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Introduction

Let R be a two dimensional regular local domain such that the residue field
of R is an algebraically closed field of characteristic p #=0. In connection with
our proof of the theorem of resolution of singularities of arithmetical surfaces,
in [4] and [6] we developed an algorithm dealing with a monic polynomial of
degree p in an indeterminate Z with coefficients in R. As a consequence of this
algorithm, in Theorems 4.23, 4.24 and 4.25 of §4 we prove some results con-
cerning the nonsplitting of valuations in extensions of two dimensional regular
local domains which include the following: Let L be a normal extension of the
quotient field K of R such that [L: K] is a power of p, let w be a real valuation
of K dominating R such that the residue field of w coincides with the residue
field of R and w has only one extension to L, and let R; be the j* quadratic trans-
form of R along w. Assume that if K is of characteristic zero then K contains
a primitive p™ root of 1 and a (p — 1) root of p. Then there exists a positive
integer e such that for all j = e we have that the exceptional divisor in R; does
not split in L, i.e., upon letting S; be the quotient ring of R; with respect to
M;_,R; where M;_, is the maximal ideal in R;_,, we have that the integral
closure of §; in L has only one maximal ideal.

The results on the nonsplitting of valuations proved in § 4 should be com-
pared with [1]. In turn, using these results on the nonsplitting of valuations,
in § 6 to § 9 we develop an algorithm dealing with a monic polynomial f(Z) of
degree p" in Z with coefficients in R where n is a positive integer. Some of the
main results of this algorithm are summarized in § 5. The manner in which the
nonsplitting is used in the algorithm is something like this: In [4] and [6]
where n=1, in addition to paying attention to the constant term f(0), from
time to time we had to compare it with the coefficients of the positive powers
of Z in f(Z) so as to insure that they do not interfere too much with the
constant term when making a translation in Z. In the case of general n, the non-
splitting automatically guarantees the lack of such interference. On the other
hand, the analysis of f(0) for general n, although analogous to the corresponding
analysis for n= 1, is somewhat more involved.
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The algorithm developed here plays an important role in our recently
obtained solutions of the following problems in the birational geometry over
ground fields of nonzero characteristic: (1) resolution of singularities of
embedded surfaces; (2) birational invariance of the arithmetic genus of three
dimensional nonsingular algebraic varieties; (3) resolution of singularities of
three dimensional algebraic varieties.

In this paper we have included the mixed characteristic case, as far as this
was possible without much special discussion. We have done so with an eye on
possible applications to the birational geometry in the arithmetical case, ie,
over the ring of integers.

§ 1. Terminology

The letter Z will denote an indeterminate.

For integers a,, ..., a,, b we write {4, ..., a,)=0(b) to mean that q; is
divisible by b for all i, and we write (a,, ..., a,) £ 0(b) to mean that g, is not
divisible by b for some i.

Let K be a field. By a normal extension of K we mean an algebraic extension
L of K having the following property: if f(Z) is any monic polynomial in Z
with coefficients in K such that f(Z) is irreducible in K [Z] and f(z)= 0 for
some z € L then there exist elements z,, ..., z,, in I such that f(Z)=(Z—2z,)...
... (Z — z,,). Given a prime number p, by a p-extension of K we mean a normal
extension L of K such that [L: K] = p" for some nonnegative integer n, and by
a p-cyclic extension of K we mean a normal extension L of K such that [L: K}=p.

By a ring we mean a commutative ring with identity. By a domain we mean
an integral domain. A domain is said to be normal if it is integrally closed in its
quotient field. For an ideal P in a ring R, by rad, P we denote the radical of P
in R. By a prime ideal (resp: a maximal ideal) in a ring R we mean an ideal P
in R such that R/P is a domain (resp: a field); note that then P+ R. By a
minimal prime ideal in a domain R we mean a nonzero prime ideal P in R such
that there does not exist any nonzero prime ideal Q in R for which Q C P and
Q % P. For a prime ideal P in a domain R, thequotient ringof Rwith respect to P
is denoted by Rp, i€, Rp is the set of all elements in the quotient field of R
which can be expressed in the form x/y with xe R, ye R, y ¢ P. Given domains
R and S we say that S is a spot over R if R is a subring of § and there exists a
finite number of elements x,, ..., x, in S and a prime ideal P in R[x,, ..., x,]
such that S =(R][x,, ..., x,])p. By a pseudogeometric ring we mean a noetherian
ring R such that for every prime ideal P in R and every finite algebraic extension
L of the quotient field of R/P we have that the integral closure of R/Pin L is
a finite (R/P)-module.

Given polynomials f(Z) and g(Z) in Z with coefficients in a ring S and
given a subring R of §, we say that g(Z) is an R-translate of f(Z2)ifg(Z) = (Z +7)
for some r € R. Given elements X, ..., X,,Y ina ring R, we say that Yis an
R-monomialin (X |, ..., X,) if there exists a unit D in R and nonnegative integers
m(1), ..., m(n) such that Y= DX Xxmn)
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By a quasilocal ring we mean a ring having exactly one maximal ideal
A subset J of a quasilocal ring R is said to be a coefficient set for R if J contains
0 and 1 and for every x € R there exists a unique x’' € J such that x —x' e M
where M is the maximal ideal in R. Given quasilocal rings R and S we say that S
dominates Rif Ris a subring of Sand N "R = M where M and N are the maximal
ideals in R and S respectively. Given quasilocal domains R and S such that
S dominates R, we say that S is residually algebraic (resp: residually rational)
over R, if upon letting h be the canonical epimorphism of S onto S/N where
N is the maximal ideal in S, we have that h(S) is algebraic over h(R) {resp:
h(8)= h(R)).

By a local ring we mean a noetherian quasilocal ring. The dimension of a
local ring R is denoted by dimR, i.e., dimR is the greatest integer n such that
there exists a sequence P, C P, C - C P, of distinct prime ideals in R. A lpcal
ring R is said to be regular if the maximal ideal in R is generated by n elements
where n=dim R. The completion of a local ring R is regarded to be an overring
of R.

Let w be a valuation of a field K. The valuation ring of w is denoted by R,,
and the maximal ideal in R, is denoted by M, i.e,, R,, (resp: M, ) is the set of
all elements x in K such that w(x) 20 (resp: w(x)>0). Given a quasilocal
ring R, we say that w dominates R if R,, dominates R. Given a quasilocal ring R
such that w dominates R, we say that w is residually algebraic (vesp: residually
rational) over R if R, is residually algebraic (resp: residually rational) over R.
w is said to be discrete if the value group of w is an infinite cyclic group. Note
that w is discrete if and only if R, is a one dimensional regular local domain.
w is said to be real (resp: rational) if the value group of w is order isomorphic
to a subgroup of the additive group of real (resp: rational) numbers. w is said
to be irrational if w is real but not rational. Note that the following four con-
ditions are equivalent: (1) w is real; (2) M,, + {0} and M,, is the only nonzero
prime idealin R,,; (3) R,, + K and there does not exist any subring of K contain-
ing R,, which is different from K and different from R, ; (4) given any nonzero
elements x and y in M, there exists a positive integer n such that nw(y) = w(x),
ie, y"/xeR,,. Elements a4y, ..., a, in an additive abelian group are said to be
rationally dependent if there exist integers my, ..., m, such that m;a, + -+
+ mya,=0and m; + 0 for some i; a;, ..., a, are said to be rationally independent
if they are not rationally dependent. Note that the following three conditions
are equivalent: (1') w is rational; (2') if a and b are any elements in the value
group of w then a and b are rationally dependent ; (3') if x and y are any nonzero
elements in M, then there exist positive integers m and n such that w(x™) = w(y").

Let R be a regular local domain with maximal ideal M and quotient field K.
For any 04z ¢ K, upon taking nonzero elements x and y in R for which
z=x/y, we define: ordgz=a— b where a and b are the greatest integers such
that x € M® and y e M? (note that since R is regular, ordgz is uniquely deter-
mined by R and z); we also define: ordz0 = 00. Note that if dimR >0 then
ordy is a discrete valuation of K dominating R.

.
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Let x be an element in a domain R such that xR is a prime ideal in R, and §
is a one dimensional regular local domain where S= R y; note that then
x #0 and ordgx = 1; also note that for any 0=z € R if b is the greatest integer
such that z/x*e R then z/x®¢ xR and hence z/x® is a unit in S and hence
ordgz =b; we define: ord, gz = ordg; (the more suggestive and typographically
more convenient notation ord,, should be understood to stand for a more
logical notation like ord, g).

Let R be a ring and let x € R such that R/xR is a regular local domain; for
any z € R we define: ordg,z= ord,,h(z) where h is the canonical epimorphism
of R ento R/xR.

Note that if R is a regular local domain then for any x € R with ordgx =1
we have that R/xR is a regular local domain. Also note that if R is a normal
noetherian domain and x is a nonzero element in R such that xR is a prime
ideal in R then R,y is a one dimensional regular local domain.

Let R be a two dimensional regular local domain, let J be a coefficient set
for R, and let (x, y) be a basis of the maximal ideal in R. Given F € R there exist
unique elements F(i, j)in J for all nonnegative integers i, j such that F =2 F(j, j) x
x x'y/ in the completion of R where the sum is over all nonnegative integers i, j;
the expression ZF(i,j)x'y’ is called the expansion of F in J[[x, y]], and the
element F(, j) is called the coefficient of x'y’ in the expansion of F in J[[x, y}]
In §7 and §8 we shall tacitly use the elementary observations concerning
expansions made in [6: Lemma 1].

§ 2. Nonsplitting

Definition 2.1. Let R be a normal quasilocal domain with maximal ideal M
and quotient field K. Let L be an algebraic extension of K and let S be the
integral closure of R in L. Recall that S contains at least one maximal ideal,
and if N is any maximal ideal in S then NnR= M and h(S) is an algebraic
extension of A(R) where h is the canonical epimorphism of § onto S/N. Also
recall that if [L: K] is finite then S contains at most a finite number of maximal
ideals. We say that R splits in L if S is not quasilocal. We say that R is totally
ramified in L if R does not split in L and h(S)is purely inseparable over h(R)
where N is the maximal ideal in S and h is the canonical epimorphism of S
onto S/N; note that for a field H of characteristic zero, H is the only overfield
of H which is regarded to be purely inseparable over H. Note that if L is purely
inseparable over K then automatically R is totally ramified in L.

Given a valuation w of a field K and given an algebraic extension L of K
we say that w splits in L if R,, splits in L, and we say that w is totally ramified
in L if R, is totally ramified in L.

Definition 2.2. Let w be a valuation of a field K and let

m—1
f@=2z"+F+ Y f.z"" feK, FeK, m>0.
i=1

We say that f(Z) is of prenonsplitting-type relative to w provided there exists
t;e R, such that f*=¢,F! for 0 <i <m. We say that f(2Z) is of preramified-type
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relative to w provided the following three conditions hold: (1) f(Z) is of
prenonsplitting-type relative to w; (2) R,,/M,, is of characteristic p#+0 and m
is power of p; (3) if there exists G € K and a unit G’ in R,, such that F = G'G™
then there exists t; € M,, such that f=t,F for 0 < i< m. We say that f(Z)is of
nonsplitting-type relative to w provided every K-translate of f(Z) is of prenon-
splitting-type relative to w. We say that f(Z) is of ramified-type relative to w
provided every K-translate of f(Z) is of preramified-type relative to w.
Lemma 2.3. Let K be a field, let L be a normal extension of K, let w be a
valuation of K such that w does not split in L, and let f(Z) be a monic polynomial
of degree m> 0 in Z with coefficients in K such that f(Z) is irreducible in K[Z]
and f(z)=0 for some z € L. Then f(Z) is of nonsplitting-type relative to w.
Proof. Let S be the integral closure of R, in L and let N be the maximal
ideal in S. For any K-automorphism g of L we clearly have g(S)= S and hence
g(N)=N. Given any K-automorphism g of L and any nonzero element y
in L let

ji—-1
8= kllg"(g(y)/y) .

By induction we see that g/(y) = yd; for all j>0. Now g"(y)=y for some n>0
and then y = yd,, i.e., 6, = 1. Since g(N)= N we get that if g(y)/ye N thend;e N
for all j>0; since 6, =1, we must have g(y)/y¢ N. Upon replacing g by g~ *
we get that g~'(y)/y¢ N. Since g~ '(N)=N we get that if y/g(y)e N then
g~ (»)/y=¢"*(y/g9(»)) € N which is a contradiction ; therefore y/g(y) ¢ N. Thus
g(y)/y ¢ N and y/g(y)¢ N ; now § is the valuation ring of a valuation of L and
hence we conclude that g(y)/y is a unit in S. Thus we have shown that for every
0= ye L and every K-automorphism g of L, g(y)/y is a unit in S.

We want to show that for any K-translate /'(Z) of f(Z) we have that f'(Z)
is of prenonsplitting-type relative to w. Now L is a normal extension of K,
Sf'(Z) is a monic polynomial of degree m > 0 in Z with coefficients in K, f'(Z)
is irreducible in K[Z], and f'(x)=0 for some x e L. Therefore there exist
elements xq, ..., x,, in L such that f'(Z)=(Z —x,) ... (Z — x,,), and there exist
K-automorphisms gy, ..., g, of L such that g)(x)=x; for 1<i<m I m=1
then f'(Z) is obviously of prenonsplitting-type relative to w. So now assume
that m>1. Then x 04 f'(0). By the above italicized remark we get that
x,=35;x where s;is a unit in S for 1 i<m. Let F= f'(0) and let f; be the co-
efficient of Z"~! in f’(Z). Then F=(—1y"x; ... x,,, and f; is a symmetric
function in xg, ..., x,, of degree i for 0 <i<m. Therefore F=rx™ where r is
a unit in S, and f;=r.x’ where r;e S for 0 <i<m. Therefore f=1t,F’ where
t;e S for O<i<m. Now t;= f"/F'e K and KnS=R,,; therefore t;& R,, for
0 <i<m. Consequently f’(Z) is of prenonsplitting-type relative to w.

Lemma 2.4. Let R be a normal quasilocal domain with quotient field K and
maximal ideal M such that R/M is of characteristic p+0. Let L be a normal
extension of K such that R is totally ramified in L. Let f(Z) be a monic polynomial
of degree m==p" in Z with coefficients in R, where n is a positive integer, such
that f(Z) is irreducible in K[Z} and f(z}=0 for some ze L. Then f(Z)—Z" —
-~ f{0) e M[Z].
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Proof. Let S be the integral closure of R in L, let N be the maximal ideal
in §, and let h be the canonical epimorphism of S onto S/N. If g is any K-auto-
morphism of L then g(S) =S and g(N)= N, and we get an h(R)-automorphism
g’ of h(S) by taking g'(h(y)) = h(g(y)) for all y € S; since h(S) is purely inseparable
over h(R) we get that ¢’ is the identity map of h(S) and hence h(y) = h(g(y)) for
all ye S. Now L is a normal extension of K, f{Z) is irreduzible in K[Z], and
f(z2)=0 with ze L. Therefore there exist elements z,, ..., z,, in L such that
f@)=(Z~z,)...(Z - z,), and there exist K-automorphisms g, ..., g, of L
auch that g,(z) =z, for 1 £igm. Since f(Z) e R[Z] we get that z ¢ S, and hence
h{(z)=h{z;) for 1 £i < m. Therefore upon letting f'(Z) be the polynomial in
Z obtained from f(Z) by applying h to the coefficients of f(Z) we get that
['2)y=(Z-h(zy)...(Z—h(z,))=(Z — h{(z))" = Z™ — h(z)". Therefore f(Z)—
~Z"—-f(0)e M[Z].

Lemma 2.5. Let K be a field, let L be a normal extension of K, let w be a
valuation of K such that R,,/M , is of characteristic p +=0 and w is totally ramified
in L, and let f(Z) be a monic polynomial of degree m=p" in Z with coefficients
in K, where n is a positive integer, such that f(Z) is irreducible in K[Z] and
f(2)=0 for some ze L. Then f(Z) is of ramified-type relative to w.

Proof. We want to show that for any K-translate f'(Z) of f(Z) we have that
f(2) is of preramified-type relative to w. Now f'(Z)=2Z"+ f1Z" 1+ 4
+ fu-1Z + F where f,, ..., f.-1, F are elements in K, f'(Z) is irreducible in
K[Z], and f'(x)=0 for some x € L. By Lemma 2.3, f"(Z) is of prenonsplitting-
type relative to w and hence there exists t; € R, such that f™=¢,Fifor0<i<m.
Therefore it suffices to show that if F=F*G™ where Ge K and F* is a unit
in R, then t,e M, for 0 <i<m. Now G +0 because f’(Z) is irreducible in
K[Z] and m> 1. Let x*=x/G, f¥*=f,/G' for 0<i<m, and f*(Z)=2Z"+
+ f¥Zm 44 f*_Z+F* Then f*(Z)eR,[Z], f*(Z) is irreducible in
K[Z}, x*e L, and f*(x*)=0. Therefore by Lemma 2.4 we get that f*e M,
forO<i<m Now t;= f"/F'= f*™/F* and hence t;,e M, for O<i<m.

In the proofs of Lemma 2.7, 2.8, 2.9 we shall use the following well known
result; for a proof see for instance [11: §7 and §8].

Lemma 2.6. Let R be a one dimensional regular local domain with quotient
field K, let L be a finite algebraic extension of K, let T be the integral closure
of Rin K, let Py, ..., P, be the distinct maximal ideals in T, let S;=Tp,, let
N;=P;S;, and let h; be the canonical epimorphism of S; onto S;/N,;. Then for
1 L i< nwe have that S, is a one dimensional reqular local domain and there exists
a unique positive integer e; such that ordg x = e;ordg x for all x € K : (e; is called
the reduced ramification index of §; over R). Furthermore

3. eh(S): LR S [L: K],
i=1
and equality holds if and only if T is a finite R-module.
Lemma 2.7. Let R be a one dimensional regular local domain with quotient
field K, and let f(Z)=2"+ f,Z°P" '+ +f,_,Z+F where fy,...,f,_1,
F are elements in K and p is a positive integer. Let z be an element in an overfield
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of K suchthat f(z)=0and let L = K(z). Assume that F = 0, the greatest common
divisor of p and ordgx F is one, and ordy f; = (i/p) ordy F for 0 <i<p. Then
[L:K]=p and R is totally ramified in L.

Proof. Clearly [L: K] <p. Let T be the integral closure of R in L, let P be
a maximal ideal in T, let S = T)p, and let e be the reduced ramification index of
S over R, Since ordy f; = (i/p) ordg F we get that ordg f; 2 (i/p) ordg Ffor O<i<p.
Therefore, if ordgz<(1/p)ordgF then ordgF >ordgz? and ordg f;z?” >
> ordg z? for 0 < i < p,and hence ordg f(2) = ordg(z” + f,2° "' + = + f,—,2+ F)
= ordgz? < ordg F which is a contradiction because f(z)=0+F. Again, if
ordgz > (1/p) ordgF then ordgz? > ordgF and ordg f;z° ' > ordgF for 0 <i< p,
and hence ordg f(z) = ords(z” + fiz" "' + - + f,_,z+ F) = ordgF which is a
contradiction because f(z) =0= F. Therefore ordgz = (1/p) ordgF and hence
ordgz=(e/p) ordg F. Since the greatest common divisor of p and ordgF is
one we get that e= p. Since [L: K] < p, by Lemma 2.6 we conclude that R is
totally ramified in L and [L: K} =p.

Lemma 2.8. Let R be a two dimensional regular local domain with quotient
field K, let (x, y) be a basis of the maximal ideal in R, and let f(Z)= 277+
+ f[1ZP7 4+ + f,_1Z + F where p is a prime number and f, ..., f,y, F are
elements in R. Let a=ord gz F. Let z be an element in an overfield of K such that
f(z)=0andlet L = K(2). Assume that pe xR, F &0, ord, ; f; > ai/p for0 <i<p,
and (a, ordg, F/x®) £ 0(p). Then [L: K] =p and ord,y is totally ramified in L.

Proof. If a=%0(p) then our assertion follows from Lemma 2.7. Now assume
that a = O(p). Let R’ be the valuation ring of ord, g, i.e, R'= R, ;. Let T be the
integral closure of R’ in L, let P be a maximal ideal in T, let S = T, let N = PSS,
and let h be the canonical epimorphism of § onto S/N. Let 2’ = z/x%?, F' = F/x°,
and f]= f;/x"/? for 0<i<p. Then z’eL, F'eR, f/eR for O0<i<p, and
2P+ fiz’P" 4+ fi_yZ+ F'=0. Therefore z’e€ T and hence z'eS. Now
ord, p f{ > 0and hence h(f{) = 0for 0 <i < p. Therefore h(z'}’ + h{F") = 0. Clearly
h(R) is a one dimensional regular local domain with quotient field h(R’) and
ordy g h(F') = ordg,, F/x" £ 0(p). Therefore h(z') ¢ h(R') and h(z') € h(R'). Since
p € xR we get that h(R’) (h(2)) is purely inseparable over #(R’) and [A(R') (h(z")
‘hRY]=p Now [L:K]<p and hence by Lemma 2.6 we conclude that
[L:K]=p, P is the only maximal ideal in T, and h(S) = h(R') (h(z')). Therefore
ord,p is totally ramified in L.

Lemma 2.9. Let R be a two dimensional regular local domain with quotient
field K, let (x, y) be a basis of the maximal ideal in R, and let f(Z)=277+
+ f1ZP" '+ 4 f,_1Z + F where p is a prime number and fy, ..., f,_,, F are
elements in R. Let z be an element in an overfield of K such that f{(z) =0 and let
L = K(z). Assume that there exist nonnegative integers a and b such that F/(x*y?)
is a unit in R and (a, b) £ 0(p). Then we have the following. (1) If ord,g f; = ai/p
and ord g f; 2 bi/p for 0<i<p then [L:K)]=p, ord,g does not split in L and
ord,, does not split in L. (2) If pe xR and ord, f;>ai/p for 0<i<p then
[L:K]=p and ord,g is totally ramified in L. (3) If pe yR and ord f;> bi/p
Jor 0<i<p then [L:K]=p and ord is totally ramified in L.



94 S. S. ABHYANKAR:

Proof. Clearly F 0, ord, x F = a, and ordg,, F/x® = b. Therefore (2} follows
from Lemma 2.8, and by symmetry (3) follows from (2). To prove (1) assume that
ord, p f; 2 ai/p and ord,g f;= bi/p for 0 <i < p. By symmetry it suffices to show
that {L:K]=p and ord, g does not split in L. If aZ=0(p) then by Lemma 2.7
we get that [L: K] =p and ord, is totally ramified in L. So now assume that
a=0(p). Then b£0(p). Let R’ be the valuation ring of ord,g, i€, R =R ;.
Let T be the integral closure of R’ in L, let P be a maximal idealin T, let S= T,
let N = PS, and let h be the canonical epimorphism of S onto S/N. Let 2’ = z/x*?,
F'=F/x* and f]= f/x*"forO<i<p. Thenz’ e L, F'e R, F'/y® is a unit in R,
and f/ eR and ord,g f/ 2 bi/pfor0<i<p. Also 2’7+ fiz? '+ + f,_ 2+
+ F'=0 and hence 2’ € T. Now h({(R} is a one dimensional regular local domain
with quotient field A(R"). Also ord, h(y)=1 and hence ord,x h(F')=>b and
ord, g, h(f{) Z bi/pfor0 <i<p.Nowh(z') + h(f{) h(z)P ™1+ +h(f,_,) h(z)+
+ h(F')=0 and hence by Lemma 2.7 we get that [h(R') (h(z)): h(R')] =p and
hence [h(S):h(R)]=p. However [L:K]<p and hence by Lemma 2.6 we
conclude that [L: K] =p and P is the only maximal ideal in T, i.e,, ord, does
not split in L.

Lemma 2.10. Let R be a normal quasilocal domain with quotient field K and
let L be a p-extension of K where p is some prime number. Then R does not split
(resp; R is totally ramified) in L if and only if for every subfield K* of L which
is a separable p-cyclic extension of K we have that R does not split (resp; R is
totally ramified) in K*.

Proof. The “only if” part is obvious. To prove the “if” part let L* be the
maximal separable extension of K in L and let H be the set of all subfields K*
of L* such that K* is a p-cyclic extension of K. Then L* is a separable p-extension
of K, and L is a purely inseparable extension of L*. Now every normal quasi-
local domain with quotient field L* is totally ramified in L and hence it suffices
to show that if for every K* € H we have that R does not split (resp: R is totally
ramified) in K* then R does not split (resp: R is totally ramified) in L*. Let G
be the group of all K-automorphisms of L*. Then G is a p-group, i.e., a finite
group whose order is a power of p. Let M be the maximal ideal in R, let § be the
integral closure of R in L*, let N be a maximal ideal in §, and let G, be splitting
group of N over M, i.e., G, is the set of all elements g in G such that g(N)= N.
Assume that for every K* € H we have that R does not split in K*. Suppose if
possible that G,+ G. Since G is a p-group there exists a normal subgroup G’
of G such that G, C G' and G/G' is of order p (for instance see [12: pp. 110-111]).
Let K’ be the fixed field of G’ and let R’ be the integral closure of R in K’
Then K' € H and hence R’ is quasilocal. Now G G’ and hence we can take
g, € G such that g, ¢ G. Let N; =g,(N). Then N, is a maximal ideal in §.
NowR'isanormalquasilocal domain with quotient field K’, L* is a finite normal
extension of K', G’ is the group of all K’-automorphisms of L*, § is the integral
closure of R’ in I*, and N and N, are maximal ideals in §; therefore there exists
g, € G’ such that g,(N,)=N (for instance see [3: Proposition 1.25]). Now
g291(N)=N and hence g,g, € G,. Since G,C G’ we get that g,g, € G'. This is
a contradiction because G’ is a subgroup of G, g, ¢ G', and g, € G'. Therefore
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G, =G and hence by [3: Proposition 1.46] we get that N is the only maximal
ideal in §, i.e.,, R does not split in L*. Now assume that R is totally ramified in
K* for all K* € H. Let G; be the inertia group of N over M, i.e., G, is the set of
all g in G such that x—g(x)e N for all x € S. Let K, be the fixed field of G,
let R;=S8nK,, and let k be the canonical epimorphism of § onto S/N. By
[3: Theorem 1.48] we get that h(S) is purely inseparable over A(R;), h(R}} is
separable over h(R), and [h(R,): h(R)] = [K;: K]. Suppose if possible that A(S)
is not purely inseparable over h(R). Then G;=+ G. Since G is a p-group there
exists a normal subgroup G” of G such that G,CG” and G/G" is of order p
{for instance see [12: pp. 110--111]). Let K” be the fixed field of G” and let
R"=8nK". Then KCK"CK; and hence h(R)Ch(R")Ch(R)); since h(R)) is
separable over h(R) we get that h(R;) is separable over h(R") and A(R") is
separable over h(R); therefore by [3: Theorem 1.45] we get that [h(R)): h(R")] =
< [K;:K"] and [M(R"): h(R)] £ [K": K]; since [h(R,): i{R)] = [K;: K] we must
have [M(R"):h(R)] = [K":K]=p and hence h{R"} is not purely inseparable
over h(R). This is a contradiction because K" e H. Therefore h(S) is purely
inseparable over A{R) and hence R is totally ramified in L*.

