explicit forms can be obtained as in the case of
the Manakov model �21,24�. Explicit expressions for the
phase shifts �1 and �2 of solitons S1 and S2, respectively,
during the collision are obtained from the asymptotic analy-
sis as

�1 = − �2 =
�R3 − R1 − R2�

2
, �24�

where R1, R2, and R3 are defined in Eq. �10�.
Then, the change in relative separation distance between

the solitons can be expressed as

�t12 = t12
− − t12

+ =
�k1R + k2R�

k1Rk2R
�1, �25�

where t12
± = the position of S2 �at z→ ±�� minus position of

S1 �at z→ ±��.

FIG. 5. Elastic collision of two solitons in the mixed CNLS
system for the N=2 case.
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V. GENERALIZATION OF THE RESULTS
TO MULTISOLITON SOLUTIONS
AND MULTICOMPONENT CASE

Having discussed the nature of two soliton collision in the
two component case �N=2�, we now wish to study multisoli-
ton collisions for the N=2 as well as N�2 cases. For this
purpose, we will consider first the three soliton collision sce-
nario for the N=2 case and then extend the analysis to more
general cases.

A. Multisoliton solutions

It is straightforward to extend the bilinearization
procedure of obtaining one and two soliton solutions
to multisoliton solutions as was done in Ref. �24� for
the integrable CNLS equations with focusing non-
linearity coefficients. Below, we present the form of the
three soliton solution for the mixed CNLS equations �1�
as

qj =
�1

�j�e�1 + �2
�j�e�2 + �3

�j�e�3 + e�1+�1
*+�2+�1j + e�1+�1

*+�3+�2j + e�2+�2
*+�1+�3j

D

+
e�2+�2

*+�3+�4j + e�3+�3
*+�1+�5j + e�3+�3

*+�2+�6j + e�1
*+�2+�3+�7j + e�1+�2

*+�3+�8j

D

+
e�1+�2+�3

*+�9j + e�1+�1
*+�2+�2

*+�3+�1j + e�1+�1
*+�3+�3

*+�2+�2j + e�2+�2
*+�3+�3

*+�1+�3j

D
, j = 1,2, �26a�

where

D = 1 + e�1+�1
*+R1 + e�2+�2

*+R2 + e�3+�3
*+R3 + e�1+�2

*+�10

+ e�1
*+�2+�10

*
+ e�1+�3

*+�20 + e�1
*+�3+�20

*
+ e�2+�3

*+�30

+ e�2
*+�3+�30

*
+ e�1+�1

*+�2+�2
*+R4 + e�1+�1

*+�3+�3
*+R5

+ e�2+�2
*+�3+�3

*+R6 + e�1+�1
*+�2+�3

*+�10 + e�1+�1
*+�3+�2

*+�10
*

+ e�2+�2
*+�1+�3

*+�20 + e�2+�2
*+�1

*+�3+�20
*

+ e�3+�3
*+�1+�2

*+�30

+ e�3+�3
*+�1

*+�2+�30
*

+ e�1+�1
*+�2+�2

*+�3+�3
*+R7. �26b�

Expressions for various quantities given in Eq. �26� have the
following forms:

