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We critically review the recent progress in understanding soliton propagation
in birefringent optical fibers. By constructing the most general bright two-soliton
solution of the integrable coupled nonlinear Schrödinger equation (Manakov model)
we point out that solitons in birefringent fibers can in general change their shape
after interaction due to a change in the intensity distribution among the modes
eventhough the total energy is conserved. However the standard shape-preserving
collision (elastic collision) property of the (1 + 1) dimensional solitons is recovered
when restrictions are imposed on some of the soliton parameters. As a consequence
the following further properties can be deduced using this shape-changing collision.

(i) The exciting possibility of switching of solitons between orthogonally polarized
modes of the birefringent fiber exists.

(ii) When additional effects due to periodic rotation of birefringence axes are consid-
ered, the shape changing collision can be used as a switch to suppress or to enhance
the periodic intensity exchange between the orthogonally polarized modes.

(iii) For ultra short optical soliton pulse propagation in non-Kerr media, from the
governing equation an integrable system of coupled nonlinear Schrödinger equation
with cubic-quintic terms is identified. It admits a nonlocal Poisson bracket structure.

(iv) If we take the higher-order terms in the coupled nonlinear Schrödinger equation
into account then their effect on the shape changing collision of solitons, during
optical pulse propagation, can be studied by using a direct perturbational approach.

1. Introduction

The study of optical wave propagation in a nonlinear dispersive (dielectric) fiber has
been receiving considerable attention in recent times as the fiber can support under
suitable circumstances a stable pulse called optical soliton [1-3]. It arises essentially due
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to a compensation of the effect of dispersion of the pulse by the nonlinear response of
the medium.

The analysis of such pulse propagation naturally starts from the Maxwell’s equations
for electromagnetic wave propagation in a dielectric medium,

∇2−→E − 1

c2

∂2−→E
∂t2

= −µ0
∂2−→P
∂t2

, (1)

where the induced polarization for silica fibers is

−→
P (−→r , t) = ǫ0

[

χ(1).
−→
E +χ(3)

...
−→
E
−→
E
−→
E + ...

]

. (2)

In equation(1),
−→
E represents the electric field, c is the velocity of light, µ0 and ǫ0 are the

permeability and permitivity of free space respectively, χ(m) is the mth order suscepti-
bility tensor.

In order to analyse equation(1) it is necessary to make several simplifying assump-
tions: (i) The nonlinear part of the induced polarization is treated as a small perturbation
to the linear part. (ii) The optical field is assumed to maintain its polarization along the
fiber. (iii) Fiber loss is assumed to be very small. (iv) The nonlinear response of the
fiber is assumed to be instantaneous. (v) In a slowly varying envelope approximation for
pulse propagation along the fiber, the electric field can be written as [4]

−→
E (−→r , t) =

1

2
−→e
[

F (x, y)E(z, t)ei(K0z−ω0t) + c.c
]

, (3)

where c.c stands for complex conjugate, −→e is the unit polarization vector of the light
assumed to be linearly polarized, E is the slowly varying electric field, F (x, y) is the
mode distribution function in the (x, y) plane, while K0 and ω0 denote the propagation
constant and central frequency of the optical pulse respectively.

Under the above assumptions, rewriting equation(1) by using the method of separa-
tion of variables and introducing the coordinate system, T=t− z

vg
, moving with the pulse

at the group-velocity vg = ∂K
∂ω

, one can obtain a wave equation for the evolution of E as

i
∂E

∂z
− K ′′

2

∂2E

∂T 2
+ γ0|E|2E = 0, (4)

where γ0=
n2ω0

cAeff
. Here Aeff denotes the effective core area of the single-mode fiber, n2

represents the nonlinear index coefficient and the parameter K ′′ =
(

∂2K
∂ω2

)