§ 3. Quadratic transforms

For the definition and properties of quadratic transforms see [2: § 2] and
{7:§3]. Let R be a two dimensional regular local domain, let (x, y) be a basis
of the maximal ideal M in R, and let w be a valuation of the quotient field K
of R such that w dominates R and w is residually algebraic over R. Note the
following.

3.4. Let R’ be a quadratic transform of R. Then R’ is a regular local domain
with quotient field K, R’ dominates R, dimR'=1 or 2, and dimR’ =2 if and
only if R’ is residually algebraic over R. If dim R’ = 2 then: R’ is an n'® quadratic
transform of R for a unique nonnegative integer n, R’ contains a unique "™
quadratic transform R;of Rfor0 £ i <n, Ry = R, R, = R, and R, is an immediate
quadratic transform of R;_; for 0<iZn.

3.2. For any nonnegative integer n there is a unique n'® quadratic trans-
form R’ of R such that w dominates R’; R’ is called the n™ quadratic transform
of R along w. By a quadratic transform of R along w is meant a quadratic
transform R’ of R such that w dominates R'.

3.3. Let R' be a two dimensional local domain which is an immediate
quadratic transform of R and let M’ be the maximal ideal in R". Then either
x/ye R’ or y/xe R If y/x € R’ then there exists a monic polynomial f(Z)in Z
with coefficients in R such that (x, f(y/x))R'=M'. If y/x e R’ then R, is the
valuation ring of ord, (for instance see the proof of [7: Proposition 9]) and
hence ordg=ord, ;. Now suppose that y/xe M'. Let y =y/x, A=R[],
P=(x,y')A. Then R'=Ap and M'=(x, y)R". We claim that ord,z = ord ..
Since K is the quotient field of R it suffices to show that ord z z = ord,, p.z for all
z€ R. Clearly yR C y'R’ and hence in turn it suffices to show that if te(y’ R)nR
then te yR. Since te yR' and R' = Ap we can write rt=y's where re A, r¢ P,
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se A. Since r and s are in A we can write

r=

[{ngE

n
r,yt and ys=Y sy where r,eR, s€eR,
=

i H

and » is a positive integer. Now r—ro€ yACP, M CP, and r¢ P; therefore
we must haver, ¢ M and hence ry ¢ yR; also x" ¢ yR and hence x"ry ¢ yR; now

n
X"r—x"ro=Y x""ry’ e yR
=

1

and hence x"r ¢ yR. However

n
x"rt=x"y's= Y x""'r, e yR
i=1

and hence t € yR.

Definition 3.4. By a canonical n'™ quadratic transform of (R, x, y) we mean
a triple (R, X', y) where R’ is a two dimensional local domain which is an n'®
quadratic transform of R and (x’, y) is a basis of the maximal ideal in R’ such
that upon letting R, to be the i'" quadratic transform of R contained in R’ there
exists a basis (x;, y;) of the maximal ideal in R, for 0 i <n such that: x and y
are Ry-monomials in (Xg, Vo), M. R;=x;R; or M;_R;=y;R; for 0<i<n,
x;_, and y,_, are R-monomials in (x;, y)for0<i<n, and x'=x,and y' = y,.
By a canonical quadratic transform of (R, x, y) we mean a triple (R', x’, y') which
is a canonical n'® quadratic transform of (R, x, y) for some nonnegative integer n.
By a canonical n'* quadratic transform of (R, x, y) along w we mean a canonical
n™ quadratic transform (R’, x, y') of (R, x, y) such that w dominates R’. By a
canonical quadratic transform of (R, x, y) along w we mean a canonical quadratic
transform (R, x', y) of (R, x, y) such that w dominates R’. Note the following:
(1) If R’ is a two dimensional local domain which is a quadratic transform of R
then there exists a basis {x', y') of the maximal ideal in R’ such that (R, x', ')
is a canonical quadratic transform of (R, x, y). (2) If (R, ¥/, y") is a canonical
quadratic transform of (R, x, y) then x and y are R'-monomials in (x/, y').
(3) If (R, x', ¥) is a canonical quadratic transform of (R, x, y) and (R", x”, ")
is a canonical quadratic transform of (R', x’, v') then (R”, x”, y”) is a canonical
quadratic transform of (R, x, y).

Definition 3.5. Now assume that R/M is algebraically closed and let J be
a coefficient set for R. Given a two dimensional local domain R’ which is an
n™ quadratic transform of R there then exist unique nonzero elements x4, Vo,
X1s Vis -5 Xns ¥, i0 the maximal ideal of R’ such that x, = x and y, = y and such
that for 0<i<nwehave:ify;, ;/x;_,eR thenx,_,=x;and y;,. ; =x;(y; + ;)
with ¢;eJ, and if y;,_,/x;_; ¢ R  then x;_, = x;y; and y,_, = y;; note that the
elements t; are also uniquely determined, and (x;, y;} is a basis of the maximal
ideal in R, for 0 £i <n where R, is the i™ quadratic transform of R contained
in R'. By a canonical n'® quadratic transform of (R, x, y, J) we mean a triple
(R, x', y') where R’ is a two dimensional local domain which is an n'" quadratic
transform of R and x'=x, and y' =y, where x, and y, are as defined above.
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By a canonical quadratic transform of (R, x, y, J) we mean a triple (R, x', y)
which is a canonical n*® quadratic transform of (R, x, y, J) for some nonnegative
integer n. For any nonnegative integer n clearly there exists a unique canonical
™ quadratic transform (R’, x, ¥) of (R, x, y, J) such that w dominates R’;
(R, X', y') is called the canonical n'™ quadratic transform of (R, x, y, J) along w.
By a canonical quadratic transform of (R, x, y, J) along w we mean a triple (R’, X', y)
which is the canonical n'" quadratic transform of (R, x, y, J) along w for some
nonnegative integer n. Note the following: (1) If (R’, x', y'} is a canonical quad-
ratic transform of (R, x, y, J) then (R’, x/, y') is a canonical quadratic transform
of (R, x, y). Q) If (R, x, y') and (R”, x”, y"}) are canonical quadratic transforms
of (R, x, y, J) such that R"C R” then (R”, x”, y"} is a canonical quadratic trans-
form of (R, x, ¥, J).

Lemma 3.6. Let R, be the n'® quadratic transform of R along w. Then
U R,=R,

Proof See [2: Lemma 12].

We shall now give a slightly sharper version of [2: Theorem 2]. (We take
this opportunity to make the following correction to [2]. Line 21 on page 342
of [2] which reads “let P, ... and” should be replaced by “let P;=M,NnR;_,
where w is the real discrete valuation of K with which u is composed. Since w
is nontrivial, P; # (0). Since x; ¢ M,,nR; and™).

Lemma 3.7. Assume that w is real and let f, ..., f, be any finite number of
nonzero elements in R,,. Then there exists a nonnegative integer n, such that for
any n=n, and any canonical n'™ quadratic transform (R, x, y') of (R, x, y)
along w we have that fi, ..., f, are R'-monomials in (x', y).

Proof. Let R, be the n'™ quadratic transform of R along w and let M, be
the maximal idealin R,. Forn>0wecantakez,e R, suchthat M, ,R,=z,.R,.
By Lemma 3.6 there exists a nonnegative integer m such that f;eR,, for
i=1, ..., q. Let g,=f,; and by induction define g,€ R, for all n>>m by the
equation: g,_; =g,z4™ where a(n)=ord, g g,-,. For n2m let V, be the set
of all discrete valuations v of K such that R,CR, and g,e M,nR,+M,,.
Then V, is the set of all valuations v of K such that R, = (R,), for some minimal
prime ideal P in R, containing g,. Therefore V, is a finite set, and V,=0 if and

only if g, is a unit in R,. Suppose if possible that ﬂ V,+0and take ve ﬂ Vs

since R, CR, for all n=m, by Lemma 3.6 we get that R, CR,; since w is real
we must then have R,,= R, and hence v dominates R, for all n; this is a contra-

diction because M,nR,*M, for all n=m Therefore (| V,=0. For any
nz mlet v be any element in V, ; then M, N R, and z, R, are minimal prime ideals
in R, g,eM,nR,, and g,¢z,R,; therefore z,¢ M,NnR,; consequently
M,NR,_,+M, ,and hence veV,_,. Thus V,CV,_, forall n>m. Since V,

is a finite set for all n=2m and ﬂ V,=0, we conclude that there exists an

n=m
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integer n; > msuchthat V, = @foralln = n,. It follows that f, isan R,-monomial
in (Zp41s ---» 2,) for all n Z ny. Similarly there exists an integer n; > m such that
fiis an R,-monomial in (z,,, 1, ..., 2,) for all n 2 n;. Let ny = max(ny, n,, ..., n,).
For any n 2 n, let (R', x', y') be any canonical n'™ quadratic transform of (R, x, y)
along w. Then there exists a basis (x;, y;) of M, for 0<i<n such that x and y
are Ry,-monomials in (x4, yg), M;.R,=x,R; or M, _R;=y,R, for 0<ign,
x;—, and y;_; are R-monomialsin (x;, y)for0<i<n and x'=x,and y' =y,.
For 0<iZn, since M;_, R, =z;R, it follows that z;/x; or z,/y; is a unit in R,
according as M;_R;=x;R; or M;_R;=y;R;. Consequently z,, ..., z, are
R’-monomials in (x', y'). Therefore f,, ..., f, are R'-monomials in (x/, y').

Lemma 3.8. Assume that w(x) and w{y} are rationally dependent. Let R, be
the i quadratic transform of R along w. Let W be the set of all positive integers
i such that x and y are R-monomials in a nonzero nonunit in R;. Then W is
nonempty. Let n be the smallest integer in W. If x" and y’ are any elements in R,
such that (R,, X', ¥') is a canonical quadratic transform of (R, x, y) then either
x and y are R,-monomials in x', or x and y are R,-monomials in y'. If R/M is
algebraically closed, J is a coefficient set for R, and x, and y, are the elements in
R, such that (R, x,, y,) is a canonical quadratic transform of (R, x, y, J), then x
and y are R, -monomials in x,,.

Proof. Since w(x) and w(y) are rationally dependent, there exists a positive
integer n and nonzero elements Xg, Vo, X1, Vis -+os Xu—1» Ya—1 in K such that
Xo=X, yo=y, wix)*w(y) for 0=Zi<n—1, w(x,_;)=w(y,-,), and for
O<ign—1: if w(y,_,)>wx;_;) then x,_,=x; and y,_,=x;y;, and if
w(y;.. 1) <w(x;_) then x; _, =x;y; and y;,_; = y;. By induction we see that for
0<i<n—1:(x;, y)is a basis of the maximal ideal in R; and x = x??y*® and
y=x{0y4® where a(i), b(i), c(i), d(i) are nonnegative integers such that
a(i)d(i) —b@)c(i)=1. It follows that i¢ Wfor0<i<n-—1. Let x,=x,_,. Then
M, _,R,=x,R,and x and y are R,-monomials in x,. Therefore W is nonempty
and n is the smallest integer in W. If x’ and y’ are any elements in R, such that
(R,, x', y")is a canonical quadratic transform of (R, x, y)then either M, _ R, = x'R
or M,_,R,=y'R,;since M,_,R,=x,R, we get that either x,/x’ is a unit in R,
or x,/y’ is a unit in R,; therefore either x and y are R,-monomials in x', or x
and y are R,-monomials in y'". If R/M is algebraically closed and J is a coefficient
set for R then clearly (R, x,,, y,) is a canonical quadratic transform of (R, x, y, J)
for some y,eR,,. )

Lemma 3.9. Assume that w is rational and let f, ..., f, be any finite number
of nonzero elements in R,,. Then there exists a canonical quadratic transform
(R, x, ¥) of (R, x, y) along w such that f,, ..., f, are R-monomials in x'. If
R/M is algebraically closed and J is a coefficient set for R then there exists a
canonical quadratic transform (R", x", y") of (R, x, y, J) along w such that
S1s oy fq are R"-monomials in x".

Proof. Follows from Lemmas 3.7 and 3.8.

Lemma 3.10. Assume that w is discrete and R/M is algebraically closed.
Let J be a coefficient set for R and let (R,, x,, y,) be the canonical n'® quadratic
transform of (R, x, vy, J) along w. Then there exists a nonnegative integer m such
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that forall nZmwe have that x,=x,, and x,R,,= M. Given any finite number of
nonzero elements fy, ..., f,in R,, there exists an integer m' 2 m such that f,, ...,
f, are R,-monomials in x, for all n=m'.

Proof. We can take z€ R, such that zR, =M. By Lemma 3.6, ze R, for
some nonnegative integer d. Then x,R,, = M? and y,R, = M®, where a and b
are positive integers such that either a=1 or b= 1. If a=1 then take m=d,
and if a%1 then take m=d+a—1. In both cases x,R,=M,, and hence
X, =X, for all n=m. Now f;=D;x2® where D; is a unit in R,, and a(j) is a
nonnegative integer. By Lemma 3.6 there exists an integer m’ = m such that
D;eR, fori=1, ..., q. For all n2=m' then D, is a unit in R, and hence f;is an
R,-monomial in x, for i=1, ..., q.

Lemma 3.11. Assume that w is irrational. Then there exists a nonnegative
integer m and a canonical n'™® quadratic transform (R,, x,, y,) of (R, x, y) along w
for all n = m such that we have the following. (1) (w(x,), w(y,)) is a free basis of
the value group of w for alln=m. (2) For any n>m, if w(y,-)> w(x,_) then
Xy g = Xy and Vn—1= XpYVns and lf w(yn—l) < W(xn—l) then Xy =Xp Yy and
Vue1="V, (3)For anynzZ m, ifx’ and y’ are any elements in R, such that (R,,, X", y')
is a canonical quadratic transform of (R, x, y) then either x,/x' and y,/y' are units
in R, or x,/y and y,/x’ are units in R,

Proof. By [2: Theorem 1] there exist nonzero nonunits » and s in R,
such that (w(r), w(s)) is a free basis of the value group of w. Let R, be the n®
quadratic transform of R along w. By Lemma 3.7 there exists a nonnegative
integer m such that for any n 2 m, if x’ and y’ are any elements in R, such
that (R,, x, y'} is a canonical quadratic transform of (R, x, y) then r and s
are R,-monomials in (x/, y'). Fix any elements x,, and y,, in R, such that
(R, X,:» V) 18 @ canonical quadratic transform of (R, x, y). Then r and s are R, -
monomials in (x,,, y,,); since (w(r), w(s)) is a free basis of the value group of w
it follows that (w(x,,), w(¥,,)} is 2 free basis of the value group of w. In particular
w(x,) and w(y,) are rationally independent and hence there exist unique
elements X,. . (, Ym+ 1> Xm+ 25 Ym+ 25 --- it K such that for all n > m we have that:
W(yn— 1) * W(xu— 1)’ if W(yn— 1) > W(Xn._ 1) then Xp 1 ™ Xy and Ynw1 ™ Xy Vps and if
W(p- ) <w(x,_,) then x,_,=x,y, and y,_,=y, Clearly for all n=m,
(Ry, X, yn) 18 a canonical quadratic transform of (R, x, y) and (w(x,), w(y,))
is a free basis of the value group of w. To prove (3), forany n=m let x’ and y'
be any elements in R, such that (R,, x/, ¥) is a canonical quadratic transform
of (R, x, y). Then r and s are R,-monomials in (x', y). Also r=D'x%y?" and
s=E'xS y¥ where D’ and E’ are units in R, and @/, b/, ¢, d' are nonnegative
integers. Since (w(r), w(s)) is a free basis of the value group of w we get that
either a’'d —bc'=1orad —bc=~1.1fdd ~b'c'=1thenlet D" =EY/D'¥,
E'=D°/E®, a"=d, b= ~b, "= —c,d"=a’; and if ad —b'¢'= —1 then
let D"=D%/E"”, E'=E“/D*, a"= —d, b"=V, ¢"=c, &= —a. Then D"
and E” are units in R, and a”, b”, ¢”, d” are integers such that x, = D"r*'s*" and
Vo=E"r""s* Since r and s are R,-monomials in (x’, y') we get that x, = Dx'®y'®
and y,= Ex'°y'"? where D and E are units in R, and q, b, ¢, d are integers. Let
M, be the maximal ideal in R,. Since (x', y') is a basis of M, we get that
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ord, p x'=1,0rd, g y'=0,0rd, g D=0,and ord, g x,=0;since x,=Dx"* y'°
we get that ' 2 0. Similarly 520, ¢'20, & = 0. Since (x,, y,) and (x, y) are
bases of M,, D is a unit in R,, and x,=Dx'* y'*, we get that 1 =ordg x,
= afordg, x') + b(ordg y')=a+ b. Similarly c + d=1. Also (x,, y,)R,=M,{ x'R,
and hence if b=0 then d40. Similarly if a=0 then ¢+ 0. Therefore either
(@b, c,d)=(1,0,0,)or(a, b,c, d)=(0,1,1,0). If (g, b, ¢, d)=(1, 0, O, 1) then
x,/x" and y,/y’ are units in R,, and if (@, b, ¢, d) = (0, 1, 1, 0) then x,/y" and y,/x’
are units in R,

Lemma 3.12. Assume that R/M is algebraically closed. Let J be a coefficient
set for R and let (R,, X, y,) be the canonical n'* quadratic transform of (R, x, y, J)
along w. Given any p e M, we have the following. If w is recl then there exists a
nonnegative integer m such that pe xR, for all n=m. If w is irrational then
there exists a nonnegative integer m' such that pe x,y,R, for allnz=m'.

Proof. First suppose that w is real. By Lemma 3.6 there exists a nonnegative
integer d such that p € R,. Since w is real there exists an integer m > d such that
W(Xp- 1) EW(Yp—-1).- Then M,,_ R, =x, R, where M,,_, is the maximal ideal
in R,,_,. Since pe M,, we get that pe M,,_, and hence pex,R,. Clearly
X,-1 € x,R, for all n> 0, and hence p € xR, for all n =m. Now suppose that w
is irrational. By Lemma 3.11 there exists an integer e = m such that w(x,) & w(y,)
for all iz e. Since w is real there exists an integer m' > ¢ such that w(x,, _,)>
> WV, 1)- Then x,,._ =X, ¥, and hence pe y,.R,.. Clearly y,_, € y,R, for
all n> e and hence pe y, R, for all n=m'. Therefore pex,y,R, for all n=m'.

Lemma 3.13. Assume that R/M is algebraically closed. Let J be a coefficient
set for R and let (R,, x,, y,) be the canonical n'® quadratic transform of (R, x, y, J)
along w. If wis real nondiscrete then there exists a unique nonnegative integer m
such that w(y,) =2 w(x;) for all i <m and w(y,,) < w(x,,).

Proof. See [4: (1.3)].

Lemma 3.14. (1) Assume that w is nonreal. Then there exists a unique nonzero
nonmaximal prime ideal P in R,,, and we have the following: (R,)p is the only
subring of K containing R, which is different from K and different from R,,;
P(R,)p=P, ie., P is the unique maximal ideal in {R,)p; (R,)p and R,/P are one
dimensional regular local domains; and for any nonzero elements X' and Y’ in
M,, we have that Y'/X'"e M, for every positive integer n if and only if Y e P
and X' ¢ P. In particular there exist nonzero elements X and Y in R,, such that
Y(R,)p=P and XR,=M,, and for any such elements X and Y we have the
Jollowing : given any 0= f € K there exist unique integers a and b such that
w(f) = aw(X)+bw(Y), i.e, f/(X*Y®) is a unit in R,,; moreover feR,, if and
only if either b>0, or b=0 and a Z0; in particular (W(X), w(Y)) is a free basis
of the value group of w.

(2) If y/x"e M,, for every positive integer n then w is nonreal and PR = yR
where P is the unigue nonzero nonmaximal prime ideal in R,,,. If w is nonreal and
P~ R =yR where P is the unique nonzero nonmaximal prime ideal in R,, then:
y/x"€ M, for every positive integer n, y(R,)p =P, xR, =M, R,g =(R,)p, and
h(R)=h(R,,) where h is the canonical epimorphism of R, onto R,,/P.
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(3) Assume that y/x"e M,, for every positive integer n. Let R, be the n'™
quadratic transform of R along w and let y, = y/x". Then (R,, x, y,} is a canonical
quadratic transform of (R, x, y) for alln 2 0. Given 0= f € R let b=ord,p f and
a=ordy,, f/y*; then f/(x*y") is a unit in R, and hence a unit in R,,. Given any
finite number of nonzero elements f,, ..., f, in R,, there exists a nonnegative
integer m such that f,, ..., f, are R,-monomials in (x, y,) for all nZm.

{(4) Assume that w is nonreal and R is a spot over a pseudogeometric domain,
and let f,, ..., f, be any finite number of nonzero elements in R,,. Then there
exists a canonical quadratic transform (R', X', ¥') of (R, x, y) along w such that
y'/x'"e M,, for every positive integer n, and f,, ..., f, are R'-monomials in (x', y').

Proof of (1). Actually (1) is true for any two dimensional local domain R,
i.e., without assuming R to be regular. The proof follows from [2: Theorem 1]
and well known elementary properties of valuation rings.

Proof of (2). If y/x"e M,, for every positive integer n then clearly w is
nonreal and by (1) we get that ye P and x ¢ P where P is the unique nonzero
nonmaximal prime ideal in R,,, and hence 0+ yRCPnR=+ M ; since yR and
PAR are prime ideals in R and dimR =2, we must have PnR=yR. Now
assume that w is nonreal and PN R == yR where P is the unique nonzero non-
maximal prime ideal in R,,. Since PN R = yR we get that R,z C(R,)p; since R, 5
and (R,,)p are one dimensional regular local domains with quotient field K we
musthave R p =(R,)pand hence y(R, ), = P. Let b’ be the canonical epimorphism
of (R,)p onto (R,)p/P. Then W'(R) and A'(R,} are one dimensional regular local
domains with quotient field #'((R,)p) and h'(R) C H'(R,,); therefore H'(R) = K'(R,)
and hence h(R)=h(R,) where h is the canonical epimorphism of R, onto
R, /P; consequently h(x)h(R,)=h(M,}). Now xe M, and x ¢ P; therefore
z/x e P(R,)p=PCR,, for all ze P, and hence xR,,= M,,. Since ye P, xe M,,,
and x ¢ P, we also get that y/x"e M, for every positive integer n.

Proof of (3). Clearly (R, x, y,) is a canonical quadratic transform of (R, x, y)
for all n=0. Now h(f/y") = Dh(x)* where h is the canonical epimorphism of R
onto R/yR and D is a unit in h(R). Therefore f/y’=Ex“+ry where E is a
unit in R and r is an element in R. Let E'=E +ry,. Then E’ is a unit in R, and
f/(x*y*)= E’. The last assertion now follows from Lemma 3.6.

Proof of (4). In view of (3) it suffices to find a canonical quadratic transform
(R, x', y') of (R, x, y) along w such that y'/x'" e M, for every positive integer n.
By [5: (VI) on page 15] there exists a quadratic transform R” of R along w
and a basis (x*, y*) of the maximal ideal M” in R” such that y*/x*"e M, for
every positive integer n. We can take a basis (x”, y") of M” such that (R”, x”, y")
is a canonical quadratic transform of (R, x, y). Now either (x", y*) R" = M" or
(", y*)=M". Upon relabelling x" and y” we may assume that (x", y*) R" = M".
Then by (2) we get that y*/x""e M, for every positive integer n. If y”" ¢ y*R”
then y"/x""e M, for every positive integer n and hence it suffices to take
(R”, x”, y") for (R, X', y). Now assume that y” ¢ y*R” and let b = ordg.,+y".
Then b is a positive integer and by (3) we get that w(y”) = bw(x"). Let R’ be the
b™ quadratic transform of R” along w, let x’'=x", and let y'= y*/x"®. Then
(x', ¥) is a basis of the maximal ideal in R’ and y'/x™" e M,, for every positive
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integer n. Let R, be the (b —1)'" quadratic transform of R” along w and let
y1=y"/x"""1 Then (R,, X", y,) is a canonical (b —1)'® quadratic transform of
(R, x", y") along w and w(y,) = w(x"). It follows that (R, x/, y) is a canonical
first quadratic transform of (R,, x”, y,), and hence (R’, x', y') is a canonical
quadratic transform of (R, x, y) along w.