�i = ki�t + ikiz�, i = 1,2,3, �27a�

e�1j =
�k1 − k2���1

�j�	21 − �2
�j�	11�

�k1 + k1
*��k1

* + k2�
,

e�2j =
�k1 − k3���1

�j�	31 − �3
�j�	11�

�k1 + k1
*��k1

* + k3�
,

e�3j =
�k1 − k2���1

�j�	22 − �2
�j�	12�

�k1 + k2
*��k2 + k2

*�
,

e�4j =
�k2 − k3���2

�j�	32 − �3
�j�	22�

�k2 + k2
*��k2

* + k3�
,

e�5j =
�k1 − k3���1

�j�	33 − �3
�j�	13�

�k3 + k3
*��k3

* + k1�
,

e�6j =
�k2 − k3���2

�j�	33 − �3
�j�	23�

�k3
* + k2��k3

* + k3�
,

e�7j =
�k2 − k3���2

�j�	31 − �3
�j�	21�

�k1
* + k2��k1

* + k3�
,

e�8j =
�k1 − k3���1

�j�	32 − �3
�j�	12�

�k1 + k2
*��k2

* + k3�
,

e�9j =
�k1 − k2���1

�j�	23 − �2
�j�	13�

�k1 + k3
*��k2 + k3

*�
,

e�1j =
�k2 − k1��k3 − k1��k3 − k2��k2

* − k1
*�

�k1
* + k1��k1

* + k2��k1
* + k3��k2

* + k1��k2
* + k2��k2

* + k3�

� ��1
�j��	21	32 − 	22	31� + �2

�j��	12	31 − 	32	11�

+ �3
�j��	11	22 − 	12	21�� ,

e�2j =
�k2 − k1��k3 − k1��k3 − k2��k3

* − k1
*�

�k1
* + k1��k1

* + k2��k1
* + k3��k3

* + k1��k3
* + k2��k3

* + k3�

� ��1
�j��	33	21 − 	31	23� + �2

�j��	31	13 − 	11	33�

+ �3
�j��	23	11 − 	13	21�� ,

e�3j =
�k2 − k1��k3 − k1��k3 − k2��k3

* − k2
*�

�k2
* + k1��k2

* + k2��k2
* + k3��k3

* + k1��k3
* + k2��k3

* + k3�

� ��1
�j��	22	33 − 	23	32� + �2

�j��	13	32 − 	33	12� + �3
�j�

��	12	23 − 	22	13�� ,
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eRm =
	mm

km + km
* , m = 1,2,3, e�10 =

	12

k1 + k2
* ,

e�20 =
	13

k1 + k3
* , e�30 =

	23

k2 + k3
* ,

eR4 =
�k2 − k1��k2

* − k1
*�

�k1
* + k1��k1

* + k2��k1 + k2
*��k2

* + k2�
�	11	22 − 	12	21� ,

eR5 =
�k3 − k1��k3

* − k1
*�

�k1
* + k1��k1

* + k3��k3
* + k1��k3

* + k3�
�	33	11 − 	13	31� ,

eR6 =
�k3 − k2��k3

* − k2
*�

�k2
* + k2��k2

* + k3��k3
* + k2��k3 + k3

*�
�	22	33 − 	23	32� ,

e�10 =
�k2 − k1��k3

* − k1
*�

�k1
* + k1��k1

* + k2��k3
* + k1��k3

* + k2�
�	11	23 − 	21	13� ,

e�20 =
�k1 − k2��k3

* − k2
*�

�k2
* + k1��k2

* + k2��k3
* + k1��k3

* + k2�
�	22	13 − 	12	23� ,

e�30 =
�k3 − k1��k3

* − k2
*�

�k2
* + k1��k2

* + k3��k3
* + k1��k3

* + k3�
�	33	12 − 	13	32� ,

�27b�

eR7 =
�k1 − k2�2�k2 − k3�2�k3 − k1�2

�k1 + k1
*��k2 + k2

*��k3 + k3
*��k1 + k2

*�2�k2 + k3
*�2�k3 + k1

*�2

� ��	11	22	33 − 	11	23	32� + �	12	23	31 − 	12	21	33�

+ �	21	13	32 − 	22	13	31�� , �27c�

and

	ij =
��l=1

2
�l�i

�l�� j
�l�*

�ki + kj
*�

, i, j = 1,2,3, �27d�

where �1=1 and �2=−1. Here �1
�j�, �2

�j�, and �3
�j�, k1, k2 and

k3, j=1,2 ,3, are complex parameters.
The solution �26� also features singular and nonsingular

behaviors, as in the case of one and two soliton solutions
depending upon the values of the soliton parameters. Though
the denominator D in the solution �26� is cumbersome, pos-
sible nonsingular conditions can be obtained with some ef-
fort. Equation �26b� can be rewritten as