ω=ω0

= 1
v2

g

accounts for the group velocity dispersion (GVD). After normalizing equation(4) and

using the transformation, q =
[

γ0T 2

0

|K′′|

]
1

2

E, ξ = z|K′′|
T 2

0

, τ = T
T0

and then redefining ξ as

z and τ as t we get the ubiquitous nonlinear Schrödinger (NLS) equation,

iqz − (sgn K ′′)qtt + 2|q|2q = 0, (5)
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in which T0 represents the width of the incident pulse, z and t are the normalized distance
and time along the direction of propagation and q is the normalized envelope. The NLS
equation admits the familiar bright envelope (one) soliton

q(z, t) =
k1Rexp

[

i
(

(

k2
1R − k2

1I

)

z + k1It + η
(0)
1I

)]

cosh
[

k1R

(

t − k1Iz + η
(0)
1R

)] , (6)

in the anamolous dispersion region (K ′′ < 0), where k1R and k1I give the amplitude

and velocity of the soliton respectively and η
(0)
1 is an arbitrary complex parameter. In

the normal dispersion regime (K ′′ > 0), equation(5) possesses dark soliton solutions
[5]. Equation(5) is valid in the picosecond regime since in obtaining the above equation
the optical field is assumed to be quasi-monochromatic. For ultra short pulses (width
≤ 100fs) one has to include additional effects such as third order dispersion, nonlinear
dispersion, self induced Raman effect, etc. Then equation(5) is for example replaced by
the higher-order NLS (HNLS) equation,

iqz − (sgnK ′′)qtt + 2|q|2q − ǫqttt − λ1(|q|2q)t − λ2|q|2t q = 0. (7)

Considerable attention has been paid to this HNLS equation which results from the
delayed response of the fiber nonlinearity [6].

2. Electromagnetic Wave Propagation in Birefringent Fibers and the Cou-

pled NLS Equation

In general a single mode fiber can support two distinct modes of polarization which
are orthogonal to each other. This phenomenon is known as birefringence. Among
these two modes one corresponds to the ordinary ray (O-ray) in which the refractive
index of the medium is constant along every direction of the incident ray. The other
is the extraordinary ray (E-ray) whose refractive index for the medium varies with the
direction of the incident ray. In an ideal fiber these two modes are degenerate, while in
a real fiber due to the fiber nonlinearity this degeneracy is broken and the phenomenon
is known as “modal birefringence” [1].

Thus due to the effect of birefringence and nonlinear response of the medium there
is a possibility of interaction of two copropagating modes. As a result of this the phase
of one mode not only depends on its own intensity (Self Phase Modulation (SPM)) but
also on the intensity of the copropagating mode (Cross Phase Modulation (XPM)) [1,2].

The propagation equation for such modes can be obtained again from the Maxwell’s
equations by considering the electric field

−→
E in the slowly varying envelope approximation

as
−→
E (−→r , t) =

1

2

[

(−→e1E1(z, t)eiK01z + −→e2E2(z, t) eiK02z)F (x, y)e−iω0t + c.c
]

, (8)

where E1, E2 are the amplitudes of two polarization components and −→e 1, −→e 2 are the
unit orthonormal polarization vectors and F (x, y) is the fiber mode distribution.
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Proceeding in the same way as in the case of the single mode fiber one can obtain the
following coupled system of equations for the envelopes of the two copropagating waves,

iE1z +
i

vg1
E1t −

K ′′

2
E1tt + γ0(|E1|2 + B|E2|2)E1 = 0,

iE2z +
i

vg2
E2t −

K ′′

2
E2tt + γ0(|E2|2 + B|E1|2)E2 = 0, (9)

where z and t represent the normalized distance and time along the direction of propa-
gation, vg1 and vg2 represent the group velocity of the two copropagating waves E1 and

E2 respectively and B = 2+2 sin2 ϑ
2+cos2 ϑ

is the XPM coupling parameter (ϑ - birefringence
ellipticity angle which varies between 0 and π

2 ). After suitable transformations as in the
case of NLS equation we can rewrite the equation(9) in its normalized form as

iq1z + q1tt + 2µ(|q1|2 + B|q2|2)q1 = 0,

iq2z + q2tt + 2µ(|q2|2 + B|q1|2)q2 = 0. (10)

The above equation is the coupled nonlinear Schrödinger (CNLS) equation which is
in general nonintegrable. However for B=1 this reduces to the celebrated Manakov
equations [7],

iq1z + q1tt + 2µ(|q1|2 + |q2|2)q1 = 0,

iq2z + q2tt + 2µ(|q1|2 + |q2|2)q2 = 0, (11)

which is a completely integrable soliton system. The Lax pair for the Manakov system
(11) can be identified as

L =





−iλ q1 q2

−q∗1 iλ 0
−q∗2 0 iλ



 , M =





















{−2iλ2+ {2λq1 {2λq2

i(|q1|2 + |q2|2)} +iq1t} +iq2t}

−2λq∗1 + iq∗1t {2iλ2 −iq∗1q2

−i|q1|2}
−2λq∗2 + iq∗2t −iq1q

∗
2 {2iλ2

−i|q2|2}





















, (12)

such that
Lz − Mt + [L, M ] = 0, (13)

which is equivalent to the Manakov equations (11). The existence of infinite number of
involutive integrals of motion confirms the integrability of the Manakov system (11).