§ 4. Nonsplitting and quadratic transforms

Let R be a two dimensional regular local domain with maximal ideal M
such that R/M is an algebraically closed field of characteristic p #0. Let (x, y)
be a basis of M. Let J be a coefficient set for R. Let w be a valuation of the
quotient field K of R such that w dominates R and w is residually algebraic
over R. Let (R,, x,, y,) be the canonical n'® quadratic transform of (R, x, y, J)
along w, and let M, be the maximal ideal in R,

Definition 4.1. Let f(Z)e K[Z]. f(Z) is said to be R-standard if

f(Z)=zv+F+pf fizr
i=1

where F, fi, ..., f,- are elements in R such that: fie f;, Mfor1<i<p-2,
pe fiM,and f,_; =g'¢g°~ ! where ¢’ is a unit in R and g is a nonzero element
in R. f(Z)is said to be of [R, x, y]-standard-type (u, v) if f(Z) is R-standard and
u and v are nonnegative integers such that f,_,/(x“y*)*~ ! is a unit in R where
Sp—11s the coefficient of Z in f(Z). f(Z) is said to be of [R, x, y]-standard-type
zero if there exist nonnegative integers u and v such that: f(Z)is of [R, x, y]-
standard-type (4, v), and f(0) € x*Py*? R. f(Z)is said to be of [R, x, y]-standard-
type one if there exist nonnegative integers u, v, g, b such that: f(Z) is of
[R, x, y]-standard-type (u, v), f(0)/(x"y®) is a unit in R, (a, b) £ 0(p), a < up, and
b=vp. f(Z)issaid to be of [R, x, y]-standard-type two if there exist nonnegative
integers u, v, a, b such that: f(Z)is of [R, x, y]-standard-type (1, v), f(0)ex*y*R,
a<up, b<vp, b=0(p), and ordg,, f(0)/(x*)") = 1.

In [6: Theorem 8(3)] we proved the following:

Theorem 4.2. Assume that w is real nondiscrete. Let f(Z)e K[Z]. Assume
that f(Z) is of [R, x, y]-standard-type (u, v) for some nonnegative integers u
and v. Also assume that there exists a coefficient set J' for R and an element z in
Mn(radg f,-R), where f,_, is the coefficient of Z in f(Z), such that if i is
any positive integer and r and v’ are any elements in J such that r' —r' € M then
r'—r €zR. Then theré exists a nonnegative integer m, a basis (x', y) of M,
an element 5" in R,,, and an R,-monomial s in (x', y) such that for f'(Z)=5"7 x
X f(sZ + 5') we have that f'(Z) is of [R,,, Xn» Ym)-standard-type (W', v') where v’
and v’ are nonnegative integers such that if v’ +v' +0 then; u’ >0 and there exist
nonnegative integers a' and b’ such that f(0)/(x'® y'*) is a unit in R, a' <p,
b'<p, (@, b)£0(p), and if v'=0 then b'=0.

We shall now deduce the following slight refinement of the above theorem.

Theorem 4.3. Assume that w is real nondiscrete. Let f(Z)e K[Z]. Assume
that f(Z) is R-standard. Then there exists a nonnegative integer m and an R,,-
translate f'(Z) of f(Z) such that either f'(Z)is of [Rp, Xpm» Vml-standard-type
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zero, or f'(Z)is of [R,, X Vml-standard-type one, or f'(Z) is of (R, Yms Xml-
standard-type one.

Proof. Let J' be any coefficient set for R. Then J' is a coefficient set for R,
for all 2 0. Let z=x if w(y)Z w(x), and z=y if w(y} <w(x). Then ze M, for
all n=0. Also MR, =2zR; and hence MR,=zR, for all n>0. It follows that
if n and i are any positive integers and r and ' are any elements in J' such that
r'—reM, then ¥ —r' e M and hence ¥ —r € zR,. Let f,_, be the coefficient
of Z in f(Z). Now wis real, ze M,,, and 0+ f,_, € R,,; therefore there exists
a positive integer g such that z%/f,_, € R,,. By Lemma 3.6 there exists a positive
integer n’ such that z%/f,_, e R,. It follows that zeradg_f,-;R,forallnzn'.
By assumption there exists a nonzero element g in R such that f,_,/g°" ' is
a unit in R. By Lemma 3.7 there exists an integer n=n' such that g is an R,-
monomial in (x,, y,). Consequently there exist nonnegative integers u* and v*
such that f,_ /(x4 yo)*~ ! is a unit in R,. It follows that f(Z)is of [R,, X,,, ¥,]-
standard-type (u*, v*). Upon taking (R, x,, y,, u*, v*) for (R, x, y, 4, v}in Theorem
4.2 we find an integer m = n, a basis (x', y) of M,,, an element s’ in R,,, and an
R,-monomial s in (x/, y') such that for f"(Z)=s"?f(sZ +s') we have that
f"(2)is of [R,,, X,; V.m)-standard-type (u”, v") where u” and v” are nonnegative
integers such that if ¥” + v” £ 0 then : 4" > 0 and there exist nonnegative integers
a” and b” such that f”(0)/(x'* y'®") is a unit in R,,, @’ <p, b” < p, (a’, b") £ 0(p),
and if v"=0 then b”"=0. Let f;_, be the coefficient of Z in f"(Z). Then
S/ y*" )P~ is a unit in R,,. Also there exist nonnegative integers d and
esuch that s/(x'?y’®)isa unitin R,,. Letu’'=u" + d and v’ = v” + e. Then u’ and v/
are nonnegative integers. Let f'(Z)= f(Z + 5) and let f,_, be the coefficient
of Z in f'(Z). Then f"(Z)=s"?f'(sZ) and hence f,_,=s""'f,_, and f'(0)
=s? f"(0). Therefore we get the following: (1) f,_,/(x'* y*)"~ ! is a unitin R,,;
(2 ifu”+v"=0then (f'(0)’ "' (f,- 1)’ Ry; (3) if 4’ + v” 0 then upon letting
@' =a"+dp and b’ =b"+ ep we have that ¢’ and b’ are nonnegative integers,
FO/(x'*y"?) is a unit in R,, (a, b)%£0(p), a <u'p, and b’ <v'p. Now
fp-1/(x5 y2¥~1 is a unit in R, and x, and y, are R,-monomials in (X, y);
consequently there exist nonnegative integers u and v such that f,_, /(x4 yo)? !
is a unit in R, ; since f(Z) is R-standard we get that f(Z) is R,~standard; it
follows that f(Z)is of [R,,, X, Vm]-standard-type (u, v). Since f'(Z)= f(Z +5),
by [4: (1.6}] we then get that f'(Z)is of [R,,, X,,, V.]-standard-type (u, v) and
hence in particular: (4) f'(Z) is R,-standard, and (5) f,_ /(x4 )"~ ! is a unit
in R,. By (4) and (5) it follows that if (f"(0)" "' e(f,-1)’R,, then f'(Z) is of
[Rys Xms Vml-standard-type zero. So now assume that (f"(0)° "' ¢(f,-1)’R,,.
Then by (1), (2) and (3) we get that there exist nonnegative integer v/, v/, o/, b’
such that: (6) f,-/(x™ y'*}~! is a unit in R,,; and (7) f(0)/(x'* y’*') is a unit
in R, (@, b)£0(p), a’ <u'p, and b’ Lv'p. First suppose that v’ >0; now u' >0
by (7); since (x,,, ¥,,) and (x’, y'} are bases of M,,, by (5) and (6) we get that either
x'/x,, and y'/y,, are units in R,, or y'/x,, and x'/y,, are units in R,, ; by (4), (6) and
(7) it follows that if x'/x,, and ¥'/y,, are units in R, then f'(Z)is of [R,,, X, Vm)-
standard-type one and if y'/x,, and x'/y, are units in R, then f'(Z) is of
[R,, Vm> Xm]-standard-type one. Next suppose that ¢/ =0; now «' >0 by (7);
8 Math. Ann. {70
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since (x,, y,,) and (x’, y') are bases of M,,, by (5) and (6) it follows that either
x'/x,, is a unit in R, or x'/y,, is a unit in R,,; by (4), (6) and (7) it follows that if
x'/x,, is a unit in R,, then f'(Z) is of [R,, X,, V.]-standard-type one, and if
X'[Vm is & unit in R,, then f'(Z) is of [R,,, Yu» Xm]-Standard-type one.

Lemma 4.4. Assume that w(y) =w(x). Let f(Z)e K[Z]. Assume that f(Z)
is of [R, x, y]-standard-type two. Then there exists an R,-translate f'(Z) of
f(Z) such that f'(Z)is of [R,, X4, ¥,]-standard-type either zero or one or two.

Proof. Now there exist nonnegative integers u, v, @, b such that: f(Z)is of
[R, x, y]-standard-type (4, v), f(0)ex°y*R, a<up, b<vp, b=0(p), and
ordg,, f(0)/(x"y")=1. Also x=x, and y=x,(y, +1) where 0+ teJ. It follows
that f(Z)is of [R,, x;, y,]-standard-type («, 0) where v’ = u--v. If f(0)ex¥?R,
then f{Z)isof [R,, x,, y,]-standard-type zero and it suffices to take f'(Z)= f(Z).
Now assume that f(0)¢x{?R,. Since ordg, f(0)/(x*y")=1 we get that
f(0)/(x*y")=Ay+ Bx+ D where 0+ AeJ, BeJ, DeM? Leta=a+b+1,
B = At + B, and D'=D/x? Then B'eR, D'e R, and

fO)=xT(y, + (B + Ay, + D'x,).

In particular f(0)ex{ R, and hence a’ <u'p. Since b=0(p) we get that
bepRCMCM, and hence (y, + t)’ — t’ € M%. Therefore

fO)=x5(B't®+ At’y, +D"x, +E) with D"eR,, Ee M?.

Now B't?€ R and A’ € R, and hence there exist unique elements B* and A*
in J such that B't" — B* e M and At® — 4* € M. Since MR, = x, R, we get that
B't* -~ B*e xR, and At® — A* e x, R,. Therefore

f(0)=x%(B*+ A*y, + D*x, + E) with D*eR,.

Since 0+ AeJ, 0%tel, A*eJ, and At’ — A* ¢ M, we must have A*+0. It
follows that if B*+0 then f(0)/x{ is a unit in R,, and if B*=0 then
ordg, x, f(0)/x{ = 1. Therefore if a’ % 0(p) then f(Z)is of [R, x, y,]-standard-
type one or two according as B* +0 or B* =0 and hence we may again take
f'(Z)= f(Z). So now assume that & = 0(p). Since R/M is algebraically closed,
there exists ¥ €J such that r?+ B*e M. Let r=r'x{/?. Then re R,. Since
MR, =x,R, we get that

r’+B*x{ ex{*'R,.
Let f(Z)= f(Z +r). By [4:(1.6)] we get that f'(Z)is of [R,, x,, y,]-standard-
type (', 0). Since a' <u'p and f(Z)is of [R,, x,, y,}-standard-type (', 0) we get
that f'(0)—r? — f(0) e x{ **R,. Therefore
f’(0)=x‘;’(A*y1 +Dlx1+E) With DIERI'

Since 0+ 4A* e J and E € M? we conclude that ordg,,,, f'(0)/x] =1 and hence
f'(Zyis of [Ry, x,, y;]-standard-type two.

Lemma 4.5. Assume that w(y)> w(x). Let f(Z)e K[Z]. Assume that f(Z)
is of [R, x, y}-standard-type two. Then there exists an R ;-translate f'(Z) of f(Z)
such that f'(Z) is of [R,, X, y,]-standard-type zero or one or two.
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Proof. Now there exist nonnegative integers u, v, a, b such that: f(Z) is of
[R, x, y]-standard-type (4, v), f(0)e x*y*R, a<up, b Svp, b=0(p), and
ordg,, f(0)/ (x*y)=1.
Also x=x; and y=x,y,. It follows that f(Z) is of [R,, x,, y,]-standard-type
(«,v) where w' =u+v. Since ordg, f(0)/(x*y")=1 we get that f(0)/(x"y")

=Ay+Bx+DwhereO+AeJ,BeJ,De M>. Leta'=a+b+1and D' = D/x3.
Then D'e R, and

fO=x{yi(B+ Ay, +D'x,)ex{ yiR;.

For a moment suppose that a’ =z u'p; since a<up and b £ vp we must then have
a'=1u'pand b=vp; consequently f(Z)is of [R, x,, y,]-standard-type zero and it
suffices to take f'(Z)=f(Z). Now assume that a <u'p. If B+0 then
F(0)/(x% ¥%)is a unit in R,, and if B0 then ordg, ., f(0)/(x] ¥}) = 1. Therefore
if a' £0(p) then f(Z) is of [R,, x,, y,]-standard-type one or two according as
B =0 or B=0 and hence we may again take f'(Z) = f(Z). So now also assume
that a' =0(p). Since R/M is algebraically closed there exists »' €J such that
r?+Be M. Let r=r'x§/?y%/?, Then re R,. Since MR, = x, R, we get that

a' b a + 1
P+Bxyyiex{* ¥4R,.

Let f'(Z)= f(Z +r). By [4: (1.6)] we get that f'(Z)is of [R,, x,, y,]-standard-
type (¢, v). Since a' <u'p, b<vp, and f(Z) is of [R,, x,, y,]-standard-type
(w, v) we get that f'(0)—r?P — f(0)e x§ *1y% R,. Therefore

f0)=x% Y8 (Ay, +D*x,) with D*eR,.

Since 0+ 4 €J we conclude that ordg, ., /'(0)/(x§ ¥})=1 and hence f'(Z) is
of [Ry, x4, y,]-standard-type two.

Lemma 4.6. Assume that w(y) <w(x). Let f(Z)e K[Z]. Assume that f(Z)
isof [R, x, yl-standard-type two. Then f(Z)is of [Ry, x,, y,]-standard-type one.

Proof. Now there exist nonnegative integers u, v, a, b such that: f(Z)is of
[R, x, y]-standard-type (u, v), f(0)ex®y*R, b=0(p), a<up, b<vp, and
ordg, f(0)/(x°y")=1. Also x, =x,y, and y=y,. It follows that f(Z) is of
[Ry, x;, y;]-standard-type (u, v') where v'=u+v. Let b'=a+b+1. Since
a<upandb<vpwe get that b’ < v'p. Since b =0(p) we also get that (a, ') F 0(p).
Since ordg, f(0)/(x*y")=1 we get that f(0)/(x°y*)=Ay+Bx+D where
O+ AeJ, BeJ, and De M2 Let D'=D/y? Then D'e R, and

fO)=x{}(4+Bx,+D'y,).

Since 0+ A €J we conclude that f(0)/(x5)%) is a unit in R,. Therefore f(Z)
is of [R,, x,, y,]-standard-type one.

Lemma 4.7. Assume that w(y) =w(x). Let f(Z)e K[Z]. Assume that f(Z)
is either of [R, x, y]-standard-type one or of [R, y, x]-standard-type one. Then
either f(Z) is of [R,, x,, y,]-standard-type one or there exists an R -translate
FAZY of f(Z) such that f'(Z)is of [Ry, x,, y,}-standard-type two.

Proof. Now there exist nonnegative integers u, v, a, b such that: f(Z)is of
[R,, x;, y{]-standard-type (u, v), f(0)/(x*y") is a unit in R, (a, b)%0(p), a S up,

Fid
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b<vp, and either a<up or b<vp. Also x=x, and y=2x(y, +1) where
O%tel. Letw=u+v and a’=a+b. Then f(Z) is of {R,, x,, y,]-standard-
type (u,0), f(0)/x% is a unit in R,, and a' <u'p. Therefore if ' % 0(p) then
f(Z) is of {R,, x,, y,]-standard-type one. Now assume that o’ = 0(p). Since
(a, b) % 0(p) we must then have b= 0(p). Since f(0)/(x"y®) is a unit in R we get
that f(0)/(x°y’)=A+ D where 0+ AeJ and DeM. Let D'=D/x,. Then
D'eR; and

JO=x{(y; +1°(4+D'x,)
=x{(At*+ Abt> 'y, + D"x, + E) where D"eR,, Ec M?.

Now Abt* " 'e R and hence there exists a unique element A’eJ such that
A — Abt* e M. Since b£0(p), 0+ AeJ, and OkteJ we get that A" +0.
Let E*=E +(Abt* ' — A"y, and B= At". Then

fO)=x%(B+A'y, +D"x, +E¥), BeR, E*e M?.

Since R/M is algebraically closed there exists ' €J such that r'? + Be M. Let
r=r'x{/". Then r e R,. Since MR, = x, R, we get that

r’+Bx% ex?*1R,.

Let f(Z)= f(Z +7r). By [4:(1.6)] we get that f'(Z)is of [R, x,, y,]-standard-
type («/, 0). Since a’' <u'p and f(Z)is of [R,, x,, y,]-standard-type (v, 0) we get
that f'(0)—r? — f(0) e x7 *'R,. Therefore

f(0)=x9(A’y, + D*x, + E*) where D*eR,.

Since 0+ A'eJ we conclude that ordy, ., f'(0)/x{ = 1. Therefore f'(Z) is of
[R,, x,, y,}-standard-type two.

Lemma 4.8. Assume that w(y)>w(x). Let f(Z)e K[Z]. Assume that f(Z)
is of [R, x, y}-standard-type one. Then f(Z) is of [R,, Xy, ¥,]-standard-type one.

Proof. Now there exist nonnegative integers u, v, a, b such that: f(Z)is of
[R, x, y]-standard-type (u, v), f(0)/(x*y) is a unit in R, (a, b) £ 0(p), a < up, and
b=vp. Also x=x, and y=x,y,. Let w' =u+vand ' =a+b. Then f(Z) is of
[R,, x4, y,]-standard-type (&, v), f(0)/(x%1%) is a unit in R,, (a, b) £ 0(p), and
a' <up. Therefore f(Z) is of [R,, Xy, ¥,]-standard-type one.

Lemma 4.9. Assume that w(y)<w(x). Let f(Z)e K[Z]. Assume that f(Z)
is of [R, x, y]-standard-type one. Then f(Z)is of [R,, x,, ¥,]-standard-type one
and of [R,, y;, x,]-standard-type one.

Proof. Now there exist nonnegative integers u, v, a, b such that: f(Z)is of
[R, x, y]-standard-type (u, v), f(0)/(x"y"®) is a unit in R, (a, b) % 0(p), a < up, and
b=vp. Also x=x,y, and y=y,. Let v =u+vand b'=a+b. Then f(Z)is of
[Ry, X1, y,}-standard-type (u, v'), £(0)/(xH5) is a unit in R,, (a, b’) % 0(p), and
b’ < vp. Therefore f(Z)is of [Ry, x4, y,]-standard-type one and of [R;, y,, x;]-
standard-type one.

Lemma 4.10. Assume that w(y) % w(x). Let f(Z)e K[Z]. Assume that f(Z)
is of [R, x, yl-standard-type one. Then f(Z)is of [R,, x,, y,]-standard-type one.

Proof. Follows from Lemmas 4.8 and 4.9.
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Lemma 4.11. If w(y) & w(x) then (R, y,, X4) is the canonical first quadratic
transform of (R, y, x).

Proof. Obvious.

Lemma 4.42. Assume that w(y) =w(x). Let f(Z)e K[Z]. Assume that f(Z)
is either of [R, x, y]-standard-type one or of [R, y, x]-standard-type one. Then
f(Z)iseither of [R, xy, y,]-standard-type oneor of [Ry, y,, x,]-standard-type one.

Proof. Follows from Lemmas 4.10 and 4.11.

Lemma 4.13. Assume that w(y) =+ w(x). Let f(Z)e K[Z]. Assume that f(Z)
is of [R, x, y]-standard-type one and of {R, y, x]-standard-type one. Then f(Z)
is of [Ry, X1, y1]-standard-type one and of [Ry, y;, x,}-standard-type one.

Proof. Follows from Lemmas 4.10 and 4.11.

Lemma 4.14. Assume that w(y) <w(x). Let f{(Z)e K[Z]. Assume that f(Z)
isof [R, y, x]-standard-type one. Then f(Z)is of [R,, y,, x,]-standard-type one.

Proof. Follows from Lemmas 4.8 and 4.11.

Lemma 4.15. Assume that w(y) > w(x). Let f(Z)e K{Z]. Assume that f(Z)
is of R, y, x]-standard-type one. Then f(Z)is of [Ry, x,, y,]-standard-type one
and of [R,, yy, x)-standard-type one.

Proof. Follows from Lemmas 4.9 and 4.11.

Theorem 4.16. Assume that w is irrational. Let f(Z)e K{Z]. Assume that
f(Z) is R-standard. Also assume that for each nonnegative integer n it is true
that there does not exist any R -translate of f(Z)whichisof [R,, x,, y.]-standard-
type zero. Then there exists a nonnegative integer m and an R, ~translate f'(Z)
of f(Z)suchthat for all n = m we have that {'(Z)is of {R,, X,, ¥.]-standard-type
one and of [R,, V,, X,}-standard-type one.

Proof. By Lemma 3.11 there exists a nonnegative integer d such that
w(x,) == w(y,) for all n = d. Clearly f(Z)is R;-standard and hence by Theorem 4.3
there exists an integer ¢ = d and an R -translate f'(Z) of f(Z) such that f'(Z)
ist either of [R,, x,, y.]-standard-type one or of [R., y,, x,]-standard-type one.
First suppose that f'(Z)is of [R,, x,, y.]-standard-type one ; since w is real there
exists an integer m> e such that w(y,)>w(x,) foreSi<m—1 and w(y,_ )<
< w(x,,_4); applying Lemma 4.8 successively m — e — 1 times we see that f'(Z)
if of [Ry— 15 X~ 15 Y- 1]-standard-type one; by Lemmas 4.9 and 4.13 we then
get that for all n2m: f'(Z) is of [R,, x,, y,]-standard-type one and f'(Z) is of
[R,, ¥u» x,]-standard-type one. Next suppose that f'(Z)is of [R,, y,, x.]-stand-
ard-type one; since w is real there exists an integer m > e such that w(y,) < w(x;)
for egi<m—1 and w(y,_,)>w(x,-); applying Lemma 4.14 successively
m—e— 1 times we see that f'(Z)is of [R,,_ {, Ym— 1» Xm—1]-standard-type one;
by Lemmas 4.15 and 4.13 we then see that forallnzm: f'(Z)is of [R,, X, V.}-
standard-type one and f'(Z) is of [R,, y,, x,]-standard-type one.

Theorem 4.17. Assume that w is real nondiscrete. Let f(Z)e K[Z]. Assume
that f(Z) is R-standard. Also assume that for every nonnegative integer n it is
true that there does not exist any R -translate of f(Z) which is of [R,, X, ¥,}-
standard-type zero. Then there exists a positive integer m such that for every
integer n = m there exists an R, -translate f™(Z) of f(Z) such that foralln=m
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we have the following; if w(y,- )2 w(x,_,) then f™(Z) is of [R,, X,, V.}-
standard-type either one or two, and if w(y,_{)<w(x,_,) then f™(2) is of
(R,, X,, V,]-standard-type one.

Proof. If w is not rational then our assertion follows from Theorem 4.16.
Now assume that w is rational. By Theorem 4.3 there exists a nonnegative
integer d and an R -translate f'(Z) of f(Z)suchthat f'(Z)iseither of [Ry, x,, y4}-
standard-type one or of [R,, y,, x,]-standard-type one. Since w is rational there
exists an integer m>d such that w(x) + w(y) for d<i<m—1 and wix,_,)
= w(y,,- ). By applying Lemma 4.12 successively m —d — 1 times we see that
[(Z) is either of [R,,_1, Xpm—1, Vm-1]-standard-type one or of [R,,_{, Ym-1
X 1]-standard-type one. By Lemma 4.7 there exists an R, -translate f™(Z) of
f(Z) such that f™(Z) is of [R,, X, Vn]-standard-type either one or two.
Repeatedly applying Lemmas 4.4, 4.5, 4.6, 4.7, 4.10 we find an R, -translate
™(Z) of £™(Z) for all n> m such that for all n>m we have the following: if
w(y,— ) = w(x,_,) then f™ is of [R,, x,, y,]-standard-type either one or two,
and if w(y,_,) <w(x,-,) then f™(Z)is of [R,, x,, y,]-standard-type one.

Lemma 4.18. Let f(Z)e K[Z), let z be an element in an overfield of K such
that f(z)=0, and let L= K(z). Assume that f(Z) is of [R, x, y]-standard-type
zero and f(Z) is irreducible in K[Z). Then R splits in L and w splits in L.

Proof. Now there exist nonnegative integers u and v such that f(Z) is of
[R, x, y]-standard-type (u, v), and f(0)e x"?y"?R. Let z' =z/(x"y") and f'(2)
=(x"y*} "2 f(x*y’Z). Then L=K(2"), f'{z)=0, f'(Z) is irreducible in K[Z],
and f'(Z) is of [R, x, y]-standard-type (0, 0). In particular f'(Z)=Z?+
+fiZP" '+ -+ f;, yZ+F where F'eR, f,_€R, f,_¢M, and fieM
for 1 £i< p—2. Therefore by [6: Lemma 11 (1)1, R splits in L and w splits in L.

Theorem 4.19. Let f(Z)e K[Z], let z be an element in an overfield of K such
that f(z)=0, and let L= K(2). Assume that f(Z)is R-standard, f(Z)is irreducible
in K[Z), and w does not split in L. Then we have the following. (1) If w is real
nondiscrete then there exists a positive integer m such that for every integern=m
there exists an R,-translate f™(Z) of f(Z) such that for all n=m we have the
Sollowing : if w(y,_)=w(x,-,) then f™(Z) is of [R,, X,, y,)|-standard-type
either one or two, and if w(y,_ 1) < w(x,_. 1) then f™(Z)isof [R,, X,, y,]-standard-
type one. (2) If w is irrational then there exists a nonnegative integer m and an
R -translate ['(Z) of f(Z) such that for all n=m we have that f'(Z) is of
[R,, X, y,l-standard-type one and of [R,, y,, X,]-standard-type one.

Proof. If n is any nonnegative integer and f*(Z) is any R -translate of f(Z)
then f*(Z) is irreducible in K[Z] and there exists z* € L such that L= K(z*)
and f*(z*)=0. Therefore our assertion follows from Theorem 4.16, Theorem
4.17, and Lemma 4.18.

Lemma 4.20. Let L be a separable p-cyclic extension of K. Assume that K
is of nonzero characteristic. Then there exists a primitive element z of L over K
such that the minimal monic polynomial of z over K is R-standard.