D = 2e�1R+�2R+�3R�e�R1+R6�/2 cosh��1R − �2R − �3R + �R1 − R6�/2�

+ e�R2+R5�/2 cosh��2R − �1R − �3R + �R2 − R5�/2� + e�R3+R4�/2 cosh��3R − �1R − �2R + �R3 − R4�/2�

+ 2e��10R+�30R�/2�cosh�X1�cos�Y1�cos�Z1� − sinh�X1�sin�Y1�sin�Z1�� + 2e��20R+�20R�/2�cosh�X2�cos�Y2�cos�Z2�

− sinh�X2�sin�Y2�sin�Z2�� + 2e��30R+�10R�/2�cosh�X3�cos�Y3�cos�Z3� − sinh�X3�sin�Y3�sin�Z3��

+ eR7/2 cosh��1R + �2R + �3R + R7/2�
 , �28a�

where

X1 = − �3R +
��10R − �30R�

2
, X2 = − �2R +

��20R − �20R�
2

,

X3 = − �1R +
��30R − �10R�

2
, Y1 = �1I − �2I +

��10I + �30I�
2

,

Y2 = �1I − �3I +
��20I + �20I�

2
, Y3 = �2I − �3I +

��30I + �10I�
2

,

Z1 =
��10I − �30I�

2
, Z2 =

��20I − �20I�
2

, Z3 =
��30I − �10I�

2
.

�28b�

Here the suffixes R and I denote the real and imaginary parts,
respectively. As in the case of two soliton solution here also
we find the following conditions need to be satisfied for the
solution to be regular:

eRi � 0, i = 1,2, . . . ,7, �29a�

e�R1+R6�/2,e�R2+R5�/2,e�R3+R4�/2,eR7/2

� 4 max�e�10R+�30R,e�20R+�20R,e�30R+�10R
 . �29b�

Note that the conditions given in Eq. �29a� are necessary as
the falsity of any of them always results in a singular solu-
tion and the last condition �29b� is sufficient to ensure that
the given solution is regular. In fact these conditions can also
be expressed in terms of soliton parameters, but due to their
cumbersome nature we do not present them here. The appro-
priate choice of parameters can be made by carefully looking
at the explicit forms of eRi, e�j0, and e�j0, i=1, . . . ,7, and j
=1,2 ,3.

Such a nonsingular solution representing the shape chang-
ing �intensity redistribution� collision of three solitons S1, S2,
and S3 in the two components q1 and q2 is shown in Fig. 6
for the parameter choice k1=1+ i, k2=1.2−0.5i, k3=1− i, �
=1, �1

�1�=cosh��1�ei
1, �2
�1�=cosh��2�ei
1, �3

�1�=cosh��3�ei
1,
�1

�2�=sinh��1�ei
2, �2
�2�=sinh��2�ei
2, �3

�2�=sinh��3�ei
2,
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where �1=0.8, �2=0.4, �3=0.2, 
1=0.5, and 
2=1.0. From
the figure we observe that after collision solitons S1 and S2
are enhanced in their intensities while there occurs suppres-
sion of intensity for soliton S3 in both the components q1 and
q2. It can be verified that before and after collision the con-
servation relation

�A1
j−�2 − �A2

j−�2 = �A1
j+�2 − �A2

j+�2 =
1

�
, j = 1,2,3 �30�

is satisfied, so that the difference of intensities of the solitons
between the components q1 and q2 is preserved before and
after the collision process. The standard elastic collision can
be regained if �1

�1� :�2
�1� :�3

�1�=�2
�1� :�2

�2� :�3
�2�. Figure 7 illus-

trates such an elastic collision for the choice �1=�2=�3
=0.4, 
1=
2=0.5, with same kj’s, j=1,2 ,3, as in Fig. 6.

In a similar manner the four soliton solution can be de-
duced from Eq. �A2� given in Ref. �24� by redefining 	ij as
in Eq. �27d� with i , j running from 1 to 4. We do not present
the explicit form of it here because of its cumbersome nature.