3. Bilinearization and Bright Two-Soliton Solution

In recent years to study the solution properties of the integrable systems several
effective tools have been developed which include inverse scattering transform method,
Hirota’s bilinearization method, Bäcklund transformation method, geometrical methods
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and so on. In this section by applying Hirota’s technique we point out that the most
general bright one-soliton and two-soliton solutions for the Manakov system (11) can be
obtained [8].

Considering equation (11) and by making the following bilinear transformation q1 =
g
f
, q2 = h

f
, where g(z,t), h(z,t) are complex functions while f(z,t) is a real function, the

following bilinear equations can be obtained,

(iDz + D2
t )g.f = 0, (iDz + D2

t )h.f = 0, D2
t f.f = 2µ(gg∗ + hh∗), (14)

where Dz and Dt are Hirota’s bilinear operators. The above set of equations can be
solved by making the following power series exapansion to g, h and f:

g = λg1 + λ3g3 + ..., h = λh1 + λ3h3 + ..., f = 1 + λ2f2 + λ4f4 + ..., (15)

where λ is the formal expansion parameter. The resulting equations, after collecting the
terms with the same power in λ, can be solved to obtain the forms of g, h and f. In order
to get the one-soliton solution the power series expansions for g, h and f are terminated
as follows, g=λg1, h=λh1 and f = 1 +λ2f2. After following the procedure as mentioned
before, the bright one-soliton solution is obtained as

(

q1

q2

)

=

(

α

β

)

eη1

1 + eη1+η∗
1
+R

=

(

A1

A2

)

k1Reiη1I

cosh (η1R + R
2 )

, (16)

where ηj = kj(t+ikjx)+η
(0)
j , j = 1, A1 = α

∆ , A2 = β
∆ , ∆ =

√

µ(|α|2 + |β|2), eR =
µ(|α|2+|β|2)

(k1+k∗
1
)2 , α, β, kj and η

(0)
j are complex parameters. Here

√
µ(A1, A2) represents the

unit polarization vector, k1R and k1I give the amplitude and velocity of the Manakov
one soliton respectively.

For obtaining the bright two-soliton solution, the series is terminated as g = λg1 +
λ3g3, h = λh1 + λ3h3 and f = 1 + λ2f2 + λ4f4. After proceeding in a similar fashion as
in the case of the one-soliton solution, the following bright two-soliton solution with six
arbitrary complex parameters k1, k2, α1, β1, α2 and β2 can be obtained,

q1 =
α1e

η1 + α2e
η2 + eη1+η∗

1
+η2+δ1 + eη1+η2+η∗

2
+δ2

D
,

q2 =
β1e

η1 + β2e
η2 + eη1+η∗

1
+η2+δ′

1 + eη1+η2+η∗
2
+δ′

2

D
, (17)

where

D = 1 + eη1+η∗
1
+R1 + eη1+η∗

2
+δ0 + eη∗

1
+η2+δ∗

0 + eη2+η∗
2
+R2 + eη1+η∗

1
+η2+η∗

2
+R3 ,

eδ0 =
κ12

k1 + k∗
2

, eR1 =
κ11

k1 + k∗
1

, eR2 =
κ22

k2 + k∗
2

,

eδ1 =
k1 − k2

(k1 + k∗
1)(k∗

1 + k2)
(α1κ21 − α2κ11), eδ2 =

k2 − k1

(k2 + k∗
2)(k1 + k∗

2)
(α2κ12 − α1κ22),
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eδ
′

1 =
k1 − k2

(k1 + k∗
1)(k∗

1 + k2)
(β1κ21 − β2κ11), eδ

′

2 =
k2 − k1

(k2 + k∗
2)(k1 + k∗

2)
(β2κ12 − β1κ22),

eR3 =
|k1 − k2|2

(k1 + k∗
1)(k2 + k∗

2)|k1 + k∗
2 |2

(κ11κ22 − κ12κ21) and κij =
µ(αiα

∗
j + βiβ

∗
j )

ki + k∗
j

.