Proof. Now K is of characteristic p and hence there exists a primitive
element 2z’ of L over K such that z’? — 2z’ € K (for instance see [8: Chapter IX]).
Since K is the quotient field of R, there exist elements G and H in R such that
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G+0andz?—z =H/G. Letz=2'G,F=~HG? !, and f(Z)= Z* - G*" ' Z+F.
Then z is a primitive element of L over K, f(Z) is the minimal monic polynomial
of z over K, and clearly f(Z) is R-standard.

Lemma 4.21. Let L be a p-cyclic extension of K. Assume that K is of charac-
teristic zero, K contains a primitive p™ root of 1, K contains a (p — 1) root of p,
and w is real nondiscrete. Then either (1) there exists a primitive element 2’ of L
over K, a nonnegative integer m', a unit D, in R, for all n=mn', and nonnegative
integers a(n) and b(n) for all nzm', such that for all n2m' we have that
Z? + D, x2™ y2® s the minimal monic polynomial of z' over K and (a(n), b(n)) %
% 0(p); or (2) there exists a primitive element z of L over K and a nonnegative
integer m such that the minimal monic polynomial of z over K is R,-standard.

Proof. Since K contains a primitive p'® root of 1, there exists a primitive
element z' of L over K such that the minimal monic polynomial of z’' over K
is of the form Z? + F with 04 F € R. By Lemma 3.7 there exists a nonnegative
integer m’ such that for all n2m’ we have that F = D,x2™ y>® where D, is a
unit in R, and a(n) and b(n) are nonnegative integers. If (a(n), b(n)) £ O(p) for
all n=m' then we have nothing more to show. So now assume that (a(e), b(e))
=0(p) for some e=m'. Let z* =z'/(x2@Pyb@/P) and f*(Z)=ZP+ D,. Then
z*is a primitive element of L over K and f*(Z)is the minimal monic polynomial
of z* over K. By [6: Lemma 31] there exists an integer m > ¢, and elements s
and t in R,, with t 30 such that for f(Z)=1t"? f*(tZ + s) we have that f(Z) is
R,-standard. Let z =(z* — s)/t. Then z is a primitive element of L over K and
f(Z) is the minimal monic polynomial of z over K.

Lemma 4.22. Let f(Z)e K[Z], let z be an element in an overfield of K such
that f(z)=0, and let L =K(z). Then we have the following. (1) If f(Z) is of
[R, x, y)-standard-type two then [L:K]=p and ord,y is totally ramified in L.
(2) If f(Z)is of [R, x, y)-standard-type one then [L:K)]=p, ord, is totally
ramified in L, and ord, g does not split in L. 3) If f(Z)is of [R, x, y]-standard-
type one and f(Z) is of [R, y, x]-standard-type one then [L:K]=p, ord, g is
totally ramified in L, and ord,y is totally ramified in L. (4) If pexR and
f(Z)=Z?+ Dx®y® where D is a unit in R and a and b are nonnegative integers
such that (a, b) % 0(p) then [L: K] =p, ord,y is totally ramified in L, and ord,
does not split in L. (5) If pe xyR and f(Z)= ZP + Dx"y® where D is a unit in R
and a and b are nonnegative integers such that (a, b) £ 0(p) then [L. K] = p, ord, 4
is totally ramified in L, and ord, is totally ramified in L.

Proof. (1) follows from Lemma 2.8. (2), (3), (4), (5) follow from Lemma 2.9.

Theorem 4.23. Let L be a p-extension of K such that w does not split in L.
Assume that if K is of characteristic zero then K contains a primitive p'* root
of 1 and K contains a (p— 1) root of p. Then we have the following. (1) If w is
real nondiscrete then there exists a nonnegative integer m such that for allnzm:
ordy_ does not split in L and ord, g _is totally ramified in L. (2) If w is irrational
then there exists a nonnegative integer m such that for alln>m: ordy_is totally
ramified in L, ord, g _ is totally ramified in L, and ord,, g _is totally ramified in L.

Proof. The case when L is a separable p-cyclic extension of K follows from
Lemmas 3.12,4.20, 4.21, 4.22, Theorem 4.19, and the observation that for any
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n>0: if w(y,-;)2w(x,-,) then ordg, ,=ord, g, and if w(y,_;) <w(x,-,)
then ordg _,=ord, p . In the general case let H be the set of all subfields of L
which are separable p-cyclic extensions of K. Note that H is a finite set and for
each K’ in H we have that w does not split in K'. To prove (1) suppose that w
is real nondiscrete; then for each K'e H there exists a nonnegative integer
m(K') such that for alln = m(K"): ord p_does not splitin K’ and ord, g_is totally
ramified in K'; since H is a finite set we can take a nonnegative integer m such
that m=m(K’) for all K’ H; by Lemma 2.10 it follows that for all nzm:
ordp doesnotsplitin L and ord, g, is totally ramified in L. To prove (2) suppose
that wisirrational ; then for each K’ € H there exists a nonnegative integer m(K’)
such that foralln = m(K'): ordg , ord, g ,and ord, g are totally ramifiedin K';
since H is a finite set we can take a nonnegative integer m such that m = m(K’)
for all K’ e H; by Lemma 2.10 it follows that for all n 2 m: ordg , ord, g , and
ord, r are totally ramified in L.

For the sake of completeness we shall now prove analogues of the above
result for discrete valuations and nonreal valuations,

Theorem 4.24. Let L be a finite algebraic extension of K. Assume that w is
discrete and w does not split in L. Then there exists a nonnegative integer m such
that for alln=m: ordg, is totally ramified in L and ord, p_is totally ramified in L.

Proof. Let L* be the maximal separable extension of K in L. Let e = [L*: K].
Let S be the integral closure of R,, in L*, Then S is a one dimensional regular
local domain. Take z € S such that ordgz = 1, and let f(Z) be the minimal monic
polynomial of z over K. By Lemma 2.6 we get that L* = K(z) and the reduced
ramification index of § over R, is . By well known properties of Dedekind
domains itfollows that f(Z)—Z°e M_[Z] and f(O)R,= M, {for instance see
[11: Lemma 2 on page 305 and the formula in the middle of page 300]). Hence
by Lemma 3.10 there exists a nonnegative integer m such that for all n=m we
have that: x,=x,, x,R,=M,, and f(Z)— Z°e(x,R,)[Z]. Since x,R, =M,
= f(O)R,, we get that ord, p f(0)=1 for all n>m. Therefore by Lemma 2.7,
ord, g is totally ramified in L* for all n2m. Since L is purely inseparable
over L* we conclude that ord, ;_ is totally ramified in L for all n=m. Since
X, =X,, for all n2m we get that ordg =ord, 5 ., forallnzm.

Theorem 4.25, Let L be a p-extension of K. Assume that R is a spot over a
pseudogeometric domain, w is nonreal, and w does not split in L. Then there
exists a nonnegative integer m such that foralln > m:ordy istotally ramifiedin L.

Proof. As in the proof of Theorem 4.23, in view of Lemma 2.10, without
loss of generality we may assume that L is a separable p-cyclic extension of K.
Then by [6: Theorem 1] there exists a nonnegative integer m, and a basis
(X, Y) of M,, such that Y/X®e M, for all e> 0, and a primitive element z of L
over K such that upon letting f(Z)=Z°+ f,Z? '+ + f,_yZ+F with
S1s s fp—1, F in K be the minimal monic polynomial of z over K we have
that either F=X and f,e XR,, for O0<i<p, or F=Y and f;e YR, for
O<i<p. Let Y,=YX" " Then (X, Y,) is a basis of M, for all n2m.
Also ordy, = ordyp,_,, for all n 2 m and hence it suffices to show that ordyy, is
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totally ramified in L for all n>m. If F= X and f;e XR,, for 0 <i < p then for
all n=m we get that f;€ XR, for 0 <i < p and hence ordyg, is totally ramified
in L by Lemma 2.7. So now assume that F= Y and f,;e YR, for 0 <i<p, and
let n>mbe given. Thenpe XR,, F=Y, X" ™ and f;e Y, X" ™R, forO0<i<p.
Clearlyordy gz F=n—m=<ordyg fiforO<i<pandordg xF/X" ™ =1%0(p)
Since n>m we get that ordyg f;>(i/p) ordyg F for 0 <i<p. Therefore by
Lemma 2.8 it follows that ordyp_ is totally ramified in L.

§ 5. Permissible and stable polynomials

Let R be a two dimensional regular local domain with maximal ideal M
such that R/M is an algebraically closed field of characteristic p +0. Let (x, y)
be a basis of M and let J be a coefficient set for R. Let X C M. Let w be a valu-
ation of the quotient field K of R such that w dominates R and w is residually
algebraic over R. Let (R;, x;, y,) be the canonical j* quadratic transform of
(R, x, y, J) along w.

Definition 5.1. Let f(Z) be a monic polynomial of positive degree in Z
with coefficients in K. f(Z) is said to be [R, x, y, J, w]-permissible if for every
canonical quadratic transform (R, x', y') of (R, x, y, J) along w we have that
f(2) is of nonsplitting-type relative to ordg. and f(Z) is of ramified-type
relative to ord,. ;.. Note that if f(Z) is [R, x, y, J, w]-permissible, .,f'(Z) is a
K-translate of f(Z), and (R, x', y) is a canonical quadratic transform of (R, x,
v, J)along w, then f’(Z)is [R/, X', y', J, w]-permissible. This remark will be used
tacitly in § 9.

Let FeR. F is said to be of [R, x, y]-stable-pretype (m; a, b, ¢) if m=p"
where n is a positive integer and a, b, ¢ are nonnegative integers such that:
ord, g F=a, ord g F 2 b, ordg,F/(x*y")=c¢, (a, b+c)£0(m), and either (1)
b=0(m) and ¢ £ m/p, or (2) b=*0(p) and ¢ < m/p.

Let f(Z)e K[Z]. f(Z)issaid to be of [R, x, y, J, X, w]-stable-type (m; a, b, ¢)
if: m= p" where n is a positive integer, f(Z) is a monic polynomial of degree m
in Z with coefficients in R, f(Z)is [R, x, y, J, w]-permissible, f(0)is of [R, x, y]-
stable-pretype (m; a, b, ¢), X Cradg)’R, and ord,, fi2bi/m for 0<i<m
where f; is the coefficient of Z™in f(Z). f(Z)is said to be [R, x, y, J, X, w]-
stable if f(Z)is of [R, x, y, J, X, w]-stable-type (m; a, b, c) for some integers m, a,
b, c

In § 6 to § 9 we shall develop an algorithm dealing with monic polynomials
of degree p" with coefficients in R ; here we shall state the following two results
from that algorithm. § 6 to § 9 depend on § 2 to § S only in the use of Definitions
2.2, 3.5, 5.1, Observations 3.1, 3.2, 3.3, and Lemma 3.13. In Lemma 9.9 of §9
we shall prove Theorem 5.2 which motivates the term “stable”, and in Lemma
9.25 of § 9 we shall prove Theorem 5.3 which motivates the term “permissible”.

Theorem 5.2. Let f@(Z)e K[Z] be of [R, x, y, J, X, w]-stable-type (m; a,,
by, ¢o). Then for each j> O there exists an Rj-translate f9(Z) of f(Z) such
that fO(Z)is of [R;, xj, y;, J, X, wl-stable-type (m; a;, b;, c;) where for all j 20
we have the following: (1) if w(y;) <w(x;) then fU*(Z)=fUZ), a;,=a,
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bj,i=ordg fP0), and c;;=a;+bj+c;—bjr1; () if wy)=w(x; then
bjs1=0; (3) if w(y)>wl(x)) then b;,;=>b;. In connection with (2) note that
if wis rational then there exist infinitely many distinct nonnegative integers j for
which w(y;) = w(x)).

Theorem 5.3. Let m = p" where n is a positive integer and let f(Z) be a monic
polynomial of degree m with coefficients in R. Assume that w is real nondiscrete
and f(Z)is [R, x, y, J, w]-permissible. Also assume that either : 1) R is of charac-
teristic p and f(Z)+ Z™ + f(0); or: 2) R is a spot over a pseudogeometric domain,
[(2) is irreducible in K[Z], and h(R,,) does not split in h(K[Z]) where h is the
canonical epimorphism of K[Z} onto K[Z]/f(Z)K[Z]. Then there exists a
nonnegative integer e and for each j 2 e an R-translate f(Z) of f(Z) such that
fOZ)is of [R), x, v, J, X, w]-stable-type (m; a;, b;, c;) where for all jZ e we
have the following: (1) if w(y)<w(x)) then fU™NZ)=f9Z), a;.,=a,
b,y =ordg, f90), and c;oi=a;+bj+c;—bj 5 () if wly)=w(x;) then
biv1=0; ) if w(y)>w(x;) thenb;,,=b;. In connection with (2) note that if w
is rational then there exist infinitely many distinct nonnegative integers j for
which w(y;) = w(x)).

From Lemma 2.3, Lemma 2.5, and Theorem 4.23 we get the following.

Theorem 5.4, Let L be a p-extension of K. Assume that w is real nondiscrete
and w does not split in L. Also assume that if K is of characteristic zero then K
contains a primitive p'® root of 1 and K contains a (p —1)'® root of p. Let z be an
element in L such that z¢ K and z is integral over R. Let m=[K(z): K] and let
J(Z) be the minimal monic polynomial of z over K. Then there exists a nonnegative
integer e such that f(Z)is [R;, x;, y;, J, wl-permissible for all j= e.

From Theorems 5.3 and 5.4 we get the following.

Theorem 5.5. Let L be a p-extension of K. Assume that w is real nondiscrete
and w does not split in L. Also assume that if K is of characteristic zero then K
contains a primitive p™ root of 1.and K contains a (p — 1)™ root of p. Let z be
an element in L such that z¢ K and z is integral over R. Let m= [K(z): K] and
let f(Z) be the minimal monic polynomial of z over K. Assume that either:
1) R is of characteristic p and f(Z)+ Z™ + f(0), or: 2) R is a spot over a pseudo-
geometric domain. Then there exists a nonnegative integer e and for each j=e
an R-translate f(Z) of f(Z) such that f9(Z)is of [R}, x}, y;, J, X, w]-stable-
type (m; a;, b, c;) where for all j = e we have the following : (1) if w(y;) <w(x;)
then fUrNZ)=fNZ), a;,=a; bj.,=ordg, fP0), and c;. =a;+b;+
+cj=b;y1; (2 if wly)=w(x;) thenb;,;=0;Q3)if w(y)>w(x;) thenb;, ,=b;.
In connection with (2) note that if w is rational then there exist infinitely many
nonnegative integers j for which w(y;) = w(x;).

Remark 5.6. For i=1,2, 3, Sand k=1, 2, ..., 25 let 5.i and 9.k stand
respectively for 5.i and 9.k when X =9, i.e,, equivalently, with all reference to X
omitted. Then 5.2" and 5.3’ would be repetitions of 9.9’ and 9.25' respectively,
and 5.5 would follow from 5.3’ and 5.4. It is easily seen that 5.2 follows from
5.2',and in view of Lemma 3.13, 5.3 and 5.5 follow from 5.3" and 5.5’ respectively.
Thus, if the reader so prefers, from § 9 he may delete all reference to X.
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§ 6. Lemmas on polynomials in one indeterminate

Let k be a field of characteristic p3=0. Let m = p" where n is a nonnegative
integer. Let

A(Z)=A0+AIZ+ e +AeZe

where e is a nonnegative integer, A,, 4,, ..., 4, are elements in k, and A4, 0.
Let b be a nonnegative integer, let 0+ D ek, and let E; be the elements in k
such that

(D+ZPA@)=YE,Z.

Lemma 6.1. Assume that b= 0(m) and A(Z) ¢ k[Z™]. Then there exists j suck
that E;#0, j£0(m),and j<e.

Proof. Let Vbe the set of all integersisuchthat0< i< e, i 0(m), and 4, 0.
Since A(Z) ¢ k[Z™] we get that V is nonempty. Let j be the smallest element
in V. Then A4;+0, j£0(m), and j<e. Since b=0(m) we get that

(D+Zy=D"+ Y D,z with D;ek.
i>0
Since j is the smallest element in V we therefore get that E; = D*4; and hence
E;#0.

Lemma 6.2. Assume that b+ e £ 0(m) and b = 0(m). Then there exists j such
that E; #0, j£0(m), and j< e.

Proof. Now we must have e £ 0(m) and hence A(Z) ¢ k[Z™]. Therefore our
assertion follows from Lemma 6.1.

Lemma 6.3. Assume that b+ e £0(mp), b=0(m), and A(Z)e k[Z™]. Then
e=0(m) and there exists j such that E; +0 and 0 <j<e+m.

Proof. Since b+ ex0(mp) we get that if b=0 then e=+0 and E,=A4,+0.
Hence if b =0 then it suffices to take j =e. Now assume that b+ 0. Then b = mb’
where b’ is a positive integer. Since A(Z) e K[Z™], we get that e=me’ where ¢
is a nonnegative integer and A(Z)= A'(Z™) where A'(Z) is a polynomial of
degree ¢’ in Z with coefficients in k. Now b + e =m(b’ + ¢') and by assumption
b +e=%0(mp). Therefore b’ + ¢ F£0(p). Let d'= D™ Then 0+ D' e K. Let E; be
the elements in k& such that

(D'+2Z) A'(Z)=Y E,Z°.
q

Then by [6: Lemma 27] there exists ¢ such that E; +0and 0 <t < e’ + 1. Clearly
D'+ Z™=(D + Z)y" and hence (D' + Z™)" = (D + Z)’. Since A'(Z™) = A(Z), upon
substituting Z™ for Z in the above displayed equation we get that

SEZ =YE,Z™
i q

and hence E, = E, for all q. Let j=mt. Then E;=E;+0. Since 0<t<e' +1,
we get that 0<jSe+m.

Lemma 6.4. Let v be an integer such that 0 S v <mand let B(ZZ)=(D + Z)' A(Z).
Assume that A(—D)=+0 and B(Z)e k[Z™]. Then v=0.
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Proof. Since B(Z)e k[Z™], we get that B(Z)=B'(Z™) with B(Z)ek[Z].
Then B(—D)=B{((—D)") and clearly (—D)"= —D™ Therefore B(—D)
= B'(—D™). Suppose if possible that v+0. Then B(—D)=0 and hence
B'(—D™=0. Consequently B'(Z)=(D™+ Z) B*(Z) with B*(Z)ek[Z]. Since
B(Z)=B'(Z™) we then get that B(Z)=(D™+ Z™) B¥(Z™), and hence B(Z)
=(D+Z)"A*(Z) where A*(Z)=B*(Z™ek[Z]). This is a contradiction
because by assumption B(Z)=(D + Z)’ A{Z) with 0<v<m and 4(Z)ek[Z]
with A(~D)+0.

Lemma 6.5. Assume that b+ e £0(m) and e <m/p. Then there exists j such
that E; %0, j5 0(m), and j <m/p.

Proof. Since b+ e 0(m) and m=p”", there exists an integer n’ such that
upon letting m' = p" we have that 0<n' <n, b+e=0(m'), and b+ e 0(m'p).
Let ¢ be the greatest integer such that (D + Z) divides A(Z)ink[Z]. Lete’ =e—t
and A'(Z)=A(Z)(D+ Z)"". Then 0<e¢ <e<m/p, A'(Z) is a nonzero poly-
nomial of degree ¢’ in Z with coefficients in k, and A'(—D)+0. Let b’ and v
be the unique integers such that b'=0(m’), 0Sv<m’,and b+t=>b"+v. Then
b +(+e)=b+e=0(m); since b'=0(m’) we must have v+¢e =0(m), ie,
v+ =0(p"); since 0Sv<m =p", ¢ <m/p=p"~, and n' <n, we conclude
that v+e' sp" !, ie, v+e Sm/p. Let B(Z)=(D+ Z)'A'(Z). Then B(Z) is a
nonzero polynomial of degree v+ ¢’ in Z with coefficients in k and

(D+Z)' B2)=Y EZ".

Therefore if B(Z)¢ k[Z™] then by Lemma 6.1 there exists j such that E; %0,
j£0(m), and jSv+¢€'; since v+ ¢ <m/p we get that j<m/p. Now assume
that B(Z)ek[Z™]. Since B(Z)=(D+2)'A'(Z), 0Sv<m/, and A'(—D)=*0,
by Lemma 6.4 we then get that v =0. Consequently A'(Z) € k[Z™]and

(D+2) 4(Z)=Y EZ".

Therefore, since b’ == 0(m’), by Lemma 6.3 we get that ¢’ = 0(m’) and there exists
jsuch that E;+0and 0<j< e +m'. Let d=¢'/m'. Since ¢ =0(m') and m' =p”,
we get that d is an integer and e'=dp". Since ¢ <m/p=p"~! and ¢ =dp",
we get that dp” <p" !, ie, d<p" !~". Since d is an integer and n' <n, we
must then have d+1<p" 17", ie, d+ 1 Z(m/p)/m'. Now & +m' =m'(d+ 1)
and hence ¢' +m £ m/p. Since 0 <j < e +m', we get that 0 <j<m/p and hence
j#E0(m).

Lemma 6.6. Assume that b+ e % 0(m). Then there exists j such that E; +0
and 0<j< e+ m/p.

Proof. Since b+ e 0(m) and m=p”, there exists a nonnegative integer n’
such that upon letting m’ = p" we have that b+ e=0(m'), b+ e % 0(m'p), and
m’ < m/p. Let t be the greatest integer such that (D + Z) divides 4(Z) in k[Z].
Let ¢ =e~tand A(Z)= A(Z)(Z+ D)"". Then 0Z¢ <e, A'(Z)is a nonzero
polynomial of degree ¢’ in Z with coefficients in k, and A'(~D)+0. Let b’
and v be the unique integers such that ¥’ =0(m'), 0Sv<m,and b+ t=b"+0v.
Let B(Z) = (D + Z)" A'(Z). Then B(Z) is a nonzero polynomial of degree v + ¢’
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in Z with coefficients in k and
(D+Z)¥' B(Z)= ZE,.Zi .

Therefore if B(Z) ¢ k[Z™] then by Lemma 6.1 there exists j such that E ;i *0,
JjEO(m), and j<v+e'; since v<m <m/p and ¢ <e we get that j< e+ m/p;
since j & 0(m) we get that 0 <j. Now assume that B(Z)e k[Z™]. Since B(Z)
=(D+2ZyA'(Z), 0sv<m, and A'(—D)+0, by Lemma 6.4 we then get that
v=0. Consequently A’(Z)ek[Z™] and

(D+Z) A(Z)=YEZ.

Therefore, since b’ =0(m’), by Lemma 6.3 there exists j such that E; #0 and
0<jge +m. Since m £m/p and ¢ <e we get that 0 <j< e+ m/p.

Lemma 6.7. Assume that b+ e%0(m) and e+ m/p <m. Then there exists j
such that E; %0, j%£0(m), and j < e+ m/p.

Proof. By Lemma 6.6 there exists j such that E;#0 and 0<j<e+m/p.
Since ¢ + m/p <m we conclude that j = 0(m).

§ 7. Effect of a quadratic transformation on an element in a two dimensional
regular local domain

Let R be a two dimensional regular local domain with maximal ideal M
such that R/M is an algebraically closed field of characteristic p+0. Let (x, y}
be a basis of M and let J be a coefficient set for R. Let w be a valuation of the
quotient field K of R such that w dominates R and w is residually algebraic
over R. Let (R’, x', y') be the canonical first quadratic transform of (R, x, y, J)
along w.

Let FeR. Let ZF(, j)x'y’ be the expansion of F in J[[x, y]]. Let
ZF'(i,j)x""y'/ be the expansion of F in J[[x, y']]

Definition 7.1, F is said to be of [R, x, y, J]-pretype (m; a, b, ¢) if: m=p"
where n is a positive integer, and a, b, ¢ are nonnegative integers such that
Fex®"R, F(a, b+¢c)#+0, and (a, b+c)£0(@m); note that then ord, zxF=aq,
ord,;g Fzb,and a+b<ordg F<a+b+ec.

F is said to be of [R, x, y, J]-pretype (m; a, b, ¢) if F is of [R, x, y, J]-pretype
(m; a, b, ¢)and F(i, j)=0 whenever (i, ) =0(m) and i +j < ordi F.

Fissaid to be of [R, x, y, J]-pretype (m; a, b, ¢}’ if Fis of [R, x, y, J]-pretype
(m; a, b, ¢c) and F(i, j)=0 whenever (i, ) =0(m), i< a, and j<b. Note that if F
is of [R, x, y, J]-pretype (m;a, b, c) and (a, b)==0(m) then F is of [R, x, y, J]-
pretype (m; a, b, ¢)’. Also note that if F is of [R, x, y, J]-pretype (m; a, b, ¢) then
F is of [R, x, y, J]-pretype (m; a, b, ¢)".

F is said to be of [R, x, y, J)-pretype (m; a, b, c)* if F is of [R, x, y, J]-pretype
(m; a,b,c) and F(i,j)=0 whenever (i, /)=0(m) and i <a. Note that if F is of
[R, x, y, J}-pretype (m; a,b,c) and a%0(m) then F is of [R, x, y, J]-pretype
(m; a, b, c)*. Also note that if F is of [R, x, y, J]-pretype (m; a, b, ¢)* then F is
of [R, x, y, J]-pretype (m; a, b, ¢}’
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If m=p" where n is a positive integer, then for any nonnegative integers b
and ¢ we define

0 if b=0{m) and c<m/p

0 if b 0{(m) and c<m/p
if b=0(m) and c>m/p

c+mfp ifbf0(m)and czm/p.

Note that then [m; b, c] =0 if and only if either 1) b=0(m) and cSm/p, or
2) b#£0(m) and c <m/p. Also note that [m; b, ¢] <m if and only if either 1')
b=0(m) and c <m, or 2") b£0{m) and ¢ <m— m/p.