B. Multicomponent case with N�2

The next step is to generalize the above results for the
N=2 case to arbitrary N with N�2. To do this we follow the
earlier work of two of the authors �T.K. and M.L.� �24� on
the focusing type CNLS equations with all �l=1, l
=1,2 , . . . ,N. This study shows that the solutions of mixed
CNLS equations with the N=2 case can be generalized to
arbitrary N case just by allowing the number of components
to run from 2 to N and redefining 	ij’s suitably.

The procedure can be well understood by considering the
example of writing down the soliton solutions of Eq. �1� for
the case N=3.

1. One soliton solution

The one soliton solution of mixed 3-CNLS equations ob-
tained by Hirota’s method can be written as

�q1

q2

q3
� = ��1

�1�

�1
�2�

�1
�3� � e�1

1 + e�1+�1
*+R

, �31a�

where

�1 = k1�t + ik1z�, eR =
	11

�k1 + k1
*�

, �31b�

in which 	11=���1 ��1
�1��2+�2 ��1

�2��2+�3 ��1
�3��2� / �k1+k1

*� and
without loss of generality we assume either �1=1, �2=�3
=−1 or �1=�2=1, �3=−1. As in the case of N=2, Sec. III A,
the solution is singular if �1 ��1

�1��2+�2 ��1
�2��2+�3 ��1

�3��2�0.
Otherwise the solution is regular. It can be noticed that for
any other combination of �l’s also the above solution satis-
fies Eq. �1�, for N=3.

2. Two soliton solution

The two soliton solution for the N=3 case is found to
possess the same form of Eq. �10�, with j=1,2 ,3, and 	ij is
given by

	ij =
���1�i

�1�� j
�1�* + �2�i

�2�� j
�2�* + �3�i

�3�� j
�3�*�

�ki + kj
*�

, i, j = 1,2,

�32�

where �l’s, l=1,2 ,3, can take the value either +1 or −1.
Here also the nonsingular solution exists for the conditions
�14b�, �14c�, and �14e� with the redefinition of 	ij’s as in Eq.
�32�.

FIG. 6. Shape changing �intensity redistribution� collision of
three solitons in the mixed CNLS system for the N=2 case.

FIG. 7. Elastic collision of three solitons in the mixed CNLS
system for the N=2 case.
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3. Three and multisoliton solutions

A similar analysis can be done for the multisoliton solu-
tions of the multicomponent case with arbitrary N. Particu-
larly the three soliton solution of the mixed 3-CNLS equa-
tions, Eq. �1� with N=3, can be identified to have the form of
three soliton solution for the N=2 case with j running from 1
to 3 �that is, now we have three components q1, q2, and q3�
and here 	ij is redefined as

	ij =
���1�i

�1�� j
�1�* + �2�i

�2� + �3�i
�3�� j

�3�*�
�ki + kj

*�
, i, j = 1,2,3,

�33�

where �l’s, l=1,2 ,3, can take the value either +1 or −1 �see
also Eq. �10� of Ref. �24��.

It can also be noticed that the stationary singular solution
for the N=3 case given in Ref. �38� results from the above
mentioned three soliton solution for the choice

�1
�1� = − e�10, �2

�2� = e�20, �3
�3� = − e�30, �i

�j� = 0,

�34�

kjI = 0, � = 1, i � j, i, j = 1,2,3,

where � j0’s, j=1,2 ,3, are real parameters. The resulting lim-
iting form reads in terms of hyperbolic functions as given in
Appendix A. This singular solution at z=0 is shown in Fig.
8. The parameters are chosen as �1

�1�=−1, �2
�2�=1, �3

�3�=−1,
�i

�j�=0, i� j, i , j=1,2 ,3, k1R=0.8, k2R=0.5, k3R=0.4, and �
=1.