The above most general bright two-soliton solution corresponds to a shape changing
(inelastic) collision of two bright solitons which will be explained in the following sections.

4. Inelastic Collision and Switching of Bright Solitons in the Manakov Model

The collision property of bright solitons can be revealed by analysing the asymptotic
form of the two-soliton solution [8]. Without loss of generality we assume that kiR >

0 and k1I > k2I , where i=1,2, which corresponds to a head-on collision. One can easily
check that asymptotically the two-soliton solution becomes two well separated solitons
S1 and S2. Thus for the above condition, asymptotically the ηiR’s for the two-solitons
become as (i)η1R ∼ 0, η2R → ±∞ as z → ±∞ and (ii)η2R ∼ 0, η1R → ∓∞ as z → ±∞.

This leads to the following asymptotic forms for the two-soliton solution.
(i)Limit z → −∞: (a) S1 (η1R ∼ 0, η2R → −∞) :

(

q1

q2

)

→
(

α1

β1

)

eη1

1 + eη1+η∗
1
+R1

=

(

A1−
1

A1−
2

)

k1Reiη1I sech

(

η1R +
R1

2

)

, (18)

where (A1−
1 , A1−

2 ) = [µ(α1α
∗
1 + β1β

∗
1)]−

1

2 (α1, β1). Here superscript 1- denotes S1 at the
limit z → −∞ and subscripts 1 and 2 refer to the modes q1 and q2.

(b) S2 (η2R ∼ 0, η1R → ∞):

(

q1

q2

)

→
(

eδ1−R1

eδ′
1
−R1

)

eη2

1 + eη2+η∗
2
+R3−R1

=

(

A2−
1

A2−
2

)

k2Reiη2I sech

(

η2R +
(R3 − R1)

2

)

,

(19)

where (A2−
1 , A2−

2 ) = (a1

a∗
1

) c [µ(α2α
∗
2 + β2β

∗
2)]−

1

2

[

(α1, β1)κ
−1
11 − (α2, β2)κ

−1
21

]

in which

a1 = (k1 + k∗
2) [(k1 − k2)(α

∗
1α2 + β∗

1β2)]
1

2 and c =
[

1
|κ12|2

− 1
κ11κ22

]− 1

2

.

(ii)Limit z → ∞: (a) S1 (η1R ∼0, η2R → ∞):

(

q1

q2

)

→
(

eδ2−R2

eδ′
2
−R2

)

eη1

1 + eη1+η∗
1
+R3−R2

=

(

A1+
1

A1+
2

)

k1Reiη1I sech

(

η1R +
(R3 − R2)

2

)

,

(20)

where (A1+
1 , A1+

2 ) = (a2

a∗
2

) c [µ(α1α
∗
1 + β1β

∗
1 )]−

1

2

[

(α1, β1)κ
−1
12 − (α2, β2)κ

−1
22

]

in which

a2 = (k2 + k∗
1) [(k1 − k2)(α1α

∗
2 + β1β

∗
2 )]

1

2 .

(b) S2 (η2R ∼ 0, η1R → −∞):

(

q1

q2

)

→
(

α2

β2

)

eη2

1 + eη2+η∗
2
+R2

=

(

A2+
1

A2+
2

)

k2Reiη2I sech

(

η2R +
R2

2

)

, (21)

where (A2+
1 , A2+

2 ) = [µ(α2α
∗
2 + β2β

∗
2)]−

1

2 (α2, β2).
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In the above set of equations, the solitons before interaction are given by equations
(18) and (19) and the solitons after interaction are given by equations (20) and (21). We
observe from the above mentioned equations (18-21) that due to the interaction between
two copropagating solitons S1 and S2, their amplitudes change from (A1−

1 k1R, A1−
2 k1R)

and (A2−
1 k2R, A2−

2 k2R) to (A1+
1 k1R, A1+

2 k1R) and (A2+
1 k2R, A2+

2 k2R) respectively, in ad-
dition to a change in their phases by an amount R3−R1−R2

2 and −R3+R1+R2

2 respectively.
The interesting behaviour which should be noted in this collision is that though the
amplitude and phase of each soliton change during collision, the total intensity of each
soliton is conserved, ie., |An±