For any nonnegative integers a, b, ¢ for which ord g F —=a and ord z F 2 b
we clearly have that: ordg, F/(x"y’)=c if and only if F(a,b+c)+0 and
F(a,j)=0 whenever j<b+ c¢. Therefore the following three conditions are
equivalent: (1) F is of [R, x, y]-stable-pretype (m; a, b, ¢); (2) Fisof [R, x, y, J}-
pretype (m; a, b, ¢), [m; b, c] =0, and ordg,, F/(x*y*)=c; (3) Fis of [R, x, y, J}-
pretype (m; a, b, ¢), [m; b, c}=0, and F(q, j)=0 whenever j<b+c.

Lemma?7.2. Let m= p" where n is a positive integer. Assume that w(y) > w(x),
0+ F € x*y’*R where a and b are nonnegative integers, and F(i,j)=0 whenever
(L, /)=0(m) and i+ j<S ordy F. Let a =ordg F. Let q be any nonnegative integer
such that F(a' —q,q) %0 (q exists because a'=ordgF). Let ¢ =q—b. Then
O0scgad—a—band Fisof [R, X, y, J}-pretype (m; ', b, c'y*.

Proof. Now ord, g =ordg, ord,z=ord,g, ordg F=a’, and ord,zF 2 b.
Therefore Fex'®y®R’. Since F(@' —q, q)+0 and Fex®y*R, we get that
b<q and a<d —gq; therefore 0<c'<a'—a—b. Since F(a'—q, q)+0 and
F(i, j)=0 whenever (i, }=0(m) and i +j £ o/, we get that (@' — ¢, ) = 0(m) and
hence (d, b+ ¢') £ 0(m). Now

F— Y F(j)x'yeM 1 cx e+ R

[m;b,c]=

i+j=a
and . o
Y FGHx'y= 3% FGj)x*y’.
i+j=a i+j=0"
Therefore
F = Z F@, j) x“y modx'* 1R’
i+j=a
and hence
o on JF@—jj) f0sjsa
F.pn= {0 if j>a'.

In particular F'(d’, b+ ¢') = F{d’ — q, g) + 0. Since F(i, j) = 0 whenever (i, /) = 0(m)
and i+j<a, we get that F'(d,/)=F(d —j,/)=0 whenever 0<j<a and
(@ —j, j)=0(p). Since F € x'* R’ we conclude that F'(i, j) = 0 whenever (i, j) = O(m)
and i S d'. Therefore F is of [R, x', ¥/, J]-pretype (m; d, b, ¢')*.

Lemma 7.3. Let m = p” where n is a positive integer. Assume that w(y) = w(x),
0+ F e x®y*R where a and b are nonnegative integers, and F(i, j)=0 whenever
(,)=0(m) and i+j<S ordg F. Let @ =ordy F. Then we have the following.
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(1) If either a’ £ 0(m)or b=0(m)then Fisof [R', x', ¥, J]-pretype(m; a0, c")
where ¢’ £a’' —a—b.

2 If a=0(m), b£0(m), and a’ —a—b<m/p then F is of [R, X, y, J]-
pretype {m; d', 0, ¢') where ¢’ <m/p.

(3) If d=0(m),b£0(m),anda’ —a—b<m—m/pthen Fisof [R, x',y,J]-
pretype (m; @', 0, ¢') where ¢’ <a' —a—b+m/p.

Proof. Now ord,. g = ordy and hence
1) Fex*R'.
Let g be the greatest nonnegative integer such that F(a'—gq, q)30, and let
e=q—b. Since Fex®y’R and F(i,j)=0 whenever (i, j)=0(m) and i+j< d,
we then get that a<d' —¢, b< g, and (a’' - q, q) £ 0(m). Therefore

2) 0gesd—a-b
and
3 {a,b+e)£0(m).

Since w(y) = w(x) we get that x=x" and y=x'(t+ y') with 0%teJ. Let G, be
the elements in R defined by the equation

e bte
4) (t+ZP Y Fl@-b—jb+j)t+2Zy=Y G;Z/
=0 =0

in R[Z]. Let H; be the unique element in J such that G;— H;e M. Then
G;—Hje x'R" and hence

Y, FGpx'y=x“(t+y) Y Fla—b—jb+j)t+yY

it+j=a ji=0
bt+e .
=Y H;x'*y’modx**'R’.
i=o
Also
F— Z FGi,)x'yeMticxstR
i+j=a
and hence
b+e . ,
F=Y Hx“y/modx'“*'R’.
j=0

Since the elements H; are in J we therefore get that
5) Fa,))=H; for 0<j<b+e.

Let k=R/M and let h be the canonical epimorphism of R onto k. Upon
applying h to 4) we get that
b+e

(h(0) + Z)”j}joh(F(a’ ~b=ib+)) (k) +2) = 3, h(G)Z’

in k[Z]. Let D=h(t) and E; =h(G)), and let A; be the elements in k defined
by the equation

o

WF@—b—j,b+j)(h()+2Zy = Zc: A;Z7
i=0 j=0
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in k[Z]. Then

e b+e
6) (D+2PY 4,2 =Y E,Z' ink[Z].
i=0 j=0

Since 0+%teJ and D=h(t) we get that D=0. Since A,=h(F(a’' —¢, ¢)) and
0+ F(a'—q, q)eJ we get that A,+0. Thus

7 D=0 and A4,+0.

Now h(H;)=h(G)=E; and H;eJ. Therefore H;=0<E; = 0. Therefore by 5)
we get the following:

8) For 0<jsb+e: F(a,j)=0«E;=0.

Since A4, + 0 there exists an integer u such that 0Su=<e, 4,%+0, and 4;=0
whenever 0 <j<u; since D %0, by 6) we get that E, # 0 and hence by 8) we get
that F'(a’, u)#+0; since u<e, by 2) we get that u<a’ —a—b. If a’ & 0(m) then
upon taking ¢’ = u we thus conclude that F is of [R', x, ¥, J]-pretype (m; @', 0, ¢')
where ¢’ £a'—a—b. So from now on assume that a'=0(m). Then by 3) we
get that

9) b+e£0(m).

If b = 0(m) then, in view of 6), 7), 8), 9), by Lemma 6.2 there exists ¢’ such that
F'(a,c)$0, ¢ £0(m), and ¢’ L e; it follows that F is of [R’, x/, ¥/, J]-pretype
(m;d,0,c¢),andby2)wegetthatc' <d’'—a—b. fb:0(m)anda’ —a—b<m/p
then e < m/p by 2), and hence, in view of 6), 7), 8), 9), by Lemma 6.5 there exists
¢’ such that F'{d, ¢} +0, ¢’ £0(m), and ¢’ <m/p; it follows that F is of [R, x/,
¥, J]-pretype (m; a,0,¢). fb£0(m)anda —a—b<m—m/pthene+m/p<m
by 2), and hence, in view of 6), 7), 8), 9), by Lemma 6.7 there exists ¢’ such that
Fd,cy£0, ¢ £0(m), and ¢’ <e+m/p; it follows that F is of [R, X, ¥, J]-
pretype {(m; da’, O, ¢"), and by 2) we get that ¢'<a'—a—b+ m/p.

Lemma 7.4, Let m= p" where n is a positive integer. Assume that w(y) = w(x),
F =0, and F(i,j)=0 whenever (i,/}=0{m) and i+j<ordgF. Let a =ordgF.
Then F is of [R', x', ¥, J]-pretype (m; a', 0, ¢') where ¢’ £ d'.

Proof. If w(y) > w(x) then our assertion follows from Lemma 7.2 by taking
a=b=0. If w(y)=w(x) then our assertion follows from Lemma 7.3 (1) by
taking a=b=0.

Lemma 7.5, Assume that w(y) = w(x), and F is of [R, x, y, J]-pretype (m; a,
b, ¢} where b=0(m). Let a =ordgzF. Let ¥'=b if w(y)>w(x), and b'=0 if
w(y)=w(x). Then b’ =0(m), and F is of [R', x', y', J}-pretype (m; d', b, c') where
¢ <Ze.

Proof. Clearly b’ =0(m), a —a—b<c, 0% Fex®® and F(i,j)=0 when-
ever (i, ) =0(m) and i+j < ordgF. If w(y)> w(x) then by Lemma 7.2 we get
that F is of [R), X, y', J]-pretype (m; &', b/, ¢’) where ¢’ £a’ —a— b and hence
¢ Zc If w(y)=w(x) then by Lemma 7.3 (1) we get that F is of [R/, x', ¥, J]-
pretype (m; @', b, ¢') where ¢’ £a’'—a—>b and hence ¢’ L c.

Lemma 7.6. Assume that w(y}=w{x), and F is of [R, x, y, J]-pretype
(m; a, b, ¢} where [m; b, c] <m. Let @’ =ordgyF. Let b’ =b if w(y)>w(x), and
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b =0if wy)=w(x). Then F is of [R, X, ¥, J}-pretype (m; a, b', ') where
[m; ¥, 1< [m; b, c].

Proof. Clearly a —a-bsc, 0+Fex®y’R, and F(i,j)=0 whenever
(i, )=0(m) and i +j < ordgx F. If w(y) > w(x) then by Lemma 7.2 we get that F
is of [R), X', ¥, J]-pretype {m; a’, b', ¢') where ¢’ £d' —a—b; since b’ =b and
a —a—b<Zc we deduce that [m; ¥, ¢'] £[m; b, c]. If w(y)=w(x) and either
a' £0{m) or b=0(m) then by Lemma 7.3 (1) we get that F is of [R/, x', ¥, J}-
pretype (m; ', b, ¢') where ¢’ Sa' —a—b; since b'=0and a' —a—b=<c we
deduce that [m; b, '] <[m; b, c]. If w(y)=w(x), a'=0(m), b'£0(m), and
¢ <m/p then @’ — a—b <m/p and hence by Lemma 7.3 (2) we get that F is of
[R, x', ¥, J]-pretype (m; d, b, ¢') where ¢’ < m/p; since b’ =0 we deduce that
[m; b, ¢}=0and hence [m; b, ¢'] £[m; b, ¢]. Now it only remains to consider
the case when w(y) = w(x), ' = 0(m), b £ 0(m), and ¢’ =2 m/p; since [m; b, c] <m
we must then have [m; b, ¢c]=c+m/p<m and hence ¢ <m—m/p; since
a’'—a— b = ¢ we conclude that @’ — a — b <m — m/p; therefore by Lemma 7.3 (3)
we get that F is of [R', X', y/, J]-pretype (m; d, b, cywhere ¢' £a' —a— b+ m/p;
since ¥ =0and @’ —a— b £ c wededuce that [m; ¥, ¢'] £ ¢’ £ ¢+ m/p and hence
[m; b, c’1<[m; b, c].

Lemma 7.7. Let m = p" where n is a positive integer. Assume that w(y) = w(x),
0+ F € x°y’R where a and b are nonnegative integers, and F(i, j)= 0 whenever
(,/)=0(m)and i +j < ordgF. Let &' = ordg F. Assume that ' —a— b <m/p. Let
b'=bif w(y)>w(x),and b'=01if w(y)=w(x). ThenFisof R, x', ¥y, J]-pretype
{m;d, b, c)where [m; b, '] =0.

Proof. If w(y) > w(x) then by Lemma 7.2 we get that F is of [R', x', ¥, J}-
pretype (m; o', b, ¢’) where ¢'<a’ —a—b; since ' —a—b<m/p we deduce
that [m; b, ¢']=0. If w(y)=w(x) and either a'£0(m) or b=0(m) then by
Lemma 7.3 (1) we get that F is of [R), X/, y', J]-pretype (m; a, b’, ¢') where
¢<d—a—b;since ad—a—b<m/p we deduce that [m; b, ¢]=0. If
w(y) = w(x), a’ = 0(m), and b & O(m), then by Lemma 7.3 (2) we get that F is
of [R, x', ¥, J]-pretype (m; 4, b, ¢') where ¢’ < m/p; since b’ =0 we deduce
that [m; b, '] =0.

Lemma 7.8. Assume that w(y)=w(x), and F is of [R, y, x, J]-pretype
(m; b, a, ¢) where c<m/p. Let @ =ordgF. Let b =b if w(y)>w(x), and b’ =0
if w(y)=w(x). ThenFisof [R,x,y,J]-pretype(m;a’,b’,cywhere[m;b’,c']=0.

Proof. Clearly 0+ Fe x*y’R, and F(i,j)=0 whenever (i, j)=0(m) and
i+j<ordgF. Also a’—a—b=<c and hence a' —a—b<m/p. Therefore by

Lemma 7.7 we get that F is of [R), x, y, J]-pretype (m; a', b, ¢’} where
[m; b, c'}1=0.

Lemma 7.9. Assume that w(y) 2 w(x), and F is of [R, y, x, J]-pretype (m; b,
a, ¢) where csm/p and a+ b+ m/pE0(m). Let a' =ordgF. Let b =b if w(y)>
>w(x), and b’ =0 if w(y)=w(x). ThenF is of [R, x', y', J]-pretype (m; da’, b’, ¢’)
where [m; b, ¢'] =0.

Proof. Clearly a—a—~b<c, 0+Fex“y’R, and F(,j)=0 whenever
(i, )=0(m)and i +j < ordx F. f d —a— b < m/p then by Lemma 7.7 we get that
Fis of [R, x', y', J]-pretype (m; d, b', ¢’} where [m; b, ¢'] =0. So now assume
9 Math. Ann. 170
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that @' —a—bz=m/p. Since ' —a—b<Lc<m/p we then must have o' ~a—b
=m/p=c. Therefore F(a'—b, b)y=F(a+c, b)+0 and a'=a+ b+ cz0(m).
Since F(a'—gq, q)+0 where g=>b, by Lemma 7.2 we get that if w(y)> w(x)
then Fisof [R', x, y/, J]-pretype (m; d, V', ¢') where ¢’ = 0 and hence [m;,¢']=0.
Since a’'£0(m), by Lemma 7.3 (1) we get that if w(y)=w(x) then F is of
[R, x', y', J]-pretype (m; a, b, c)where ¢’ <a' —a—b;sinceb’=0and a' — a -
—b=m/p we again have that[m; b, ¢']=0.

Lemma 7.10. Let m = p” where n is a positive integer. Assume that w(y) < w(x)},
04 F e y*x*R where b and a are nonnegative integers, and F(i, j)= 0 whenever
(i,)=0m)andi+j<ordgF. Let b’ =ordg F. Then F is of [R’, y', X', J]-pretype
(m; ¥, a c')* where ¢ b —~b—a.

Proof. Follows from Lemma 7.2 by interchanging x and y.

Lemma 7.11. Assume that w(y) <w(x), and F is of [R, y, x, J]-pretype
(m; b, a, ¢). Let ¥ =o0rdp F. Then F is of [R, y', x, J]-pretype (m; V', a, c')*
where ¢’ Sc.

Proof. Now 0+ F € y*x°R, and F(i, j)=0 whenever (i, /)=0(m) and i+ <
Sordg F. Therefore by Lemma 7.10 we get that F is of [R/, y/, x', J]-pretype
(m; b, a, ¢')* where ¢’ <V —b—a. Clearly b’ — b~ a< ¢ and hence ¢’ Sc.

Lemma 7.12. Assume that w(y)<w(x), and F is of [R, x, y, J]-pretype
(m;a,b,c). Let b =ordg F and ¢’ =a+ b+ c—b. Then we have the following.

(1) Fisof [R, X, y, J]-pretype (m; a, b', ¢').

) If ¥—a—bZm/p then ¢ Sc—~m/p and [m; b, ¢'1<[m; b, c].
B)YIf bV—a—b>m/p then [m; b, '] <[m; b, c].

@) If b’ ~a—b=m/p and b 0(m) then [m; ¥, c'] <[m; b. c].
S)If ¥—a—b=m/p, [m; b, c]<m, and p=2 then [m; V', '} =0.
(6) If ordy, F/(x"y*)=c then ordg. . F/(x"*y*) ="

Proof. Now ord,. g =ord,g and ord.zF=a; hence ord,.x F=a Also
ord, . = ordyg and hence ord, . F = b". Therefore F € x'*y'* R'. Since (a, b+c) %
F0m)and b’ +c' =a+b+c, wegetthat(a, b’ + ¢')£0(m). Clearly b’ <a+b+c¢
and hence ¢’ 2 0. Let e be any nonnegative integer. Then

F— Z F{i,j)xiy)‘EMe+1 Cyre-l-lR:

itj<e
and
Z Fli,j)x'y = Y FGjxiytd,
i+jse i+j<e
Therefore
F= Y F@ijx'y"* modyc*'R
i+jse
and hence

F'(i,i+j))=F(,j) whenever i20,j=0,andi+j<e.
Since ¢ was an arbitrary nonnegative integer, we get that
1) F(i+j)=F(@j) whenever iZz0andj=0.



Nonsplitting of Valuations 121

In particular F'(a, a+ b +c)= F(a, b+¢)#0. Since b’ + ¢'=a+ b+ ¢ we thus
get that F'(a, b’ +¢)+0. Therefore F is of [R, x', ¥, J]-pretype (m; a, V', ¢').
This proves (1). (2), (3), (4) and (5) are easily checked by using the fact that
0<c=c—(b'—a—Db). Let ¢, =ordg, F/(x"y’) and c}=ordg . FA(x*y");
then F(a, b+c,)#*0, F(a, j)=0 whenever j<b+c¢,, F'(a, ¥ +c})+0, and
F'(a, j)=0 whenever j < b’ + ¢} ; therefore by 1) we get that b'+cy=a+b+c,
and hence c¢;=a+b+cy—b'; consequently, if ordg,F/(x*y*)=c then
ordg. F/(x"*y'*)=¢'; this proves (6).

Lemma 7.13. Assume that w(y)<w(x), and F is of [R, x, y, J}-pretype
(m;a, b, c). Let d=ordgx F. Let b’ be the greatest integer such that b’ = 0(m) and
b' < d. Let a’ be the greatest integer such that a =0(m)anda' <a. Letc'=a+b+
+c—b. Then F is of [R, x', ¥, J}-pretype (m; a, b', ¢'). Moreover, if b=0(m)
and d—a —bzm then ¢’ <c and [m; b, '] < max(0,[m; b, c] — 1).

Proof. By Lemma 7.12 (1) we get that F is of [R’, x/, y/, J]-pretype (m; a, d,
a+b+c—dyandhence Fex*y' R, (a,a+ b+ c)%0(m),and F'(a,a+b+c)*0.
Clearly 0<b =d, ¢’'=2a+b+c—d=0, and b'+ ' =a+ b +c. Therefore F is
of [R, x, ¥, J]-pretype(m;a, b, ¢'). Now assume thatb=0(mjandd —a' -~ b= m.
Then(b' —a' —b)+(d—b)=d~ad —b=m,(b'—a' —b)=0(m),and 0 < (d - b")<
<m;consequently wemusthaveb’ —a’' —b=m.Sinceb’' —a—b=('"—a' ~ b) —
—(a—d'), we therefore get that ¥ —a—b=2m—(a—4); since a—a’ <m we
then conclude that ' —a—b >0, and hence a+ b + ¢ — b’ < c. Therefore ¢’ <c.
Since b'=0(m), b=0(m), and ¢'<c, we finally deduce that [m; b, ¢'] <
< max{0,[m; b, c] — 1).

Lemma 7.14. Assume that w(y)<w(x), and F is of [R, x, y, J]-pretype
{m; a, b, ¢)” where b=0(m). Let d=ordgyF. Let a' be the greatest integer such
that @’ =0(m) and a' £ a. Then we have the following.

(1) If d—a—bzmthen Fis of [R', x', ¥, J]-pretype (m; a, b', ¢') where b’
is the greatest integer such that b =0(m) and b’ <d, and where ¢ =a+b+c—
—-b<ec.

2 If d—a —~b<mthen F is of [R, y, x', J]-pretype (m; b, a', ¢')* where
b'=d and ¢’ <m.

Proof. (1) follows from Lemma 7.13. To prove (2) assume thatd — ¢’ —b<m
and let b’ =d. Then 0+ Fe y*x° R, and F(i, j)=0 whenever (i, j)=0(m) and
i+j < ordg F. Therefore by Lemma 7.10 we get that F is of [R’, ', X', J]-pretype
(m; b, d, c'y* where ¢ £b'—b—a. Now b'—b—a =d—a —b<mand hence
cd<m.

Lemma 7.15. Assume that w(y)<w(x), and F is of [R, x, y, J]-pretype
(m; a, b, ¢). Let b' = ordg F. Then we have the following.

) If ¥—a—bzm/pthen F is of [R, X, ¥, J}-pretype (m; a, b’, c') where
cSc—mfpand [m; ¥, 1< [m; b, c].

) If ¥ —a—b<m/pthen Fisof [R, y, x, J}-pretype (m; b, a, c')* where
¢’ <mfp.

Proof. (1) follows from parts (1) and (2) of Lemma 7.12. To prove (2) assume
that b’ —a— b <m/p. Now 0+ F e y*x*R, and F(i, j) =0 whenever (i, j) = 0(m)
and i+ j S ordg F. Therefore by Lemma 7.10 we get that F is of [R, ¥, X/, J]-

9
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pretype (m; b', a, ¢')* where ¢’ <b'— b a. Since b’ — a— b <m/p, we conclude
that ¢’ <m/p.

Lemma 7.16. Assume that w(y)<w(x), and F is of [R, x, y, J]-pretype
(m; a, b, cJ where {m; b, c] <m. Let d=ordgF. Let a' be the greatest integer
such that a =0(m) and a’ < a. Then we have the following.

(1) If d—a—b<m/p then F is of [R, y', x, J}-pretype (m; ¥, a, ¢')* where
b'=d and ¢ <m/p.

(2) If either 1) d—a~b>m/p, or 2) d—a—b=m/p and b£0(m), or 3)
d—a—~b=mjpandp=2,0r4)b=0(m)and d—a' —b=m, then F is of [R’, x/,
v, Jl-pretype (m; a, V', ¢') where b’ <d and [m; b, ¢'1 < max(0,[m; b, c] —1).

Q) If d—a—b=m/p, b=0(m), p+2, and d—a —b<m, then F is of
[R,y, x', J]-pretype (m; b, a, c')* where b’ =d, ¢’ <m/p, and a+ b + m/p £ 0(m).

Proof. (1) follows from Lemma 7.15 (2). (2) follows from Lemma 7.13 and
parts(1),(3), (4),and (5)of Lemma 7.12. To prove (3) assume thatd — a — b =m/p,
b=0(m),p+2,andd—a —b<m. Letb' =d. Now 0=+ F e y’x°R, and F(i,j)=0
whenever (i, ))=0(m) and i+ j < ordgz F. Therefore by Lemma 7.10 we get that
Fisof [R, y, x, J]-pretype (m; V', a, ¢')* where ¢’ b —b—a. Since b’ —b—a
=d—a—b=mfp we get that ¢’ <m/p. Now a—da' +(d—a—b)=d—a —b
and by assumptiond —~a—b=m/pandd — a' —b<m;thereforea—a' +m/p<m;
also clearly a—a' =0 and hence a—a +m/p>0. Thus O<a—a +m/p<m
and by assumption p == 2; consequently 2(a — a’' + m/p) £ 0(m). Since a' = 0(m),
we thus get that 2(a -+ m/p) = 0(m). By assumption b'=d and d -a b= m/p,
and hence a+ b +m/p=2(a+ m/p)+b; again by assumption b= 0(m) and
hence a+ b + m/p=2(a+ m/p) modm. Therefore a+ b’ + m/p = 0(m).

Lemma 7.17. Assume that w(y)=w(x), and F is of [R, y, x, J]-pretype
(m; b, a,cy wherea=0(m)and c <m. Let d =ordy F. Then Fisof [R, x, ', J]-
pretype (m; a', 0, ¢') where ¢’ <m.

Proof. Now 0%Fex®y’R, and F(i,j)=0 whenever (i,j)=0(m) and
i+jSordgF. Also ' —a—b=c and hence a' —a—b<m. If either a' % 0(m)
or b=0(m) then by Lemma 7.3 (1) we get that F is of {R/, X, ¥, J]-pretype
(m;d, 0, ¢’y where ¢’ < @' — a— b and hence ¢’ <m. So now assume that a’' =0(m)
and b %= 0(m). Let b’ be the greatest integer such that b’ =0(m) and b’ £ b. Then
0<b~b <mand F € x*y” R. Since F € x"y* R and b’ = 0(m), by Lemma 7.3 (1)
we get that F is of [R), x', ¥, J]-pretype (m; @', 0, ¢’) where ¢’ <a'—a—b'. In
particular then (d', ¢') % 0(m); since o’ = 0(m) we must therefore have ¢’ % 0(m).
NowO0<b—-b<mO=sd —~a—-b<mand(b—-b)+{@d—a~b)=d —a—b =
=0(m); consequently we must have a'—a—b' =m. Since ¢'<ad ~a—b we
therefore get that ¢’ < m. However ¢’ # 0(m) and hence ¢’ <m.

Lemma 7.18. Assume that w(y)>w(x), and F is of [R, y, x, J]-pretype
(m; b, a, ¢y where a=0(m) and c <m. Let d=ord,F. Let b’ be the greatest
integer such that b’ =0(m) and b’ < b. Then we have the following.

WD) Ifd—b—azmthenFisof [R,y, x, J]-pretype (m; b, &', ¢')* where a’
is the greatest integer such that & =0(m) and o’ <d, and where ¢’ =b+a+c—
—d <c.
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2 If d—b —~a<mthen F is of [R, X', y, J]-pretype (m; d’, b', ') where
a=dand ¢ <m.

Proof. To prove (1) assume that d — b’ —a=m and let 4’ be the greatest
integer such that a' =0(m) and ¢’ < d. Upon interchanging x and y, by Lemma
7.13 we get that F is of [R', y', X, J]-pretype (m; b, @/, ¢') where ¢'=b+a+c—~
—a' <c Clearlyd<a+b+c and hence d — b~ a < ¢; since ¢ <m we thus get
thatd—b—a<m. Sinced—-b—a<mand d— b —a=m we must have b=+b".
Since b’ is the greatest integer such that b'=0(m) and b’ £ b, we conclude that
b #% 0(m). Since b= 0(m) and F is of [R, ¥, x', J)-pretype (m; b, a’, ¢}, it follows
that F is of [R', ¥, x/, J]-pretype (m; b, a, c')*.