This procedure can be generalized further to obtain mul-
tisoliton solutions of the multicomponent case with arbitrary
N. For completeness we present the determinant form of the
N-soliton solution of the N-component case in Appendix B,
following the lines of Ref. �46� for the Manakov case.

C. Collision scenario in multicomponent cases

As we increase the number of components the collision
behavior becomes more interesting. For example, we con-
sider the collision of two solitons in the three component
�N=3� mixed CNLS system. We study the collision dynam-
ics for the following two possible combinations of �’s. For
illustration, we present two nontrivial scenarios with two dif-
ferent choices of �i’s.

Case (i): �1=1, �2=�3=−1. For this case, one possible
parametric choice for nonsingular solution is given by k1

=1.0+ i, k2=0.9− i, �1
�1�=�2

�1�=1+ i, �1
�2�=0.2+0.4i, �2

�2�

=0.7+0.2i, �1
�3�=0.1+0.3i, �2

�3�=0.4+0.1i, and �=1. We
plot the two soliton solution corresponding to this parameter
choice in Fig. 9. The figure shows that after collision there is
an enhancement �suppression� of intensities �amplitudes� for
a given soliton �say soliton S1 �S2�� in all the three compo-
nents. Here also one can verify that the difference of inten-
sities is conserved according to the conservation law

�A1
l��2 − �A2

l��2 − �A3
l��2 =

1

�
, l = 1,2. �35�

Case (ii): �1=�2=1 ,�3=−1. Next we consider the above

possible choice for �’s. The nonsingular intensity plots of
solitons S1 and S2 are shown in Fig. 10. The parameters are
chosen as k1=1.0+ i, k2=0.9− i, �1

�1�=1+ i, �2
�1�= �39

−80i� /89, �1
�2�=0.2+0.4i, �2

�2�=1, �1
�3�= �39+80i� /89, �2

�3�

=0.3+0.2i, and �=1. This figure shows that after collision
the intensity of soliton S1 �S2� in the first and third compo-
nents gets enhanced �suppressed� while in the second com-
ponent S1 �S2� is suppressed �enhanced� in its intensity. This
is a consequence of the conservation given by the relation

�A1
l−�2 + �A2

l−�2 − �A3
l−�2 = �A1

l+�2 + �A2
l+�2 − �A3

l+�2 =
1

�
, l = 1,2.

�36�

Thus for the two soliton solution of the N-component case
the shape changing �intensity redistribution� collision occurs
according to the relation

�
l=1

N

�l�Al
j−�2 = �

l=1

N

�l�Al
j+�2 =

1

�
, j = 1,2. �37�

However, the elastic collision occurs for the choice

FIG. 8. Stationary singular three soliton solution for the N=3
case.
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�1
�1�

�2
�1� =

�1
�2�

�2
�2� = ¯ =

�1
�N�

�2
�N� . �38�

One can also observe that multisoliton solutions for the
case N�2 also undergo the above kind of shape changing
�intensity redistribution� collisions but with more possible
ways of energy exchange.

VI. CONCLUSION

In this paper we have obtained the bright soliton type
solutions of mixed CNLS, Eq. �1�, by applying Hirota’s bi-
linear method. These solutions admit both singular and non-
singular behaviors depending upon the choice of the soliton
parameters. The condition for the existence of nonsingular
one and two soliton solutions for the N=2 case are identified
first. Analysing the corresponding collision behavior reveals
the fact that the solitons undergo fascinating shape changing
�intensity redistribution� collisions with similar changes oc-
curring in both components, which is not possible in the well
known Manakov system. This shape changing �intensity re-
distribution� collision occurs with a redistribution of intensi-
ties among the solitons, spread up in two components, in a
particular fashion, where the intensity difference of the soli-
tons between the two components is preserved after colli-