1 |2 + |An±
2 |2 = 1

µ
, where n=1,2 represent the solitons S1 and

S2 respectively. Thus in such a collision there is a change in the distribution of intensity
among the two component fields keeping the total intensity conserved. This is shown
in Fig(1), where a head-on collision of two solitons is pictured for the parameter values,

k1 = 1 + i, k2 = 2 − i, βi = 1, α1 = 1 and α2 = (39+i80)
89 . Here initially the time profiles

of the two-solitons are evenly split between the two components q1 and q2. At the large
positive z end the profile of the S1 soliton is completely suppressed in the q1 component
while it is enhanced in the q2 component. Noticeable changes in S2 soliton also take
place.

jq1j2
S1 S2

S1
S2
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0
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z
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t

Fig. 1: Intensity profiles |q1|2 and |q2|2 of the head-on collision of the two-soliton solution
of the Manakov model.

However we can regain the elastic collision for α2 = 1 [8]. Thus for the special case
α1 : α2 = β1 : β2 the standard elastic collision nature of the soliton can be obtained. The
above analysis shows that the (1+1) dimensional soliton system given by equation(11)
exhibits a novel type of shape changing collision not seen in any other (1+1) dimensional
evolution equation which led us to identify the exciting possibility of switching of solitons
between modes by changing the phase [8]. This novel type of interaction led Jakubowski
et al. to suggest a method for implementing computation in a bulk nonlinear medium
without interconnecting discrete components [9].
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5. Periodically Twisted Birefringent Fibers and Soliton Interaction

Soliton propagation in a periodically twisted birefringent fiber has gained considerable
attention recently [1,10]. The effect of periodic twist on the soliton propagation can be
described by the coupled wave equations of the form

iq1z + q1tt + ̺q1 + σq2 + 2µ(|q1|2 + |q2|2)q1 = 0,

iq2z + q2tt − ̺q2 + σq1 + 2µ(|q1|2 + |q2|2)q2 = 0, (22)

where σ and ̺ are the normalized linear coupling constants caused by the periodic twist
of the birefringence axes and the phase-velocity mismatch from resonance respectively. It
can be easily verified that the transformation, q1 = cos θeiΓzq1M − sin θe−iΓzq2M , q2 =
sin θeiΓzq1M + cos θe−iΓzq2M , where the subscript M refers to the Manakov model and
Γ =

√

̺2 + σ2 and θ = 1
2 tan−1(σ

̺
), reduces equation(22) to the coupled system given

by equation(11). Hence by making use of the solutions (16) and (17) we obtain the
one-soliton and two-soliton solutions of equation(22) respectively as

q1 =
{

cos θeiΓzA1M − sin θe−iΓzA2M

}

qc,

q2 =
{

sin θeiΓzA1M + cos θe−iΓzA2M

}

qc, (23)

where qc = k1R exp(iη1I)sech (η1R + R
2 ) and

q1 =

[

cos θeiΓzα1 − sin θe−iΓzβ1

]

eη1 +
[

cos θeiΓzα2 − sin θe−iΓzβ2

]

eη2

D

+

[

cos θeiΓz+δ1 − sin θe−iΓz+δ′
1

]

eη1+η∗
1
+η2

D

+

[

cos θeiΓz+δ2 − sin θe−iΓz+δ′
2

]

eη1+η2+η∗
2

D
, (24)

where all the parameters in (23) and (24) as well as the quantity D are defined in the
previous section and q2 can be obtained by just replacing cos θ by sin θ and sin θ by
− cos θ in the above equation. The soliton interaction for this system can be studied by
carrying out the asymptotic analysis as before.

Then the form of S1 and S2 before interaction (z → −∞) is given by

(q1, q2) =
(

[cos θeiΓzA1−
1 − sin θe−iΓzA1−

2 ], [sin θeiΓzA1−
1 + cos θe−iΓzA1−

2 ]
)

q1−

and

(q1, q2) =
(

[cos θeiΓzA2−
1 − sin θe−iΓzA2−

2 ], [sin θeiΓzA2−
1 + cos θe−iΓzA2−

2 ]
)

q2−

respectively, where q1− = k1Rexp(iη1I)sech(η1R + R1

2 ), q2− = k2Rexp(iη2I)sech(η2R +
(R3−R1)

2 ) and the polarization vectors A
j−
i , j=1,2 are the same as in equations(18,19).
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Fig. 2: (a) Evolution of the intensity profiles |q1|2 and |q2|2 showing the suppression
in switching between the two modes of S1 soliton in a twisted birefringent fiber. (b)
Evolution of the intensity profiles |q1|2 and |q2|2 showing the suppression in switching of
S1 soliton and enhancement in S2 soliton in a twisted birefringent fiber.