To prove (2) assume that d — b’ —a<m and let @ =d. Now 0+ Fe x*y* R,
and F(i, j) = 0 whenever (i, j) = 0(m) and i + j < ordg F. Therefore by Lemma 7.2
we get that Fis of [R', X/, ¥, J]-pretype (m; a, V', ¢') where ¢ <d — b’ - a. Since
d—b' —a<m we get that ¢’ <m.

Lemma 7.19. Assume that w(y) < w(x), and F is of [R, x,y]-stable-pretype
(m;a b,c). Letb) =ordg Fand ¢ =a+b+c—b. Then F is of [R/, X', y']-stable-
pretype (m; a, b, ¢).

Proof. By parts (1) and (6) of Lemma 7.12 we get that F is of (R, X', ', J]-
pretype (m; a, b, ¢') and ordg.,  F/(x'*y'*}=c. Now b'2a+b and ¢'=c—
—(b"—a—b); therefore if b'+=a+b then ¢'<c, and if b =a+b then ¢'=c.
Since {m; b, ¢] = 0 we get that ¢ < m/p. Therefore if b’ + a + b then ¢’ <m/p and
hence [m; b, ¢']=0. If b=a+b then F/(x*y") is a unit in R and hence
¢ = ordg,, F/(x"y")=0. Therefore if b’ =a + b then ¢’ =0 and hence [m; b, ¢]
=0, Therefore in both cases {m; b, ¢'} =0 and hence F is of [R, x, y]-stable-
pretype (m; a, b', ).

§ 8. Translates

Let R be a two dimensional regular local domain with maximal ideal M
such that R/M is an algebraically closed field of characteristic p4:0. Let (x, y)
be a basis of M and let J be a coefficient set for R.

Definition 8.1. Let f(Z) e K[Z] where K is the quotient field of R.

f(Z)issaid to be of [R, x, y, J]-type (m; a, b, ¢} if m = p" where n is a positive
integer and

m—1
f@)=2"+F+ Y f, 21
g=1
where F, fy, ..., f,,—; are elements in R such that F is of [R, x, y, J]-pretype
(m; a, b, ¢) and ord, g f, 2 bg/m for 0 < g<m.
f(Z)issaid to be of [R, x, y, J]-type (m; a, b, ¢} if f(Z)is of [R, x, y, J]-type
(m; a, b, c) and f(0) is of [R, x, y, J]-pretype (m; a, b, c).
f(Z)is said to be of [R, x, y, J]-type (m; a, b, ¢)" if f(Z)is of [R, x, y, J]-type
(m; a, b, ) and f(0) is of [R, x, y, J]-pretype (m; a, b, ¢)".
f(Z)issaid to be of [R, x, y, J]-type (m; a, b, c)* if f(Z)is of [R, x, y, J]-type
(m; a, b, c) and f(0) is of [R, x, y, J]-pretype (m; a, b, c)*.
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f(Z) is said to be of [R, x, y]-stable-type (m; a, b, ¢) if m=p" where n is a
positive integer and

m—1

f@)y=2Z"+F+ Y f,Zn*
g=1

where F, f,, ..., fm— are elements in R such that F is of [R, x, y]-stable-pretype
(m;a b, c)and ord, g f, 2 bg/m for 0<g<m.

Note that the following three conditions are equivalent: (1) f(Z)is of [R, x, ¥]-
stable-type (m; a, b, ¢); (2) f(Z) is of [R, x, y, J]-type (m; a, b, ¢}, [m; b, c] =0,
and ordyg,, f(0)/(x*y")=c; (3) f(Z)isof [R,x, y,J]-type (m; a, b, c), [m; b, c] =0,
and F(q4, j)=0 whenever j < b+ c where ZF(j, j)x')’ is the expansion of f(0)
in J[[x,y1]-

Definition 8.2. Given ze R and a positive integer m, we say that J is a
(z, m)-faithful coefficient set for R provided the following condition is satisfied :
if  and s are any elements in J such that ¥"+se M then r"+se zR. Given
ze R, we say that J is a z-faithful coefficient set for R provided J is a (z, m)-
faithful coefficient set for R for every positive integer m. Note that if (R, X', )
is a canonical first quadratic transform of (R, x, y, J) and y/x € R’ (resp: y/x ¢ R')
then MR = x'R’ (resp: MR’ =y'R’) and hence J is an x'-faithful (resp: a y'-
faithful) coefficient set for R'. Also note that if R’ is a local domain such that R’
dominates R and R’ is residually algebraic over R, z is an element in R and m
is a positive integer such that J is a (z, m)-faithful coefficient set for R, and 2z’
is an element in R’ such that zRCZ'R’, then J is a (z/, m)-faithful coefficient
set for R'.

Lemma 8.3. Let m = p" where n is a positive integer, and let

m—1

f@)=z"+F+ Y f,Z"*
q=1

where F, fy, ..., fm_1 are elements in R. Let e be a nonnegative integer. Let
XF(i, j) x'y’ be the expansion of FinJ[[x, y]]. Since R/M is algebraically closed,
for any nonnegative integers u and v there exists a unique element r(u, v) in J
such that

r(u, 0)" + Flum,vm}e M .
Let
r= 3 ruv)x"y
utrv=e
and let

f’(Z)=f(Z+r)==Z"'+F'+milfq’z"'-e
q=1

with F, f{, ..., fu_1in R. Let £F'(i, j) x'y’ be the expansion of F'in J[[x, y]].
Then we have the following.
(1) Assume that ordgF Zem and f(Z) is of preramified-type relative to
ordg. Then ordg F' Zem, and F'(i, =0 whenever (i, }=0(m) and i+j=em.
(2) Assume that f(Z)isof [R, x, y, J}-type(m;a, b, c), f(Z)is of preramified-
type relative to ord, , and J is an (x, m)-faithful coefficient set for R. Then f'(Z)
isof [R,x,y,J]-type(m;a, b, c),and f'(Z)is of preramified-type relative to ord,g.
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Proof of (1). Now
m—1
1 F=r"+F+ ) form 1.
g=1

Since ordg F 2 em and F is of preramified-type relative to ordg, we get that
ordg f,>eq for 0 <q<m; also by the definition of r we get that ordgr=e.
Therefore by 1) we get that ordg F' = em and
2) F=r+ Y F(@j)x'y modMm*!,
i+j=em
Upon applying the multinomial theorem to the defining expression of r we
get that -
=Y rlwo)"x*"y""+p Y B(j)x'y
utv=e i+j=em
with B(i, jj€ R. Now R/M is of characteristic p and hence p € M. Therefore by
the above expression for " we get that
3) =Y r(u, 0)"x*"y"™ mod Mo,
utv=e
Since r(u, v)" + F(um, vm) e M, by 2) and 3) we get that
F y F(i,j) 'y’ mod Me™* 1,
i+j=em,(i,jyF0(m)
Therefore F'(i, j)=0 whenever (i, j}=0(m) and i +j=em.
Proof of (2). Now

m-1
D F=rm+F+ 3 fy
and . q=1
2) fi=A@@ 0"+ Y A@g k) f,r"™* for 0<q<m
k=1

where A(g, k) are the elements in R defined by the equations
Z+1) k=% Algk)z"?, O0Zk<m,
g=k

in R{Z]. Since m=p” we get that

3 A{g,0)epR  for O<g<m.

Since f(Z) is of [R, x, y, JI-type (m; a, b, c) we get 4), 5), 6):

4) ord,g FZzb and ord,,f,2bg/m for 0<q<m.
5) ord g F=a.

6) (@b+c)£0m and F(a,b+c)+0.
Since f(Z) is of preramified-type relative to ord,z we get that
7 rexR.

Since f(Z) is of preramified-type relative to ord, , by 5) we get 8) and 9):
8) ord,g f,2ag/m for O<qg<m.

9) If a=0(m) then ord, f,>ag/m for 0<g<m.



126 $. S. ABHYANKAR:

By 4) we get that F(i, j)=0 whenever j<b, and hence by the definitions of
r{u, v) we get that r(u, v) =0 whenever v < b/m. Therefore by the definition of r
we get that

10) ord,gr=b.

Since r(u, v)" + F(um,vm)e M and since J is an (x, m)-faithful coefficient set
for R we get that

11) r{u, v)" + F(um,vm)e xR,

By 5) we get that F(i, /=0 whenever i <a and hence by the definition of
r(u, v) we get that

12) r(u,v)=0 whenever u<a/m.

In view of 12), by the definition of r we get 13) and 14):

13) ord,gr>a/m if a%0(m).

14) ord zrza/m if a=0(m),

By 1), 2), 4), 10) we get that

15) ord,x F'2b and ord,g f;2bg/m for 0<g<m.

By 2), 3), 7), 8), 9), 13), 14) we get 16) and 17):
16) If a%0(m) then ord x f,2ag/m for 0<g<m.
17) If a=0(m) then ord, g f;>ag/mfor 0<g<m.

By 1), 8), 13) we get that if a £ 0(m) then F' — F € x** ! R; therefore by 5) and 6)
we get the following:

18) W a#0(m) then ord gz F'==a and F'(a, b+ ¢)+0.

In view of 12), upon applying the multinomial theorem to the defining expres-
sion of r we get that if a=0{m) then
mM=pDx"+ Y r(guyxmym
utrv=euzalm
with D e R. Therefore in view of 7) and 11), we get that if a=0(m) then
"+ Y F(i,j)x'yex**'R.

itj=em,(i,j)=0(m),iza

Therefore, in view of 1), 9), and 14), we get that if a = 0(m) then
F'=F- Y F(@i,j)x'y modx**!R.

itj=em,(i,z0(m)iza
Therefore, in view of 5) and 6), we get that if a = 0(m) then ord, x F' = a and
F'(a, b+ c)= F(a, b+ c¢)+0. Thus we get the following:

19) If a=0(m) then ord, zx F' =a and F'(a,b+c)+0.
By 6), 7), 15), 16), 17), 18), 19) we conclude that f'(Z} is of [R, x, y, J]-type
(m; a, b, ¢), and f'(Z) is of preramified-type relative to ord, .

Lemma 84, Let f(Z)e R[Z] be of [R, x, y, J]-type (m; a, b, ). Assume that
f(Z) is of ramified-type relative to ordg, f(Z) is of preramified-type relative to
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ord, g, and J is an (x, m)-faithful coefficient set for R. Then there exists an R-
translate f'(Z) of f(Z) such that f'(Z)is of |R, x, y, J}-type (m; a, b, ¢}, and
f(Z) is of preramified-type relative to ord, .

Proof. By induction on d we shall show that if 4 is any integer such that
d= —1 then there exists an R-translate f@(Z) of f(Z) such that f(Z) is of
R, x, y, J]-type (m; a, b, ), fD(Z) is of preramified-type relative to ordp,
and F9 (i, )=0 whenever (i, j)=0(m) and i+j<min(d, ordg F¥) where
F@ = f@(Q) and TF9 (j, j) x'y/ is the expansion of F¥ in J[[x, y]]; it will then
suffice to take f'(Z)= f@*?*9(Z). For d= —1 we can take f"Y(Z)= f(Z).
Now let d =0 and suppose we have found f“~(Z). If either d + ordg F4~ 1)
or ordg F¥" Y% 0(m) then it is enough to take f@(Z)= f¥ Y(Z). So now
assume that ordg F Y =d=0(m). Since f“¢~(Z) is an R-translate of f(Z)
we get that fU~1(Z) is of preramified-type relative to ordg. Therefore by
Lemma 8.3 there exists r € R such that for f@(Z)= f“~"(Z +r) we have that
f@(2Z)is of [R, x, y, J]-type (m; a, b, ¢}, fP(Z)is of preramified-type relative to
ord, g, ordg F@ > d where F9 = f@(0), and F¥ (i, j)=0 whenever (i, j) = 0(m)
and i+ j=d where ZF@ (i, j) x'y/ is the expansion of F? in J[[x, y]]. Clearly
f9Z) is an R-translate of f(Z), and F¥ (i, j)=0 whenever (i, j)=0(m) and
i+j < min(d, ordg F9).

Lemma 8.5. Let m=p” where n is a positive integer, and let

m—1

f@)y=Z"+F+ Y f, 2" ¢
q=1

where F, f1, ..., fm-, are elements in R. Let ZF(i, j)x'y’ be the expansion of F
in J[[x, y]]. Assume that f(Z)is of [R, x, y, J}-type (m; a, b, c) where a =0(m),
f(Z)is of preramified-type relative to ord, g, and J is an (x, m)-faithful coefficient
set for R. Let v be any nonnegative integer. Since R/M is algebraically closed,
there exists a unique element s in J such that

s+ Fla,vm)e M.
Let
r=sxmy®

and let
—1

f(2Z)y=fZ+n=Z"+F+ Y f,Z"¢
q=1
with F', f{, ..., fm—1 in R. Let ZF'(i, j)x y be the expansion of F’ in J[[x, y]].
Then f(Z)isof [R, x, y, J]-type (m;a, b, c), f'(Z) is of preramified-type relative
to ord, 3, and F'(a, vm)=0.

Proof. Now
m—1
1) F=s"x"y""+F+ Y (sx™yy""1f,
q=1
and

q
2) fi=A(g, 0)(sx*™y* )+ ¥ Alg, k) (sx¥™yy"f, forO<g<m
k=1
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where A(g, k) are the elements in R defined by the equations

Z+1* =Y A(gk)Z" 9, O0sk<m,

q=k

in R[Z]. Since m=p” we get that

3) A(g,0)epR for O<g<m.

Since f(Z)is of [R, x, y, J]-type (m; a, b, ¢) and a =0(m) we get 4}, 5), 6):
4) ord,gk F2b and ord;f,=2bg/m for O<qg<m.

5) ord,z F=a.

6) Fla, b+c)+0 and b+c*0(m).

Since f(Z) is of preramified-type relative to ord,z we get that

7 pexR.

Since f(Z) is of preramified-type relative to ord,, and a=0(m), by 5) we
get that

8) ord, g f,>ag/m for O<g<m.

Since s™ + F(a, vm)e M and J is an (x, m)-faithful coefficient set for R we get
that s™ + F(a, vm) e xR and hence

9) s™x9y°™ 4 F(a, vm) x*y*" e x** 'R
By 2), 3), 7), 8) we get that
10) ord,g fy>aqg/m for O<g<m.

By 1) and 8) we get that

F'=s"x"y""+ Fmodx**'R.
Therefore by 9) we get that
11) F= Y F(jx'ymodx"*'R.

(L) *(a,vm)

By 11) we get that

12) Fa,vm=0,
By 5), 6), 11) we get that ord, g F' = aand F'{a, b+ ¢) = F(a, b + ¢) + 0. Therefore
13) ord gk F'=a and F'(g,b+c¢)#0.

By 4) we get that if vm < b then F(a, vm)=0 and hence r=0. Therefore our
assertion is trivial when vm < b. Now assume that b <vm. Then by 1), 2), 4)
we get that

14) ord,g F'2b and ord; fa=2bg/m for 0<gq<m.

By 6), 7), 10}, 12), 13), 14) we conclude that f'(Z)isof [R, x, y, J]-type (m; a, b, ¢),
f(Z) is of preramified-type relative to ord, g, and F'(a, vm)=0.

Lemma 8.6. Let f(Z)e R[{Z] be of [R, x, v, J}-type (m; a, b, ¢} where
[m; b, c]=0. Assume that f(Z) is of preramified-type relative to ord,p, and J
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is an (x, m)-faithful coefficient set for R. Then there exists an R-translate f'(Z)
of f(Z) such that f'(Z) is of [R, x, y]-stable-type (m; a, b, ¢’) where ¢’ < ¢, and
f'(Z) is of preramified-type relative to ord,g.

Proof. If a == 0(m) then upon taking ¢’ = ordpg,, f(0)/(x*y") we get that ¢’ < ¢
and hence f(Z) is of [R, x, y]-stable-type {(m; a, b, ¢), and hence it suffices to
take f'(Z) = f(Z). Now assume that a = 0(m). Let v be the smallest integer such
that b £ vm. By Lemma 8.5 there exists r € R such that for f'(Z)= f(Z +r) we
have that f'(Z) is of [R, x, y, J]-type (m; a, b, ¢), f'(Z) is of preramified-type
relative to ord,g, and F'(a, vm)=0 where F'= f’(0) and ZF'(j,j) x'y’ is the
expansion of F' in J[[x, y]]. Let ¢’ = ordg,, F'/(x*y"). Then F'(a, b+ ¢')#0 and
¢ Zc. Since [m; b, c] =0 and ¢’ £ ¢ we get that [m; b, ¢’} =0 and ¢’ <m. Since
F'(b, b+¢)+0 and Fla, vm)=0, we get that b+ Fvm. Thus 0 <m,
b + ¢’ + vm, and v is the smallest integer such that b £ vm ; therefore b + ¢’ 3 0(m).
Consequently F’ is of [R, x, y]-stable-pretype (m; a, b, ¢’) and hence f'(2) is of
[R, x, y]-stable-type (m; q, b, ¢').

Lemma 8.7. Let f(Z)eR[Z] beof [R, x, y, J]-type (m; a, b, ¢). Assume that
f(Z)is of preramified-type relative to ord, g, and J is an (x, m)-faithful coefficient
set for R. Then there exists an R-translate f'(Z) of f(Z) such that f'(Z) is of
[R, x, y, J}-type (m; a, b, ¢}’ and f'(Z) is of preramified-type relative to ord g.

Proof. If (a, b)== 0(m) then it is enough to take f'(Z)= f(Z). If (q, b} =0(m)
then by Lemma 8.5 there exists r € R such that for f'(Z)= f(Z +r) we have
that f'(Z)is of [R, x, y, J]-type (m; a, b, ¢), f'(Z) is of preramified-type relative
to ord,g, and F'(a, b)=0 where ZF'(i,j)x'y’ is the expansion of f'(0) in
J[[x, y1]; it follows that f'(Z) is then of [R, x, y,J]type (m; a, b, ¢)".

Lemma 8.8. Let m=p" where n is a positive integer, and let

m-—1

f@=2Z"+F+ ) f,Zm°
q=1

where F, fy, ..., fu—1 are elements in R. Let ZF(i,j)x'y’ and X f (i, j)x'y’ be
the respective expansions of F and f, in J[[x, yI]. Let u and v be nonnegative
integers. Since R/M is algebraically closed, there exists seJ such that

m—1

1) s"+ Flum,vm)+ ). f (ug,vg)s" e M.
q=1
For any such s let
r=s5x*y’

and let

m-1

f@=f@+N=Z"+F+ ¥ f,Z""

with F', f1, ..., fu—1 in R. Let ZF'(i,j) x'y’ be the expansion of F' in J[[x, y]].
Then we have the following.

(1) Assume that ordgF =(u+v)m, and f(Z) is of prenonsplitting-type
relative to ordg. Then ordgF' = (u+v)m and F'(um,vm)=0.

(2) Assume that f(Z) is of R, x, y, J]-type (m; a, b, ¢) where a <um, and
f(Z) is of prenonsplitting-type relative to ord, . Then f'(Z)is of [R, x, y, J]-
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type (m;a, b, c), and f'(Z) is of prenonsplitting-type relative to ord, 5. Moreover,
if f(Z)is of preramified-type relative to ord, g then so is f'(Z).
Proof of (1). Now

m—1

1) F=f0)=(xyY + F+ ¥ (2 V4,

g=1

Let e=u+v. Since ordg F Zem and f(Z) is of prenonsplitting-type relative
to ordg, we get that ordg f, = eq for 0 < g <m. Consequently F(i, j)=0 when-
ever i+j<em, and f,(i,j)=0 whenever 0 <q <m and i +j < eq. Therefore by
1) we get that

2) F'=F,+F,mod M°"*!

where

m—1
F,= x‘""y””’[s"‘ + F(um,vm)+ Y. f(uq, vq) s"‘“f]

g=1
and
F,= Z F(,j) xiyj+
i+ j=em,(i,j)* (um,vm)
m—1 o
+ Y (sx*yyme Y o)Xty
q=1 itj=eq,(i,j)*uq,vq)

By the definitions of s and F, we get that
3) FieMe™*1,
By the definition of F, we get that
F,= Z G(laj) xiyj
i+j=vem, (i, {um, vm)

with G(i, j)& R. Since J is a coefficient set for R there exist unique elements
H(, j) in J such that H(i, j) — G(i, j) € M, and then by the above equation we get
that

4) F,= y H(, j) x'y' mod Me™+1

i+ j=em, (i,))*+um,om)

By 2), 3), 4) we get that
FI

(]

H(, j) x'y’ mod M°™**

i+ j=em, (i, j)*(um,om)

Since H(i,j)e J we conclude that ordg F' = em and F'(um, vm)=0.
Proof of (2). Now

m—1

1) F'=@x"y"+F+ Y (sx*y)""4f,

g=1
and

2) f£=A(q,0)(Sx“y")"+iA(q,k)(sx"y")""‘fk for 0<g<m
k=1
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where A(q, k) are the elements in R defined by the equations

Z+1)"* =Y A k) Z" 4, O<k<m,

q=k
in R[Z]. Since f(Z) is of [R, x, y, J]-type (m; a, b, c¢) we get 3), 4),5):
3) ord g F2b and ord,gf,2bg/m for 0 <g<m.
4) ord, g F=a.
5) (@, b+c)£0(m) and Fla,b+c)=+0.

Since f(Z} is of prenonsplitting-type relative to ord, g, by 4) we get that
6) ord,g f, 2 ag/m for 0<g<m.

If ym<b then by 3) we would get that F(um,vm)=0 and f, (uq, vg)=0 for
0 < g <m, and hence by the definition of r we would get that r=0 and hence
f'(Z)=f(Z). Therefore our assertion is trivial when vm <b. ‘Now assume that
b < vm. Then by 1), 2), 3) we get that

7 ord, g F'2b and ordgf,2bg/m for 0<g<m.
Since a <um, by 1), 2), 4), 6) we get 8) and 9):

8) ord g F'=a and ord ,f,=ag/m for 0<g<m.
9) F'=Fmodx*"'R.

By 5) and 9) we get that

10) (@ab+c)£0m) and F'(a,b+c)+0.

By 7), 8), 10) we conclude that f'(Z) is of [R, x, y, J}-type (m; a, b, ¢), and
f(Z) is of prenonsplitting-type relative to ord, g.

Note that if f(Z) is of preramified-type relative to ord,; then pexR.
Therefore if f(Z) is of preramified-type relative to ord, z and as0(m) then
by 8) we get that f'(Z) is of preramified-type relative to ord, . If f(Z) is of
preramified-type relative to ord,z and a=0(m) then by 4) we get that
ord, f,> aq/m for 0 <q<m and hence, because a <um, by 1), 2) and 4) we
get that ord,zx F'=a and ord, f;>agq/m for 0<q<m, and hence again
f(Z) is of preramified-type relative to ord, g.

Lemma 8.9. Let f(Z)e R[Z] be of [R, x, y, J]-type (m; a, b, c) where ¢ <m.
Let ZF(i,j)x' y’ be the expansion of f(0)in J[[x, y]], and let u and v be the unique
integers such that 0 <um—a<m and 0 Lvm—b<m. Then the following two
conditions are equivalent :

1) f(Z)is not of [R, x, y, J]-type (m; a, b, c)'.

2} ordg fl0)=um+vm and F(um, vm)+0.

Proof. Straightforward.

Lemma 8.10. Let f(Z)e R{Z} be of [R, x, y, J]-type [m;a b, c] where c <m,
Assume that f(Z) is of prenonsplitting-type relative to ordg, f(Z) is of pre-
ramified-type relative to ord g, and J is an (x, m)-faithful coefficient set for R.
Then there exists an R-translate f'(Z) of f(Z) such that f'(Z)is of [R, x, y, J]-
type (m; a, b, ¢y, and f'(Z) is of preramified-type relative to ord, g.
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Proof . If f(Z)is of [R, x, y, J]-type (m; a, b, ¢)' then we can take f'(Z) = f(Z).
Now assume that f(Z)isnot of [R, x, y, J}-type (m; a, b, ¢)'. Then by Lemma 8.9
we get that ordg f(0)=um+ vm where u and v are the unique integers such
that 0<um-—a<m and 0Lvm—b<m. If um=a then by Lemma 8.5 and
if um=a then by Lemma 8.8 there exists 7 € R such that for f'(Z)= f(Z +7r)
we have that f'(Z)is of [R, x, y, J]-type (m; a, b, ¢}, f'(Z) is of preramified-type
relative to ord, g, and F'(um,vm)=0 where ZF'(i,j) x'y’ is the expansion of
f'(0) in J[[x, y]]. By Lemma 8.9 is follows that f'(Z) is of [R, x, y, J]-type
(m; ab,c).

Lemma 8.11. Let f(Z)e R[{Z] beof [R, x, y, J]-type (m;a, b, c)* where c <m.
Assume that f(Z) is of prenonsplitting-type relative to ordg, and f{(Z) is of
prenonsplitting-type relative to ord,,. Then there exists an R-translate f'(Z)
of f(Z) such that f'(Z)is of [R, x, y, J]-type (m; a, b, c), and f'(Z) is of pre-
nonsplitting-type relative to ord,g.

Proof If f(Z)is of [R, x, y, J}-type (m; a, b, ¢) then we can take f'(Z) = f(2Z).
Now assume that f'(Z)isnot of [R, x, y, J]-type (m; a, b, ¢)'. Then by Lemma 8.9
we get that ordg f(0) =um + vm and F(um, vm) + 0 where u and v are the unique
1ntegers such that 0Sum—a<m and 0L vm—b <m and where ZF(i,j)x'y/
is the expansion of f(0) in J[[x, y]]. By assumption F(i,j)=0 whenever
(i, /) =0(m) and i £ a. Therefore um > a and hence by Lemma 8.8 there exists
r & R such that for f'(Z)= f(Z +r) we have that f'(Z) is of [R, x, y, J]-type
(m;a, b, c), f'(Z)is of prenonsplitting-type relative to ord, z, and F'(um, vm) =0
where ZF'(i,j)x'y’ is the expansion of f'(0) in J[[x, y]]. By Lemma 8.9 it
follows that f'(Z) is of [R, x, y, J]-type (m; a, b, c)'.