sion, and amplitude dependent phase shifts as well as change
in relative separation distances also occur. We have extended
this study to obtain multicomponent multisoliton solutions.
Numerical plottings of the solutions show that similar shape
changing �intensity redistribution� collision behavior is also
observed for the multicomponent case with N�2 as in the
case of N=2 but with many possible ways of shape variation.
Still it is an open question to identify the regions in which
system �1� admits bright-dark, dark-bright, dark-dark soliton
solutions. Our study gives an adequate understanding of col-
lision of bright-bright solitons arising in system �1� for
mixed signs of nonlinearities. We believe that this kind of
study will be of interest in the description of magnetic exci-
tations over an antiferromagnetic vacuum, electromagnetic
pulse propagation in left handed materials and so on. In par-
ticular one of the most interesting properties of the bright
solitons that we have identified in the present work is that the
two components of a soliton can be simultaneously amplified
during a collision process. Using this property, in principle it

FIG. 9. Shape changing �intensity redistribution� collision of
two solitons in the mixed CNLS system, for the N=3 case, exhib-
iting same kind of shape changes for a given soliton in all the three
components.

FIG. 10. Shape changing �intensity redistribution� collision of
two solitons in the mixed CNLS system, for the N=3 case, exhib-
iting same kind of shape changes for a given soliton in the q1 and q3

components and an exactly opposite collision scenario in the q2

component.
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becomes possible to promote the collision process to the rank
of a highly efficient amplification process without noise gen-
eration, in which the gain can be tuned over a relatively large
range through a careful choice of precollision parameters.
However, there still remains a lot of work to be done to make
the fascinating concept of amplifiers with zero noise figure as
practical device for optical communication systems. For ex-
ample, an important and challenging issue will be to deter-
mine whether such amplification process can survive in the
presence of strong perturbations or in the presence of propa-
gation instabilities.
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APPENDIX A: SINGULAR STATIONARY THREE
SOLITON SOLUTION FOR N=3 CASE

In this appendix we present the singular stationary three
soliton solutions of mixed 3-CNLS equations. Considering
the three soliton solution given by Eq. �26� but now the 	ij’s
are defined as in Eq. �33�, the limiting form for the specific
choice of parameters given by Eq. �34� can be deduced as