Proceeding in a similar fashion the form of S1 and S2 after interaction (limit z→ ∞)
can be obtained as

(q1, q2) =
(

[cos θeiΓzA1+
1 − sin θe−iΓzA1+

2 ], [sin θeiΓzA1+
1 + cos θe−iΓzA1+

2 ]
)

q1+

and

(q1, q2) =
(

[cos θeiΓzA2+
1 − sin θe−iΓzA2+

2 ], [sin θeiΓzA2+
1 + cos θe−iΓzA2+

2 ]
)

q2+

respectively, where q1+ = k1Rexp(iη1I)sech
(

η1R + (R3−R1)
2

)

, q2+ = k2Rexp(iη2I)sech(η2R+

R2

2 ) and the polarization vectors A
j+
i ,i,j=1,2 are defined in section-4.

In order to facilitate the understanding of the above behaviour with reference to the
optical soliton switching between the orthogonally polarized modes, it is convinient to
obtain the oscillating part of the intensities associated with the above asymptotic forms as
∣

∣

∣

ql(z,t)
qn∓(z,t)

∣

∣

∣

2

= |An∓
l |2 cos2 θ + |An∓

j |2 sin2 θ +(−1)l|An∓
l ||An∓

j | sin 2θ cos(2Γz +φn∓), l, j =

1, 2, where (l 6= j), φn∓ = tan−1

(

An∓
1I

An∓
1R

)

− tan−1

(

An∓
2I

An∓
2R

)

. Now let us analyse how the
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presence of the oscillatory term in the above expression and the changes in An±
j affect

the switching dynamics of the solitons S1 and S2.
case(i): For all the An±

j ’s are non zero, there is a periodic intensity switching which
is always present in both the solitons and in both the components before as well as after
the interaction.

case(ii): If any one of the An±
j ’s is zero, and others are nonzero then soliton interac-

tion suppresses or enhances switching dynamics. This is illustrated in Fig(2a), for the

parameter values k1 = 1 + i, k2 = 2 − i, α1 = β1 = β2 = 1, α2 = (39+i80)
89 , ρ = 0.25 and

σ = 0.5. Here we observe that for |A1+
1 | ∼ 0 the switching in the intensity of soliton S1

is fully suppressed in both the modes q1 and q2.
case(iii): If any two of the An±

j ’s are zero then the soliton interaction suppresses
and enhances switching dynamics. This can be verified from the Fig(2b), for the chosen
parameters, k1 = 1 + i(0.1), k2 = 1 − i(0.1), α1 = 0.86 + i(0.5), α2 = 0.5 + i(0.86),
β1 = 0.7 + i(0.72), β2 = 0.44 + i(0.9) and ρ = σ = 0.25. Thus for this case due to the
interaction there is an exchange of periodic intensity between the two modes of soliton
S2 with the suppression of the switching dynamics in soliton S1.

6. CNLS with Coupled Cubic-Quintic Nonlinearity

The model for ultra short optical pulse propagation in non-Kerr media (in particular
materials with high nonlinear coefficients even at moderate optical intensities, for exam-
ple, semiconductor dopped glasses, organic polymers, etc.) can be obtained by expanding
the induced polarization vector in Maxwell’s equation(1) as

−→
P (−→r , t) = ǫ0[χ

(1).
−→
E + χ(3)

...
−→
E
−→
E
−→
E + χ(5)

˙̇
...
−→
E
−→
E
−→
E
−→
E
−→
E + ...], (25)

where χ(5) is the fifth order nonlinear susceptibility and following the procedure as in the
case of NLS equation. The resulting equation, in normalized form, describing the effects
of quintic nonlinearity on the ultra short optical soliton pulse propagation is [11],

iqz + qtt + 2|q|2q + γ|q|4q + iγ1qttt + iγ2(|q|2q)t + iγ3(|q|4q)t = 0. (26)