Lemma 8.12. Let f(Z)e R[Z] be of [R, x, y]-stable-type (m; a, b, c). Assume
that f(Z)isof prenonsplitting-type relative to ordg, and f(Z)is of prenonsplitting-
type relative to ord, g. Then there exists an R-translate f'(Z) of f(Z) such that
f'(2Z)is of [R, x, y, J]-type (m; a, b, ), and f'(Z) is of prenonsplitting-type
relative to ord,g.

Proof . If f(Z)is of [R, x, y, J]-type (m; a, b, ¢}’ then we can take f'(Z) = f(Z).
Now assume that f(Z) is not of [R, x, y, J]-type (m; a, b, ¢). By definition
[m; b, ¢] =0 and hence ¢ <m. Therefore by Lemma 8.9 we get that ordg f(0)
=um+ vm and F(um, vm)=+0 where u and v are the unique integers such that
0gum—a<m and 0Svm—b<m and where ZF(i, j)x'y’ is the expansion
of f(0) in J[[x, y]]. Suppose if possible that a=um; since (a, b+ ¢) £ 0(m) we
then get that b + ¢ # 0(m); since F(a, vm)+ 0 and F(a, j)=0 whenever j<b+c¢
we then must have b+ c<vm and hence a+b+c<um+vm=ordg f(0);
this is a contradiction because F(a, b+ c¢)+0. Therefore a=um and hence
a < um. Therefore by Lemma 8.8 there exists r € R such that for f"(Z) = f(Z +7)
we have that f'(Z)is of [R, x, y, J}-type (m; a, b, ¢}, f'{Z) is of prenonsplitting-
type relative to ord, z, and F'(um, vm)=0 where ZF'(i, j) x' y' is the expansion
of f'(0) in J[[x, y]]. By Lemma 8.9 it follows that f'(Z) is of [R, x, y, J]-type
(m; ab,c).

Lemma 8.13. Let m = p” where n is a positive integer and let f(Z) be a monic
polynomial of degree m in Z with coefficients in R. Assume that f(Z) is of
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ramified-type relative to ordg, R is of characteristic p, and f(Z)+Z™ + f(0).
Then there exists an R-translate '(Z) of f(Z) such that {'(0)=0 and F'(i,jj=0
whenever (i, j)=0(m) and i+ j < ordg f'(0) where ZF'(i,j) x'y’ is the expansion
of £(0) in J[x, y]].

Proof. Let f, be the coefficient of Z™""% in f(Z). Since f(Z)+ Z™ + f(0),
there exists an integer k such that O0<k<m, f,+0, and f,=0 whenever
0 <g<k. By induction on d we shall show that if d is any integer such that
d = —1 then there exists an R-translate f“(Z) of f(Z) such that F¥(i, =0
whenever (i,/)=0(m) and i+j<min(d, ordg F¥) where F¥ = f@ Q) and
ZF9(i, j)x'y’ is the expansion of F® in J[[x, y]]. For d= —1 it suffices to
take fC"1(Z)= f(Z). Now let d=0 and suppose we have found f@~1(2)
If either d+ordzxF¥ Y or ordgF¥ V£ 0(m) then it is enough to take
f92Z)= f9Y(Z). So now assume that ordg F¢~ 1 = d = 0(m). Since ¢~ V(Z)
is an R-translate of f(Z) we get that f4~1(Z) is of preramified-type relative
to ordg. Therefore by Lemma 8.3 (1) there exists r€ R such that for f9(Z)
= f@"NZ +r) we have that F?(i j)=0 whenever (i,j/)=0(m) and i+j<d
where F@ = f@(0) and ZF?(j,j) x'y’ is the expansion of F® in J[[x, y]];
clearly then F@(i, j)=0 whenever (i,j)=0(m) and i+j<min(d, ordg F®).
This completes the induction on d. Since f, + 0, there exists a positive integer h
such that h = (m/k) ordg f,. Let f(Z) = f®(2),1et F' = f'(0), and let ZF'(i,j) x'y’
be the expansion of F' in J[[x, y]]. Then F'(, j)= 0 whenever (i, j)=0(m) and
i+j<min(h, ordg F'). Let f, be the coefficient of Z"~%in f'(Z). Since R is of
characteristic p we get that f; = f, and hence h = (m/k) ordy f;. Since f'(Z) is
an R-translate of f(Z) we get that f'(Z) is of preramified-type relative to ordg
and hence ordg F' < (m/k) ordg f;. Therefore ordz F' < h and hence F'(i,j)=0
whenever (i, j)=0(m) and i+ j < ordg F'.

Lemma 8.14. Let m = p" where n is a positive integer and let f(Z) be a monic
polynomial of degree min Z with coefficients in R. Assume that f(Z)is of ramified-
type relative to ordg, and f(2)+0 for all z € R* where R* is the completion of R.
Then there exists an R-translate f'(Z) of f(Z) such that f'(0)*=0and F'(i,j)=0
whenever (i, j)=0(m) and i+ j < ordg f'(0) where LF'(i, f) X'y’ is the expansion
of £ (0) in J[[x, ¥1]. ‘

Proof. Let F = f(0) and let ZF (i, j) x'y’ be the expansion of F in J[[x, y]]
Let 54 be the unique element in J such that s§ + F(0, 0)e M. Define s, € R for
all e> 0 by the following recurrence equation:

Se-1+ Y, rle,uv)x*y’  if ordg f(s.- ;)= em

Se - utp=e

5.1 if ordg f(5,.1)<em

where r(e, u, v) is the unique element in J such that
re, u, vy" + F°~ Y(um,vm)e M

where ZF€~1(j, j) x'y/ is the expansion of f(s,_,) in J[[x, y]]. Note that then
S,—5,_1€M?® for all e>0. Let f©@(Z)=f(Z+s,) and F@= f(0) for all
e20. Then F® = f(s,). Since f©(Z) is an R-translate of f(Z) we get that
f“Z) is of preramified-type relative to ordg for all e = 0. Therefore, in view
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of Lemma 8.3 (1), by induction one ¢ it follows that for all ¢=0 we have:
F@(i, j)=0 whenever (i, /)=0(m) and i+ j<min(em, ordy F®). Let M* be
the maximal ideal in R*. Since s, —s,_; € M* for all e> 0, there exists ze R*
such that z — s, € M*® whenever a = 0 and e = b(a) where b(a) is a nonnegative
integer depending on a. It follows that z—s,e M*¢ for all e>0. Clearly
f(2)— f(s.) € (z~ s.)R* and hence f(z) — F© e M**for all e = 0. By assumption
f(z)*0 and hence there exists a positive integer k such that f(z)¢ M*:
It follows that F® ¢ M** and hence ordg F® <km. Therefore F®(j,j)=0
whenever (i, j) =0(m) and i + j £ ordg F®. Thus it suffices to take f’(Z) = f®(Z).

Lemma 8.15. Let f(Z) be a monic polynomial of degree m> 1 in Z with coef-
ficients in R. Assume that R is a spot over a pseudogeometric domain, f(Z) is
irreduzible in K[Z], and the integral closure of h(R) in h(K[Z]) is quasilocal
where h is the canonical epimorphism of K{[Z] onto K[Z]/f(Z)K[Z). Then
f(Z) is irreduzible in R*[Z] where R* is the completion of R, and hence in
particular f(z)=+0 for all ze R*.

Proof. We can take an element ¢ in an overfield of K such that f(t)=0,
and then the last assumption is equivalent to saying that S is quasilocal where
S is the integral closure of R in K(t). Since R is a spot over a pseudogeometric
domain, by [10: (36.5)] we get that R is pseudogeometric and hence § is a finite
R-module. Therefore S is a local domain and § is pseudogeometric. Since §
is a finite R-module, by [9: Proposition 7 on page 699] we get that R is subspace
of § and hence we can regard the completion S* of S to be an overring of R* and
then any finite number of elements in S which are linearly independent over
R remain so over R*. Clearly 0, ¢, ..., "~ ! are elements in S which are linearly
independent over R and hence they are linearly independent over R*; therefore
if g(Z) is any nonzero polynomial of degree <m in Z with coefficients in R*
then g(t) & 0. Since R is regular we get that R* is regular and hence R* is a normal
domain. Since R* is a normal domain, § is a pseudogeometric normal local
domain, and Sisa finite R-module, by [10: (37.8)] we get that §* is a domain.
Suppose if possible that f(Z)= f'(Z) f"(Z) where f'(Z)and f"(Z) are nonzero
polynomials of positive degrees in Z with coefficients in R*; since f(f)=0
and S$* is a domain we must then have either f'(t)=0 or f”(t)= 0, this would
be contradiction because the degree of f'(Z) in Z is less than m and the degree
of f"(Z) in Z less than m. Therefore f(Z) is irreducible in R*[Z] and hence in
particular f(z)#0 for all ze R*.

Lemma 8.16. Let m = p” where n is a positive integer and let f(Z) be a monic
polynomial of degree m in Z with coefficients in R. Assume that f(Z) is of
ramified-type relative to ordg, R is a spot over a pseudogeometric domain, f(Z)
is irreducible in K [Z], and the integral closure of h{(R) in h(K [Z]) is quasilocal
where h is the canonical epimorphism of K{Z] onto K[Z1/f(Z)K][Z]. Then
there exists an R-translate f'(Z) of f(Z) such that f'{0)%0 and F'(i,j)=0
whenever (i, j)=0(m) and i+ j < ordg f'(0) where XF'(i, )x'y'is the expansion
of f(0) in J[Ix, yI].

Proof. Follows from Lemmas 8.14 and 8.15.
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§ 9. Effect of a sequence of quadratic transformations on a permissibie polynomial

Let R be a two dimensional regular local domain with maximal ideal M
such that R/M is an algebraically closed field of characteristic p+0. Let (x, y)
be a basis of M and let J be a coefficient set for R. Let w be a valuation of the
quotient field K of R such that w dominates R and w is residually algebraic
over R. Let XCM.

Definition 9.1. Let f(Z)e K[Z].

f{Z)issaid tobe of [R, x, y, J, X, wl-type (m; a, b, c)if f(Z)isof [R, x, y, J]-
type (m;a, b, c), J is an (x, m)-faithful coefficient set for R, X Cradg)*R, and
f(2Z)is [R, x, y, J, w]-permissible.

f{Z)issaid tobe of [R, x, y, J, X, wl-type(m; a, b, ¢} if f(Z)isof [R, x, y, J}-
type (m; a, b, c), X Cradgy*R, and f(Z) is [R, x, y, J, w]-permissible.

f{Z)is saidtobe of [R, x, y, J, X, wi-type(m; a, b, ¢} if f(Z)isof [R, x;y, J]-
type (m; a, b, c)’, X Cradg )y’ R, and f(Z) is [R, x, y, J, w]-permissible.

f(Z) is said to be of [R, x, y,J, X, wl-antitype (m; b, a,c) if f(Z) is of
[R, y,x,J]-type (m;b,a,c)*, X Crady’R, f(Z) is [R,x,y,J, w]-permissible,
and f(Z) is of nonsplitting-type relative to ord, .

f{Z) is said to be of [R, x, y, J, X, w]-antitype (m; b,a,c) if f(Z) is of
[R,y, x,J}-type (m;b,a,c), XCrady’R, f(Z) is [R, x,y,J, w]-permissible,
and f(Z) is of nonsplitting-type relative to ord, .

Note that the follwoing two conditions are equivalent: (1) f(Z) is of
[R, x, y,J, X, w]-stable-type (m;a,b,c); (2) f(Z) is of [R,x, y]-stable-type
(m; a, b, c), X Cradgy’R, and f(Z) is [R, x, y, J, w]-permissible.

Lemma 9.2, Let f(Z)eR{[Z] be of [R,x,yJ,X,wl-type (m;ab,c).
Assume that w(y) = w(x). Then there exists an R-translate f'(Z) of f(Z) such
that f'(Z) is of [R, x, y,J, X, w]-type (m; a, b, c).

Proof. Let (R', x', y') be the canonical first quadratic transform of (R, x, y, J)
along w. Then f(Z) is of ramified-type relativ to ord, g and f(Z) is of ramified-
type relative to ord, .. Since w(y) = w(x) we get that ord,. - = ord; and hence
f(Z) 1s of ramified-type relative to ord,. Therefore by Lemma 8.4 there exists
an R-translate f'(Z) of f(Z) such that f'(Z)is of [R, x, y, J]-type (m; a, b, c)’.
It follows that f'(Z) is of [R, x, y, J, X, w]-type (m; a, b, ¢}

Lemma 9.3. Let f(Z)e R{Z]beof [R, x,y,J, X, wl-type (m; a, b, ¢). Then
there exists an R-translate f'(Z) of f(Z) such that f'(Z)is of [R, x, y, J, X, w]-
type (m; a, b, c)".

Proof. Follows from Lemma 8.7.

Lemma 94. Let f(Z)e R{Z] be of [R, x, y, J, X, w]-type (m; a, b, ¢) where
c<m. Then there exists an R-translate f'(Z) of f(Z) such that f'(Z) is of
[R, x, y,J, X, w)-type (m; a, b, c).

Proof. Follows from Lemma 8.10.

Lemma 9.5. Let f(Z)e R[Z] be of [R, x, y, J, X, w]-antitype (m; b, a, c)
where ¢ <m. Then there exists an R-translate f'(Z) of f(Z) such that f'(Z)
isof [R, x, y, J, X, wl-antitype (m; b, q, c).

Proof. Follows from Lemma 8.11.

10 Math. Ann. 170
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Lemma 9.6. Let f(Z)e R[Z] be of [R, x, y, J, X, w]-type (m; a, b, c) where
[m; b, c] =0. Then there exists an R-translate f'(Z) of f(Z) such that f'(Z}is of
[R, x, y, J, X, w]-stable-type (m; a, b, ¢’) where ¢’ < c.

Proof. Follows from Lemma 8.6.

Lemma 9.7, Let f(Z)eR[Z] beof [R, x, y, J, X, w]-stable-type (m; a, b, ¢).
Assume that w(y) = w(x) and let (R, x', y') be the canonical first quadratic
transformof (R, x, y, J)along w. Let ¥’ = b if w(y)> w(x), and b’ = 0if w(y)=w(x).
Then there exists an R'-translate f'(Z) of f(Z) such that f'(Z)is of [R, X', ¥,
J, X, w]-stable-type (m; o', b, c).

Proof. By Lemma 8.12 there exists an R-translate f*(Z) of f(Z) such that
f*(Z)isof [R, x, y,J, X, wl-type (m; a, b, c). Now X Cradg Y’ R and ord,g f¥ 2
2 bg/m for 0 < g <m where f is the coefficient of Z™~?in f*(Z). If w(y) = w(x)
then b =0 and hence X Cradg y'* R’ and ord, g f¥=b'g/m for 0<g<m;
and if w(y) > w(x)then b’ = band ord,, z. = ord , x and hence again X C radg.y"*' R’
and ord, g fX2Zb'q/m for 0<q<m. Since f*(0) is of [R, x, y, J]-pretype
(m;a, b, c) and [m; b, c] =0, by Lemma 7.6 we get that f*(0)is of [R', X, ¥, J]-
pretype{m; d, b, c*) where a' = ordy f*(0) and [m; b, ¢*] = 0. Since w(y) = w(x)
we also get that J is an x'-faithful coefficient set for R'. Therefore f*(Z) is of
[R, x,y,J, X, w-type (m; a, b', c*). Since [m; b’, c*] =0, by Lemma 9.6 there
exists an R'-translate f'(Z) of f*(Z) such that f'(Z)is of [R, X', ¥, J, X, w}-
stable-type (m; a, b, ¢') where ¢’ < c*,

Lemma 9.8. Let f(Z)e R[Z] be of [R, x, y, J, X, w]-stable-type (m; a, b, c).
Assume that w(y)<w(x) and let (R, x', y') be the canonical first quadratic
transform of (R, x, y, J) along w. Let b’ =o1dg f(0)and ¢ =a+b+c—b. Then
f(@)isof [R,Xx,y,J, X, w]-stable-type (m; a, b', ¢').

Proof. Now ord,, g = ordg. Since X C M we get that X Cradg. y'” R'. Since
J(Z) is of nonsplitting-type relative to ordg and ordg f(0)=0" we get that
ordg f, 2 b'q/m for 0 < g <m where f, is the coefficient of Z™~ % in f(Z), and
hence ord, g f, 2 b'g/m for 0 <gq<m. Since f(0) is of [R, x, y]-stable-pretype
(m; a, b, ¢), by Lemma 7.19 we get that f{0) is of [R, x, y']-stable-pretype
(m;a, b, ). Therefore f(Z)is of [R', x', ¥, J, X, w]-stable-type (m; a, b, ¢).

Lemma 9.9, Let f9(Z)e K[Z] be of [R, x, y, J, X, w]-stable-type (m; a,,
by, co). Let (R, x;, y;) be the canonical j™ quadratic transform of (R, x, y, J)
along w. Then for each j >0 there exists an R-translate f9(Z) of f'°(Z) such
that f9(Z) is of [R;, x;, y;, J, X, w]-stable-type (m; a;, b;, c;) where for all j 20
we have the following : (1) if w(y) <w(x)) then fU*V(Z)=f9(Z), a;,,=a;
bj.y=ordg, fO0), and c;. =a;+bj+c;—bjiy; (2) if w(y)=w(x)) then
b;y1=0;(3) if w(y;)>w(x;) thenb;,,=Db;. In connection with (2) note that if w
is rational then there exist infinitely many distinct nonnegative integers j for
which w(y;) = w(x}).

Proof. Follows from Lemma 9.7 and 9.8.

Lemma 9.10. Let m = p"where nisa positive integer, and let {(Z) be a monic
polynomial of degree m in Z with coefficients in R. Assume that f(0)=0 and
F(i,j)=0 whenever (i, j)=0(m) and i+j < ordg f(0) where ZF(i,j)x'y’ is the
expansion of f(0)inJ[[x, y]]. Assume that f(Z)is [R, x, y, J,w]-permissible.
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Assume that w(y)= w(x) and let (R’, X', y') be the canonical first quadratic
transform of (R, x, y, J) along w. Then f(Z) is of R, X, ¥, J, X, w]-type
{m; a, 0, ¢') where a' = ordg f(0) and ¢’ £ 4.

Proof. By Lemma 7.4 we get that f(0)is of [R’, X, ¥, J]-pretype (m; a’, 0, ¢)
where a' = ord, f(0) and ¢/ £ 4. Since w(y)= w(x) we also get that J is an x'-
faithful coefficient set for R'. Therefore f(Z) is of [R), X/, y, J, X, wl-type
(m; a,0,c)

Lemma 9.11. Let f(Z)e R[Z] be of [R, x, y, J, X, wl-type (m; a, b, ¢)
where b=0(m). Assume that w(y) = w(x) and let (R, X', y') be the canonical first
quadratic transform of (R, x, y, J) along w. Let b' =b if w(y)>w(x), and b'=0
if w(y)=w(x). Then b’ =0(m) and there exists an R-translate {'(Z) of f(Z)} such
that f'(Z)isof [R, x, ¥, J, X, wl-type (m; a', b', ¢') where ¢' S c.

Proof. Clearly b’ =0(m). By Lemma 9.2 there exists an R-translate f{Z)
of f(Z)such that f"(Z)isof [R, x, y, J, X, w]-type (m; a, b, ¢). Now X Cradg)y’R
and ord g f; 2 bg/m for 0 < g <m where f, is the coefficient of Z™ % in f(Z).
If w(y) = w(x) then b'=0 and hence X Cradg.y'* R’ and ord, x. f', 2 b'q/m for
0 <g<m; and if w(y)>w(x) then b'=b and ord, z. = ord,z and hence again
X Cradg y'* R and ord, g fo2b'q/m for 0 <q<m. Since w(y)=w(x) we get
that J is an x'-faithful coefficient set for R’. Since f'(0)is of [R, x, y, J]-pretype
(m;a, b,c), by Lemma 7.5 we get that f'(0)is of [R’, x', ¥, J}-pretype (m; &, b, ¢')
where @' = ordg f'(0) and ¢’ Zc. It follows that f'(Z)is of [R, X/, ', J, X, w]-
type (m; da', b, ).

Lemma 9.12. Let f(Z)e R[Z]1 be of [R, x, y,J, X, wl-type (m; a, b, ¢) where
[m; b, c] <m. Assume that w(y) = w(x) and let (R', X, ¥} be the canonical first
quadratic transform of (R, x, y, J) along w. Let b’ =b if w(y)>w(x), and b'=0
if w(y)=w(x). Then there exists an R-translate {'(Z) of f(Z) such that f'(Z)
isof [R, x,y,J, X, wl-type (m; &', b', ¢') where [m; b, ¢'] £ [m; b, cl.

Proof. By Lemma 9.4 there exists an R-translate f’(Z) of f(Z) such that
f'(Z)isof [R, x,y,J, X, w]-type (m; a, b, ¢). Now X Cradgy’R and ord, g f; =
2 bg/m for 0 < g <m where fis the coefficient of Z™ " in f'(Z). If w(y) = w(x)
then b'=0 and hence X Cradg y”R' and ord,g. f,2b'q/m for 0<q<m;
and if w(y) > w(x) then b’ = band ord,, r. = ord, ; and hence again X Cradg.y’* R’
and ord, g fy = b'g/m for 0 <q <m. Since w(y) = w(x) we get that J is an x'-
faithful coefficient set for R'. Since f(0) is of [R, x, y, J]-pretype (m; a, b, ¢), by
Lemma 7.6 we get that f'(0) is of [R', X/, ¥, J]-pretype (m; d/, b', ¢') where
a =ordy f'(0) and [m; V', '] =[m; b, c]. It follows that f'(Z) is of [R, x/, ¥,
J, X, wl-type (m; a’, b, ).

Lemma 9.13. Let f(Zye R{Z] be of [R, x, y, J, X, w]-antitype (m; b, a, ¢)
where a=0{(m) and ¢ <m. Assume that w(y)=w(x) and let (R’, x', ¥’} be the
canonical first quadratic transform of (R, x, y, J) along w. Then we have the
Jollowing.

(1) Either there exists an R-translate f'(Z) of f(Z) such that f'(Z) is of
IR, x, ¥, J, X, wl-antitype (m,; b, a', ¢') where a’ =0(m) and ¢’ <c, or there
exists an R-translate f'(Z) of f(Z) such that f'(Z)isof {R, x, ¥, J, X, wi-type
(m; a, b, ') where b’ =0(m) and ¢’ <m.

10*
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(2) If c¢=0 then there exists an R-translate f'(Z) of f(Z) such that f'(Z)
isof [R,x,y,J, X, wl-type (m; a, b, ¢’) where b’ =0(m) and ¢’ <m.

Proof. By Lemma 9.5 there exists an R-translate f’(Z) of f(Z) such that
f'(Z)is of [R, x, y, J, X, w]-antitype (m; b, a, ¢). Now f'(0) is of [R, y, x, J]-
pretype (m; b, a, ¢) and X Cradgy®R. Since ord,g f'(0)=b and f'(Z) is of
nonsplitting-type relative to ord,z we get that ord . f; = bg/m for 0<g<m
where f is the coefficient of Z" " ?in f’(Z). Since w(y) = w(x) we also get that J is
an x'-faithful coefficient set for R". Let d=ordg f'(0). If w(y)=w(x) then by
Lemma 7.17 we get that f'(0) is of [R’, X/, y', J]-pretype (m; a', b', ¢') where
a =d,b'=0,and ¢’ <m;since b’ = O it follows that f'(Z)isof [R, ¥, y', J, X, w]-
type (m; @, b, ¢’). Now assume that w(y)> w(x). Then ord, . =ord,; and
ord, g = ordy. Let b* be the greatest integer such that b* = 0(m) and b* <b.
If d — b* —a<m then by Lemma 7.18 (2) we get that f'(0) is of [R/, X/, y, J]-
pretype (m; a, b', ¢') where b’ =b*, a'=d, and ¢’ <m; since b'<b and ord, 5.
=ord,, we get that X Cradg y* R’ and ord, g f;=b'q/m for 0<q<m;
it follows that f'(Z)is of [R', X/, ¥, J, X, w]-type (m; &', b, ). fd —b* —az=m
then by Lemma 7.18 (1) we get that f'(0)is of [R’, ¥, X/, J]-pretype (m; b, d/, c')*
where b’ =b, a' is the greatest integer such that ' =0(m)and o’ £d, and ¢’ = b +
+a+c—a <c; since ord, g =ord,z and b'=>b we get that X Cradg y’* R’
and f'(Z) is of nonsplitting-type relative to ord, g ; since ord, g = ord; and
f'(Z) is of nonsplitting-type to ordg we also get that ord, g f;2 a'q/m for
0 <g<m; it follows that f'(Z) is of [R', x, ¥, J, X, w]-antitype (m; ¥, a’, ¢').
It only remains to note that if c=0 then clearlyd=a+b and hence d — b* —a<m.

Lemma 9.14. Let f(Z)e R[Z] be of [R, x, y, J, X, w]-antitype (m; b, a, c)
where ¢ < m/p and either ¢ <m/p or a+ b+ m/p % 0(m). Assume that w(y) 2 w(x)
and let (R', x', y') be the canonical first quadratic transform of (R, x, y, J) along w.
Let b'=b if w(y)>w(x), and b’'=0 if w(y)=w(x). Then there exists an R-
translate {'(Zyof f(Z)suchthat f'(Z)isof [R,x,y,J, X, w]-type (m; a, b, ¢')
where [m; b', c'1=0.