q1 =

− 2k1R���k1R + k2R��k1R + k3R�
�k2R − k1R��k3R − k1R��	cosh�A1� + � �k2R + k3R�

�k2R − k3R�
�cosh�B1�
eik1R

2 z

D
, �A1a�

q2 =

2k2R���k1R + k2R��k2R + k3R�
�k2R − k1R��k3R − k2R��	cosh�A2� − � �k1R + k3R�

�k1R − k3R�
�cosh�B2�
eik2R

2 z

D
, �A1b�

q3 =

2k3R���k1R + k3R��k2R + k3R�
�k3R − k1R��k3R − k2R��	sinh�A3� + � �k1R + k2R�

�k2R − k1R�
�sinh�B3�
eik3R

2 z

D
, �A1c�

where

D = cosh�D1� + � �k1R + k2R��k1R + k3R�
�k2R − k1R��k3R − k1R�

�cosh�D2� − � �k1R + k2R��k2R + k3R�
�k2R − k1R��k2R − k3R�

�cosh�D3� − � �k2R + k3R��k1R + k3R�
�k2R − k3R��k3R − k1R�

�cosh�D4� ,

�A1d�

A1 = �k2R + k3R�t + �20 + �30 +
1

2
ln	 �k2R − k1R��k3R − k1R��k3R − k2R�2

16k2R
2 k3R

2 �k1R + k2R��k1R + k3R��k2R + k3R�2
 ,

B1 = �k2R − k3R�t + �20 − �30 +
1

2
ln	 �k1R − k2R��k1R + k3R�k3R

2

k2R
2 �k1R + k2R��k1R − k3R�
 ,

A2 = �k1R + k3R�t + �10 + �30 +
1

2
ln	 �k2R − k1R��k3R − k1R�2�k3R − k2R�

16k1R
2 k3R

2 �k1R + k2R��k1R + k3R�2�k2R + k3R�
 ,

B2 = �k1R − k3R�t + �10 − �30 +
1

2
ln	 �k1R − k2R��k2R + k3R�k3R

2

k1R
2 �k1R + k2R��k2R − k3R�
 ,

A3 = �k1R + k2R�t + �10 + �20 +
1

2
ln	 �k3R − k1R��k2R − k1R�2�k3R − k2R�

16k1R
2 k2R

2 �k1R + k2R�2�k1R + k3R��k2R + k3R�
 ,

B3 = �k1R − k2R�t + �10 − �20 +
1

2
ln	 �k3R − k1R��k2R + k3R�k2R

2

k1R
2 �k1R + k3R��k3R − k2R�
 ,
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D1 = �k1R + k2R + k3R�t + �10 + �20 + �30 + ln	 �k1R − k2R��k1R − k3R��k2R − k3R�
8k1Rk2Rk3R�k1R + k2R��k1R + k3R��k2R + k3R�
 ,

D2 = �k1R − k2R − k3R�t + �10 − �20 − �30 + ln	2�k2R + k3R�k2Rk3R

k1R�k2R − k3R� 
 ,

D3 = �k1R − k2R + k3R�t + �10 − �20 + �30 + ln	 �k3R − k1R�k2R

2k1Rk3R�k1R + k3R�
 ,

D4 = �k1R + k2R − k3R�t + �10 + �20 − �30 + ln	 �k2R − k1R�k3R

2k1Rk2R�k1R + k2R�
 . �A1e�

Particularly, the stationary solution corresponding to the
choice given in Eq. �34� can be easily checked to be the same
as the previously reported form given by Eq. �19� in Ref.
�38�. This clearly shows that the more general soliton solu-
tions presented in this paper admit singular solutions as spe-
cial cases which behave as regular and bounded solutions in
specific regions.

APPENDIX B: MULTICOMPONENT MULTISOLITON
SOLUTIONS

To write down the multicomponent multisoliton solutions
in a formal way we define the following �1�N� row matrix
Cs, �N�1� column matrices � j, 
, j ,s=1,2 , . . . ,N, and the
�N�N� matrix �:

Cs = − ��1
�s�,�2

�s�, . . . ,�N
�s��, � j =�

� j
�1�

� j
�2�

�
� j

�N�
� ,


 =�
e�1

e�2

�
e�N

�, j,s = 1,2, . . . ,N ,

� =�
�1 0 ¯ 0

0 �2 ¯ 0

� � � �
0 0 ¯ �N

� , �B1a�

where � j, j=1,2 , . . . ,N, can take value either +1 or −1. Then
the N-soliton solution of N-CNLS system �1� with mixed
signs of nonlinearities can be written as

qs =
g�s�

D
, s = 1,2,3, . . . ,N , �B1b�

where

g�s� = � A I 


− I B 0

0 Cs 0
�, D = � A I

− I B
� , �B1c�

in which s denotes the component. Here I is �N�N� unit
matrix and the �N�N� matrices A and B are defined as

Ai,j =
e�i+�j

*

ki + kj
* , Bi,j = 	 ji =

���i † �� j�
ki

* + kj

, i, j = 1,2, . . . ,N ,

�B1d�

where �i=ki�t+ ikiz�, ki is complex, † represents the trans-
pose conjugate. Here we remark that though presenting the
solutions in determinant form seems to be compact, one has
to explicitly write down the solutions as we have presented
in Secs. II–V, for a complete characterization and analysis of
the solution. This way of expressing the solutions explicitly
is also useful to identify the particular parameter choice for
which the singular stationary N-soliton solution of the
N-component case results from the general solutions. In par-
ticular, by generalizing the Eqs. �11� and �34� one can iden-
tify that the singular stationary N-soliton solution of the
N-component case results from the above solution �B1� for
the choice �i

�i�= �−1�ie�i0, i=1,2 , . . . ,N, and �i
�j�=0, kjI=0,

�=1, where i� j, i , j=1,2 ,3 , . . . ,N, and e�i0’s are arbitrary
real parameters.
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