The generalization of equation(26) in order to include multimode effects leads to the
following coupled cubic-quintic NLS equation[11], after neglecting third order terms,

iq1z + q1tt + 2(|q1|2 + |q2|2)q1 + (ρ1|q1|2 + ρ2|q2|2)2q1 + 2ρ2[(τ1 − ρ1)|q1|2

+(τ2 − ρ2)|q2|2] |q2|2 q1 − 2i[(ρ1|q1|2 + ρ2|q2|2)q1]t + 2i(ρ1q
∗
1q1t + ρ2q

∗
2q2t)q1 = 0,

iq2z + q2tt + 2(|q1|2 + |q2|2)q2 + (τ1|q1|2 + τ2|q2|2)2q2 + 2τ1[(ρ1 − τ1)|q1|2

+(ρ2 − τ2)|q2|2] |q1|2 q2 − 2i[(τ1|q1|2 + τ2|q2|2)q2]t + 2i(τ1q
∗
1q1t + τ2q

∗
2q2t)q2 = 0,

(27)

where ρ1, ρ2, τ1 and τ2 are real free parameters. The integrable nature of the above
equation can be studied by obtaining the Lax pairs and conserved quantities for it. The
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Lax pair associated with equation(27) is

L =

(

−iλ q1 q2

−q∗1 −iθ1t + iλ 0
−q∗2 0 −iθ2t + iλ

)

, M =

































−2iλ2 2λq1 2λq2

+i(|q1|
2 +iq1t +iq2t

+|q2|
2) +θ1tq1 +θ2tq2

−2λq∗1 2iλ2 −iq∗1q2

+iq∗1t −i|q1|
2

−θ1tq
∗

1 −iθ1z

−2λq∗2 −iq1q
∗

2 2iλ2

+iq∗2t −i|q2|
2

−θ2tq
∗

2 −iθ2z

































, (28)

where θ1 =
∫ t

−∞
(ρ1|q1|2 +ρ2|q2|2)dt′, θ2 =

∫ t

−∞
(τ1|q1|2 +τ2|q2|2)dt′ and λ is the spectral

parameter. The compatability condition Lz − Mt + [L, M ] = 0 leads to equation(27).
Though the integrable system(27) possesses infinite number of conserved quantities, only
the lower ones are of physical importance. They can be written as

c1 = − 1

2i

∫ +∞

−∞

dt(|q1|2 + |q2|2),

c2 = − i

4

∫ +∞

−∞

dt[−i(q1q
∗
1t + q2q

∗
2t) + ρ1|q1|4 + τ2|q2|4

+(ρ2 + τ1)|q1|2|q2|2],

c3 = − i

8

∫ +∞

−∞

dt[(q1q
∗
1tt + q2q

∗
2tt) + (|q1|2 + |q2|2)2 + i(|q1|2N1t + |q2|2N2t)

+2i(N1q1q
∗
1t + N2q2q

∗
2t) − (N2

1 |q1|2 + N2
2 |q2|2)], (29)

etc., where N1 = θ1t = ρ1|q1|2 + ρ2|q2|2 and N2 = θ2t = τ1|q1|2 + τ2|q2
2 |. Here c1, c2

and c3 may be related to the number operator, angular momentum and the Hamiltonian
(energy) of the system(27) respectively. It is intriguing to note that the fields qa and
q∗a, a=1,2 do not have canonical Poisson bracket relations. However under the following
nonultralocal Poisson bracket structure,

{q1(x), q∗1(y)} = δ(x − y) + iρ1ǫ(x − y)q1(x)q∗1 (y),

{q1(x), q1(y)} = iρ1ǫ(y − x)q1(x)q1(y),

{q1(x), q2(y)} = −i(ρ2θ(x − y) − τ1θ(y − x))q1(x)q2(y),

{q1(x), q∗2(y)} = i(ρ2θ(x − y) − τ1θ(y − x))q1(x)q∗2(y), (30)

etc., where ǫ(x) = θ(x) − θ(−x) is the sign function defined through the step function,
θ(x) = 1 for x > 0, θ(x) = 0, for x ≤ 0, the integrals(29) become involutive. The
interrelation between equation(27) and the Manakov system allows us to construct the
soliton solution of equation(27) in terms of the known Manakov soliton solution.The fields
of these two models are related through a nonlinear transformation for the dependent
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Fig. 3: (a) Evolution of the intensity profiles |q1Mt|2 and |q2Mt|2 of the two-soliton
solution of the Manakov model. (b) Intensity profiles |q1t|2 and |q2t|2 of the two-soliton
solution of (27) for ρ1 = ρ2 = τ1 = τ2 = 1.