Proof. By Lemma 9.5 there exists an R-translate f'(Z) of f(Z) such that
f'(Z)is of [R, x, y, J, X, w]-antitype (m; b, a, ¢J. Now f'(0) is of [R, y, x, J]-
pretype (m; b, a, ¢y and X Cradgy*R. Since ord,, f'(0)=b and f'(Z) is of non-
splitting-type relative to ord,, we get that ord,; f,=bg/m for O0<g<m
where f, is the coefficient of Z™~%in f'(Z). If w(y) = w(x) then b’ =0 and hence
X Cradg y" R’ and ord, . f; 2 b'q/m for 0<g<m; and if w(y)> w(x) then
b'=bandord, g = ord, and hence again X C radg. y'” R and ord,. p. f; 2 b'g/m
for 0 <g <m. Since w(y) 2 w(x) we get that J is an x'-faithful coefficient set
for R'. Since ¢ £ m/p and either ¢ <m/p or a+ b+ m/p £ 0(m), by Lemmas 7.8
and 7.9 we get that f'(0) is of {R’, x, ¥, J]-pretype (m; a, b’, ¢’) where
a' =ordg f'(0) and [m; ¥, '] =0. It follows that f"(Z)is of [R, X, ¥, J, X, w]-
type (m; a', V, c).

Lemma 9.15. Let f(Z)e R[Z] be of [R, x, y, J, X, w]-antitype (m; b, a, ¢)
where ¢ <m. Assume that w(y) <w(x) and let (R', x', y') be the canonical first
quadratic transform of (R, x, y, J) along w. Then there exists an R-translate
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f(Z) of f(Z) such that f'(Z) is of [R, X', ¥, J, X, w]l-antitype (m; b’, a, ¢)
where ¢’ Zc.

Proof. By Lemma 9.5 there exists an R-translate f'(Z) of f(Z) such that
f(Z)is of [R, x, y, J, X, w]-antitype (m; b, 4, ¢J. Now ord,.g.=ord, g and
ord, g f;Z aqg/m for 0<q<m where f; is the coefficient of Z""? in f'(Z);
therefore ord. g fy;=ag/m for 0 <g<m. Let b'=ordg f'(0). Now XCM,
ord, g =ordg, and f'(Z) is of nonsplitting-type relative to ordg; therefore
M Cradg y” R and f'(Z) is of nonsplitting-type relative to ord, p.. Since
f'(0)is of [R, v, x, J]-pretype (m; b, a, ¢)', by Lemma 7.11 we get that f'(0) is of
[R, ¥, x', J]-pretype (m; b', a, ¢')* where ¢’ <c. It follows that f'(Z) is of
[R, X, ¥, J, X, wl-antitype (m; V', q, ).

Lemma 9.16. Let f(Z)e R{Z] be of {R, x, y, J, X, wl-type (m; a, b, c) where
b=0(m). Assume that w(y)<w(x) and let (R, x', y') be the canonical first
quadratic transform of (R, x, y, J) along w. Then either there exists an R-translate
FAZ)yof f(Z)suchthat f'(Z}is of [R, X, ¥, J, X, wl-type (m; a, ¥, ') where
b =0(m) and ¢’ <c, or there exists an R-translate f'(Z) of f(Z) such that f'(Z)
is of [R), x', ¥y, J, X, wl-antitype (m; V', &, ¢') where a' =0(m) and ¢’ <m.

Proof. By Lemma 9.3 there exists an R-translate f'(Z) of f(Z) such that
f(Zyisof[R, x, 3, J, X, wl-type (m; a, b, ¢)". Now f'(0}is of [R, x, y, J]-pretype
(m; a, b, ¢)’. Let d=ordg f'(0) and let a' be the greatest integer such that
a' =0(m) and a' £ a. Now ord, z. = ordg, X CM, and f'(Z) is of nonsplitting-
type relative to ordy; therefore f'(Z) is of nonsplitting-type relative to ord, z.,
X Cradg y*R’, and ord, . f, = dg/m for 0 <gq<m where f, is the coefficient
of Z" % in f'(Z). Also ord, g =ord,g, a' Sa=ord, , f'(0), and f'(Z) is of
ramified-type relative to ord,g; therefore ord. g f,2a'q/m for 0 <g<m.
Since J is an (x, m)-faithful coefficient set for R and xR C x'R/, we also get that
J is an {x’, m)-faithful coefficient set for R'. If d — @’ — b = m then by Lemma 7.14
(1) we get that f'(0)is of [R’, X', y', J]-pretype (m; a, b, ¢'y where b’ is the greatest
integer such that b’ =0(m) and b' <d, and where ¢'=a+b+c—b" <c; since
b'<d we get that X Cradgy” R’ and ord,g f;2bg/m for 0<g<m; it
follows that f'{(Z)isof [R, X, ¥, J, X, wl-type (m; a, b, ¢). fd—ad —b<m
then by Lemma 7.14 (2) we get that f'(Z)is of [R, ', x, J]-pretype (m; b', a', ¢')*
where b'=d and ¢’ <m; it follows that f'(Z) is of [R/, X, ¥, J, X, w]-antitype
(m; b, d,c).

Lemma 9.17. Let f(Z)e R[Z] be of [R, x, y, J, X, wi-type (m; a, b, c) where
[m; b, c] <m. Assume that w(y) < w(x) and let (R, x', y') be the canonical first
quadratic transform of (R, x, y, J) along w. Then either there exists an R-translate
Sy of f(Z)suchthat f'{Z)isof [R,x, ¥, J, X, wi-type {m; a, b, ¢') where
[m; b, 1< [m; b, ¢] and ¢’ £c—~ m/p, or there exists an R-translate f'(Z) of
f(Z)such that f'(Z)is of [R, X', ¥, J, X, w]-antitype (m; b, a, ') where ¢’ <m/p.

Proof. By Lemma 9.4 there exists an R-translate f'(Z) of f(Z) such that
f'(Z)isof [R, x,y,J, X, wl-type (m; a, b, c). Now f'(0)is of [R, x, y, J]-pretype
(m;a b, cy. Let b’ = ordg f'(0). Now ord,, g = ordg, X C M, and f’(Z) is of non-
splitting-type relative to ordg ; therefore X Cradg. y'* R, f'(Z)is of nonsplitting-
type relative to ord, g, and ordy - f, 2 b'q/m for 0 <g<m where f_ is the



140 S. S. ABHYANKAR:

coefficient of Z™""? in f'(Z). Also ord, z = ord,g, ord,g f'(0)=a, and f'(Z)
is of ramified-type relative to ord,g; therefore ord, x. ;2 aq/m for 0 <gq<m.
Since J is an (x, m)-faithful coefficient set for R and xR C x’R’ we also get that J
is an (x/, m)-faithful coefficient set for R". If ¥ —a —b=m/p then by Lemma
7.15(1) we get that /' (0) isof [R’, x', ¥, J]-pretype (m; a, b, ¢y where ¢’ S ¢ — m/p
and [m; b, 1 £ [m; b, cl; it follows that f'(Z)is of [R/, X, ¥, J, X, w]-type
(m;a b, c). b —a—b<m/p then by Lemma 7.15 (2) we get that f'(0) is of
[R, ¥, x', J]-pretype (m; b, a, c'y* where ¢’ <m/p; it follows that f'(Z) is of
[R, x, ¥, J, X, w]-antitype (m; b', a, ).

Lemma 9.18. Let f(Z)e R[Zlbe of [R, x, y,J, X, wl-type (m; a, b, ¢) where
[m; b, c] < m. Assume that w(y) <w(x} and let (R', X', y) be the canonical first
quadratic transform of (R, x, y, J) along w. Then either there exists an R-translate
FU(Z) of f(Z)such that f'(Z)is of [R, x, ¥, J, X, wl-type (m; a, b, ') where
[m; b, T Smax(0, [m; b, c] —1), or there exists an R-translate {(Z) of f(Z)
such that f'(Z)is of [R', x, ¥, J, X, w]-antitype (m; V', a, ¢') where ¢’ Sm/pand
either ¢’ <m/p or a+ b’ + m/p £ O(m).

Proof. By Lemma 9.4 there exists an R-translate f'(Z) of f(Z) such that
J(2Z)isof [R, x, y, J, X, w]-type (m; a, b, ¢). Now f'(0)is of [R, x, y, J]-pretype
(m; a, b, c). Let d=ordg f'(0). Now ord, x =ordg, X CM, and f'(Z) is of
nonsplitting-type relation to ordy; therefore f’(Z) is of nonsplitting-type
relative to ord, g, X Cradg y'*R’, and ord, g f; = dg/m for 0 < g <m where f,
is the coefficient of Z" 2 in f'(Z). Also ord,. gz =ord,z, ord. gz f'(0)=a, and
f'(Z) is of ramified-type relative to ord,g; therefore ord, g f;=agq/m for
0 < g <m. Since J is an (x, m)-faithful coefficient set for R and xR C x' R’ we also
get that J is an (x', m)-faithful coefficient set for R. Let o’ be the greatest integer
such that &’ =0(m) and @’ £ a. Clearly one of the following six conditions hold:
)d—a-b>m/p;2)d—a~b=m/pandb£0(m);3)d~a—b=m/pandp=2;
4 b=0myandd—da' —bzm; 5 d—a—b<m/p; 6)d—a—b=m/p, b=0(m),
p=%2 and d—d —b<m If one of the conditions 1) to 4) holds then by
Lemma 7.16 (2) we get that f'(0) is of [R, X', ¥, J]-pretype (m; a, b', ¢') where
b’ <dand [m;V,c'] £max(0, [m;b, c]—1);sinced’ <d we get that X Cradg.y®' R’
and ordy g f, 2 b'g/mfor 0 < g <m;itfollows that f'(Z)isof [R, x, ¥, J, X, w]-
type (m; a, b', ¢'). If condition 5) holds then by Lemma 7.16 (1) we get that f'(0)
isof [R), y', x', J]-pretype {m; V', a, ¢')* where b’ =d and ¢’ <m/p; it follows that
[@Z)yisof IR, x’, ¥, J, X, wl-antitype (m; b, a, ¢). If conditions 6) holds then
by Lemma 7.16 (3) we get that f'(0) is of [R’, y, X', J]-pretype (m; b, a, c')*
where b'=d, ¢ Sm/p, and a+b +m/p£0(m); it follows that f'(Z) is of
[R, x, ¥, J, X, w]-antitype (m; b, a, ¢).

Lemma 9.19. Let f(Z)e R[Z] be of [R, x, y, J, X, w]-type (m; a, b, ¢) where
[m; b, c] <m. Assume that w(y) < w(x) and let (R", x", y"} be the canonical first
quadratic transform of (R, x, y, J) along w. Assume that w(y")= w(x") and let
(R’, x', ¥') be the canonical first quadratic transform of (R", x", y", J) along w.
Then there exists an R'-translate {(Z) of f(Z) such that f'(Z)is of [R, x, ¥,
J, X, wl-type (m; a, b, ') where [m; b', ¢’} S max(0, [m; b, c] - 1).
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Proof. By Lemma 9.18 we get that either 1) there exists an R-translate
f"(Z) of f(Z) such that f"(Z) is of [R", x", y", J, X, w]-type (m; a", b", ¢")
where [m; b", "] £max(0, [m; b, ¢]—1), or 2) there exists an R-translate
f"(Z) of f(Z)such that f"(Z) is of [R", x", y", J, X, w]-antitype (m; b", a”, ¢”
where ¢” <m/p and either ¢" <m/p or a’+b"+m/pE0(m). In case 1), by
Lemma 9.12 there exists an R"-translate f'(Z) of f"(Z) such that f'(Z) is of
[R, x, ¥, J, X, wl-type (m; a', b', ¢') where [m; b, ¢'] £ [m; b", ¢"] and hence
[m; b, '} <max(0, [m; b, c] —1). In case 2), by Lemma 9.14 there exists an
R’-translate f'(Z) of f"(Z) such that f'(Z) is of [R), X, ¥, J, X, w]-type
{m; d, b, 'y where [m; b, ¢']=0.

Lemma 9.20. Let f(Z)e R[Z] be of [R, x, v, J, X, w]-type (m; a, b, ¢} where
[m: b, c] <m. Assume that w is real and w(y) < w(x). Then there exists a canonical
quadratic transform{R', X', y) of (R, x, y, J} along w and an R'-translate f'(Z) of
f(Zysuchthat f'(Z)isof [R, x.,y,J, X, wl-type(m;a, b, ¢’y where [m; b, '} £
Smax (0, [m; b, c]—-1).

Proof. Let (R,, x;, y;) be the canonical i*® quadratic transform of (R, x, y, J)
along w. Since w is real and w{(y} < w(x), there exists a positive integer j such
that w(y) <w(x;) for 0<i<j and w(y)=zw(x;). If j=1 then upon taking
(R, x', y)=(R,, x3, y;) by Lemma 9.19 we get that there exists an R'-translate
f(Z) of f(Z)such that f'(Z)is of [R, X', ¥, J, X, w]-type (m; a, b, ¢') where
[m; b, ¢'] £max(0, [m; b, c] —1). So now assume that j = 2. By induction on i
we shall show that if i is any integer such that 0 i< then either: (1,) there
exists an R-translate f,(Z) of f(Z) such that f,(Z)is of [R;, x;, y;, J, X, w]-type
(m; a, b;, c;) where c;<c—im/p and [m; b, ¢;] <m, or: (1)) there exists an R;-
translate f;(Z) of f(Z) such that f/(Z) is of [R,, x;, y;, J, X, w]-antitype
(m; b, a, c}) where ¢;<m/p. For i=0 it suffices to take fo(Z)= f(Z), by=>b,
¢o=c. Now let i>0 and assume that the assertion is true for all values of i
smaller than the given one. If case (1,_,) prevails then by Lemma 9.17 either
there existsan R;-translate f,(Z)of f;_ ,(Z)suchthat f,(Z)isof [R;, x;, y,, J, X, w]-
type(m;a, b, c)wherec; < c;_, —m/pand [m; b, ¢;] <[m; b;_, ¢;— ;] and hence
¢;<c—im/p and [m; b,, ¢;} < m, or there exists an R,-translate f;(Z) of f;,_,(Z)
such thatf;(Z) is of [R;, x;, v;, J, X, w]-antitype (m; b}, a, ¢;} where c; < m/p.
If case (1;_,) prevails then by Lemma 9.15 there exists an R;_-translate f;(Z)
of fi_1(Z) such that f{(Z)is of [R,, x;, y;, J, X, w]-antitype (m; b}, a, c;} where
c;=c;-; and hence c¢;<m/p. This completes the induction on i If case (1))
prevails then [m; b;, ¢;] <[m; b, c] because j =2 and hence it suffices to take
R=Ry, x;=x;,y=y,d=ab=>b,=c;, f(Z)=f;(Z). If case (1}) prevails
then upon taking (R, x', y') = (R4 1, X4+ 1, ¥j+1) by Lemma 9.14 we get that there
exists an R'-translate f'(Z) of f(Z) such that f'(Z)is of [R, X, ¥, J, X, wl-type
{m; a, b, ¢) where [m; b, ¢']=0.

Lemma 9.21. Let f(Z)e R[Z] beof [R, x, y,J, X, wl-type (m; a, b, ¢) where
[m; b, c] <m. Assume that w is real nondiscrete. Then there exists a canonical
quadratic transform (R, x', ¥) of (R, x, y, J) along w and an R'-translate f'(Z)
of f(Z) such that f'(Z)is [R, X, ¥, J, X, w]-stable.
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Proof. We shall make induction on [m; b, ¢]. If [m; b, c]=0 then upon
taking (R, x', y')=(R, x, y) by Lemma 9.6 we get that there exists an R’-trans-
late f'(Z)of f(Z)suchthat f'(Z)is[R',x',y',J, X, w]-stable. Now let [m;b,c] >0
and assume that the assertion is true for all values of [m; b, ¢] smaller than the
given one. Let (R,, x;, y;) be the canonical i® quadratic transform of (R, x, y, J)
along w. Since wis real nondiscrete, by Lemma 3.13 there exists a nonnegative
integer j such that w(y;) 2 w(x;} for 0 £ i <j and w(y;) <w(x;). Let f,(Z)= f(Z),
ay=a, by =5, ¢y =c. Upon applying Lemma 9.12 successively j times we find
an R-translate f,(Z) of f,_,(Z) such that f;(Z)is of [R,, x;, ¥;, J, X, w]-type
{m; a,, b;, c;y where [m; b, ¢, <Im; b,_,, ¢;—{] for 0<i<j. In particular then
fi(Z) is an Ry-translate of f(Z) such that f;(Z) is of [R;, x;, y;, J, X, w]-type
(m; a;, b;, c;) where [m; b;, ¢;] £ [m; b, c]. Since w(y;) <w(x;), by Lemma 9.20
there exists a canonical quadratic transform (R*, x*, y*) of (R}, x;, y;, J) along w
and an R*-translate f*(Z) of f(Z) such that f*(Z)is of [R*, x*, y*, J, X, w}-
type (m; a*, b*, c*) where [m; b*, c*] Smax(0, [m; b;, ¢;] - 1). Since [m; b;, ¢;] <
<[m;b,c]>0,itfollows that [m; b*, c*] < [m; b, c]. Therefore by the induction
hypothesis there exists a canonical quadratic transform (R, x', y') of (R*, x*, y*, J)
along w and an R*-translate f'(Z) of f*(Z)suchthat f'(Z)is [R’,x,y, J, X, w]-
stable.

Lemma 9.22. Let f(Z)e R{Z] be of [R, x, y, J, X, wl-antitype (m; b, a, ¢)
where a=0(m) and c <m. Assume that w is real. Then there exists a canonical
quadratic transform (R', X', y) of (R, x, y, J) along w and an R'-translate {'(Z) of
f(Z) such that f'(Z)is of [R, x', ¥, J, X, wl-type (m; d, V', c') where b’ = 0(m)
and ¢’ <m.

Proof. We shall make induction on c. Let (R,, x;, y;) be the canonical i*®
quadratic transform of (R, x, y, J) along w. Since w is real there exists a non-
negative integer j such that w(y)<w(x;) for 0<i<j and w(y; = w(x;). Let
fo(@)= f(Z), by=b, cy=c. Upon applying Lemma 9.15 successively j times
we find an R-translate f,(Z) of f,. ,(Z) such that f;(Z)is of [R,, x;, y;, J, X, w]-
antitype (m; b;, a, c;) where ¢; Sc;_, for 0 <i<j. In particular then f;(Z)is an
R-translate of f(Z)such that f;(Z)is of [R, x;, y;, J, X, w]-antitype (m; b, a, c))
where c¢;<c. If c=0 then ¢;=0 and hence upon taking (R, x', y)= (R,
Xj+1, ¥j+1) by Lemma 9.13 (2) we get that there exists an R'-translate f'(Z) of
fi(Z) such that f'(Z}is of [R', X', y', J, X, w]-type (m; a, b, ¢") where b’ =0(m)
and ¢’ <m. Now let ¢ > 0 and assume that the assertion is true for all values of
¢ smaller than the given one. By Lemma 9.13 (1) either (1) there exists an
R, -translate f'(Z) of f;(Z) such that f'(Z)is of [R;,y, X;41, ¥ju1r I, X, W-
type (m; a’, b/, ¢') where b’ = 0(m) and ¢’ < m, or (2) there exists an R, ,-translate
f*(2Z) of f{Z) such that f*(Z) is of [R;,, X1, ¥j+1 J» X, wl-antitype
(m; b*, a*, c*) where a* = 0(m) and c* < c;. If case (1) prevails then it is enough
to take (R, X, y) = (R4, Xj+1, ¥j+1)- I case (2) prevails then c* < c and hence
by the induction hypothesis there exists a canonical quadratic transform
(R, X, y) of (Rj11, X541, Vj+1, J) along w and an R'-translate f'(Z) of f*(Z)
such that f'(Z)is of [R', x|, ¥, J, X, w]-type (m; &', ¥, ¢') where b’ =0(m) and
c¢<m.
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Lemma 9.23. Let f(Z)e R[Z) beof [R, x, ¥, J, X, w]-type (m; a, b, ¢) where
b=0(m). Assume that w is real nondiscrete. Then there exists a canonical
quadratic transform (R, x', ') of (R, x, y, J} along w and an R'-translate f'(Z)
of f(Z)suchthat f'(Z)isof [R,x,y,J, X, w]-type (m; a, b, c') where b’ =0(m)
and ¢’ <m.

Proof. We shall make induction on c. If ¢ < m then it suffices to take R’ =R,
X'=xy=y ad=ab=>bc=c f'(Z)=f(Z). Now let c 2 m and assume that
the assertion is true for all values of ¢ smaller than the given one. Let (R,, x;, y;)
be the canonical i™* quadratic transform of (R, x, y, J) along w. Since w is real
nondiscrete, by Lemma 3.13 there exists a nonnegative integer j such that
w(y)Zw(x) for 0=i<j and w(y) <w(x;). Let fo(Z)= f(Z), ap=a, bo=b,
¢o = ¢. Upon applying Lemma 9.11 successively j times we find an R;-translate
fi(@) of f;_(Z)such that f;(Z)is of [R;, x;, y;, J, X, wl-type (m; a;, b;, ¢;) where
b;=0(m) and ¢;<c;_; for 0<i<j. In particular then f;(Z) is an R;-translate
of f(Z)such that f(Z)is of [R}, x;, y;, J, X, wl-type (m; a;, bj, c;) where b; = O(m)
and c¢; = c. Since w(y)) < w(x;), by Lemma 9.16 we get that either (1) there exists
an R;, ,-translate f*(Z)of f;(Z)such that f*(Z)is of [R;, 1, X;41, ¥j+ 1, I, X, w]-
antitype (m; b*, a*, c*) where a* =0(m) and c* <m, or (2) there exists an R, ;-
translate f*(Z) of f(Z) such that f*(Z)is of [Rj.y, X;+1, Vj+1, J, X, w]-type
(m; a*, b*, c*) where b* =0(m) and c* < c;. If case (1) prevails then by Lemma
9.22 there exists a canonical quadratic transform (R’, X', y') of (R;,y, Xj.4,
Vi+1, J) along w and an R'-translate f'(Z) of f*(Z) such that f'(Z) is of
[R, x', ¥, J, X, w]-type (m; a, b, ¢') where b'=0(m) and ¢’ <m. If case (2)
prevails then ¢* <c and hence by the induction hypothesis there exists a
canonical quadratic transform (R, x', ') of (Rj41, X415 Vj+1, J) along w and
an R'-translate f'(Z) of f*{Z) such that f'(Z)is of [R), x, ¥, J, X, w]-type
(m; d, b, ¢') where b’ =0(m) and ¢’ <m.

Lemma 9.24. Let f(Z)e R[Z]} be of [R, x, y, J, X, wl-type (m; a, b, c) where
b = 0(m). Assume that w is real nondiscrete and let (R;, x;, y,) be the canonical jt
quadratic transform of (R, x, y, J) along w. Then there exists a nonnegative
integer e and for eachj= e an R-translate f9(Z) of f(Z) such that fP(Z)is of
[R;, x;, y;, J, X, w]-stable-type (m; a;, b;, c;) where for all jZe we have the
Jollowing : (1) if w(y) <w(x) then f9*)(Z)= fV(Z), a;,, = aj, bj,., = ordg, x
x fO0), and cjpy=a;+b;+cj—b;yy; () if wy)=w(x) then b;,,=0;
(3) if w(y;)) > w(x)) then b;,, =b;. In connection with (2) note that if w is rational
then there exist infinitely many distinct nonnegative integers j for which
w(p) = wix).

Proof. In view of Lemma 9.9, our assertion follows by first applying Lemma
9.23 and then applying Lemma 9.21.

Lemma 9.25. Let m = p" where n is a positive integer and let f(Z) be a monic
polynomial of degree m in Z with coefficients in R. Assume that w is real non-
discrete and f(Z) is [R, x, y, J, wl-permissible. Also assume that either: 1) R is
of characteristic p and f(Z)+ Z™ + f(0); or: 2) Ris a spot over a pseudogeometric
domain, f(Z) is irreducible in K{Z}, and h(R,)) does not split in W(K[Z}) where
h is the canonical epimorphism of K[Z] onto K[Z]/f(Z) K[Z]. Let (R}, x;, y)
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be the canonical j'* quadratic transform of (R, x, y, J) along w. Then there exists
a nonnegative integer e and for each j2 e an Ry-translate fU(Z) of f(Z) such
that fU(2) is of [R), x;, y;, J, X, w]-stable-type (m; a;, b;, c;) where for allj= e
we have the following: (1) if w(y)<w(x;) then fU*V(Z)=f9(2), a;,,=a,
bjsy=ordg, fU0), and c;yy=a;+bj+c;—bjyy; Q) if w(y)=wlx) then
bj.1=0;(3)if w(y)>wl(x)) then b;,, = b, In connection with (2) note that if w
is rational then there exist infinitely many distinct nonnegative integers j for
which w(y)) = w(x;).

Proof. Since w is real, there exists a canonical quadratic transform
(R, x', ¥) of (R, x, y, J) along w such that w(y) = w(x'). Let (R, x", y") be the
canonhical first quadratic transform of (R’, x, y, J) along w. Since f(Z) is
[R, x, y, J, w]-permissible we get that f(Z) is [R), X, ¥/, J, w]-permissible and
f(Z)is [R”, x", y", J, w]-permissible and hence in particular f(Z)is of ramified-
type relative to ord,.g.. Now ordg. = ord..z. and hence f(2) is of ramified-
type relative to ordg.. Also note that if condition 2) holds then R’ is a spot
over a pseudogeometric domain and the integral closure of h(R’) in #(K[Z])
is quasilocal. Therefore, if condition 1) holds then by Lemma 8.13 and if
condition 2) holds then by Lemma 8.16, there exists an R’-translate f'(Z) of
f(Z) such that f(0)+0 and F'(i,j)=0 whenever (i,j)=0(m) and i+j=<
< ordg. f'(0) where ZF'(i, j) x'*y'/ is the expansion of f'(0) in J[[x), y']]. Our
assertion now follows by first applying Lemma 9.10 and then applying
Lemma 9.24.
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