variables given by
qaM = qaexp(−iθa), a = 1, 2 (31)

and the subscrip M represents the Manakov model. Their Lax pairs are related through
a local gauge transformation L′ = g−1Lg − g−1gt, M ′ = g−1Mg − g−1gx where

g =





1 0 0
0 exp(−iθ1) 0
0 0 exp(−iθ2)



 . (32)

Then the one-soliton solution takes the form

(q1, q2) = (αeiδ1 tanh(ν(t−vz+δ)), βeiδ2 tanh(ν(t−vz+δ)))sech(ν(t − vz + δ))ei(κt+ωz) (33)

and the two-soliton solution can be obtained by substituting the two-soliton solution of
the Manakov model in the transformation(31).
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The effect of the dependence of phase change on the real free parameters ρ1, ρ2, τ1

and τ2 during collision can be revealed by carrying out the asymptotic analysis of the
two-soliton solution as earlier. In this connection, we have taken the derivatives of the
|qn∓

j |, n,j=1,2, since the effect of the phases are reflected only in such terms rather than

|qn∓
j |2.

We have shown these effects for the parameter values k1 = 1.5+i(0.5), k2 = 2−i(0.7),
α1 = β1 = β2 = 1 and α2 = 39+i80

89 , by comparing the plots of the intensity profiles in
the absence of the free parameters (ρ1, ρ2, τ1 and τ2) with those in their presence. It
is obvious from equation(31) that for the choice of parameters ρ1=ρ2=τ1=τ2= 0, the
two-soliton solution of equation(27) reduces to that of the Manakov system. Hence in
Figure(3a) we have plotted the intensity profiles of |q1Mt|2 and |q2Mt|2 for the above
parametric values. In the figure there appears a splitting in each of the asymptotic
profiles before and after interaction.

After setting ρ1=ρ2=τ1=τ2= 1, we can show that the splitting disappears as shown
in Figure(3b). Thus in addition to the inelastic soliton collision, there is a change in the
asymptotic form (suppression of splitting) of the intensity profiles which arises due to
the presence of the phase terms θa in the transformation(31).

7. General Soliton Perturbation

As mentioned in section(2) the CNLS equation is in general a nonintegrable one. We
can apply the multiple scale perturbation theory to study such nonintegrable system with
more general perturbations R1 and R2 as given below,

iq1z + q1tt + 2µ(|q1|2 + |q2|2)q1 = iǫR1(q1, q2, q1t, q2t...),

iq2z + q2tt + 2µ(|q2|2 + |q1|2)q2 = iǫR2(q1, q2, q1t, q2t...). (34)

In the absence of the perturbation the above equation reduces to the Manakov system.
After expanding qi as

qi = q
(0)
i (kiR, kiI , A

j±
i , Φj±

i ) + ǫq
(1)
i + ǫ2q

(2)
i + ... i, j=1,2, (35)

where A
j±
i and Φj±

i are the real and imaginary parts of the polarization vectors of the
two-solitons respectively, in the asymptotic limits z → ±∞. Substitution of this in

equation(34), it is trivial to verify that q
(0)
i is nothing but the two-soliton solution of the

Manakov system. Asymptotically this two-soliton solution of the Manakov model given
by equation(17) can be written as a combination of two one-solitons as z → ±∞

(

q1

q2

)

→
(

q1±
1 + q2±

1

q1±
2 + q2±

2

)

. (36)

By using a direct perturbational approach [12] the evolution equations for the soliton
parameters in the presence of perturbations can be obtained. Applying this method to
CNLS equation(10) one can easily check that there occurs transmission and reflection
scenarios during collision with a sensitive dependence of the collision outcome on the
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cross phase modulation coefficient and initial soliton parameters. As a special case by
taking Ri = (−γqi + β̄|qj |2qi + δ

2qitt) where i,j=1,2 we have studied the effect of pertur-
bations such as fiber loss, dispersion gain and nonlinear gain. The importance of taking
such a form for perturbation is that in the absence of q1 and q2 equation(34) along
with the above specified form of R1 and R2 reduces to the Ginzburg-Landau equation
governing pulse propagation in fiber amplifiers [1]. Since we have taken the asymptotic
form of the more general two-soliton solution as the zeroth order solution, the collision
properties of the system(34) can be directly studied by comparing the evolution of the
soliton parameters in the limits z → −∞ and z → ∞. We expect that this may lead
to some novel results such that collision among the solitons may be used to compensate
fiber loss experienced by the interacting coupled one-solitons corresponding to any one
of the polarized modes.
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