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We report an unexpected behavior of the intensity autocorrelation functions CVV ( t )  (polarized) 
and CHH ( t )  (depolarized) of multiply scattered light from dense colloidal polyball crystals under 
certain conditions. We find that Cvv(t)  saturates at large times as expected for a frozen phase, 
while CHH(t) decays to zero in a short time as in a fluid. We present a new phenomenological 
model for this behavior based on decoupled translational and orientational fluctuations in a weakly 
depolarizing medium. Our study highlights the greater sensitivity of depolarized diffusing-wave 
spectroscopy as a probe of the dynamics of the medium. 

The recently developed technique of diffusing-wave 
spectroscopy (DWS) [l-41 has made it possible to use 
light-scattering methods [5] to  study the nature of dy- 
namic correlations even in media such as concentrated 
colloidal suspensions [3,4] and foams [6], in which the 
light is highly multiple scattered. Most DWS studies of 
colloidal suspensions have focused on the liquid rather 
than the crystalline phase and the question of polariza- 
tion dependence in particular has been looked at [7,8] 
only in the liquid phase. 

In this Letter, we report a striking and altogether unex- 
pected polarization dependence of the DWS signal from 
colloidal crystals under certain conditions, and present 
a theoretical model which rationalizes our observations. 
Briefly, we find that for a nominally (po1y)crystalline col- 
loidal suspension, the time correlation of the depolarized 
part of the multiply scattered electric field decays t o  zero 
as in a liquid while that of the polarized part is nonde- 
caying as expected of a solid phase. For samples aged 
for several weeks, however, the depolarized signal also 
becomes nondecaying. 

In conventional quasielastic single light scattering 
(QELS) [5], the temporal autocorrelation Gl( t )  of the 
scattered electric field from a system of noninteracting, 
diffusing particles decays as e-t/rc with T, = (Doq2)-' ,  
where DO is the self-diffusion coefficient of the particles, 
q = 2 sin(e/2) is the scattering wave vector, 6' the scat- 
tering angle, and X L  the wavelength (in the scattering 
medium) of the light used. In DWS, however, the av- 
eraging over photon paths and q yields [1,9], for the 
near backscattering direction, Gl(t )  0: exp[-y(6t/~o)' /~] 
where TO = (D0k2)-', with k = 27r/X~. The param- 
eter y depends on the polarization of the scattered light 
and on the ratio 1,/1 of the transport mean free path 1, 
(the mean path length required to randomize the prop- 
agation direction) to  the scattering mean free path 1 
(the mean distance between successive scattering events). 
For the case of interacting particles, it has been shown 
that [7 ] ,  with some simplifying assumptions, Gl( t )  0: 

ex~[-r{6k$W(t)}'/~] where W(t )  is the mean square 

displacement of a particle in time t .  
We note that with vertically polarized incident light 

while both Cvv(t)  = (Iv(t)lv(O)) / ( I v ) ~  - 1 and 
C H H ( t )  = ( I H ( ~ ) I H ( o ) )  / ( IH) '  - 1 respond to transla- 
tional motion [7,8], only CHH is sensitive to changes in 
the local dielectric anisotropy and hence contains infor- 
mation about the correlations of orientational fluctua- 
tions as well. 

We use samples of 0.115 pm diameter charged 
polystyrene spheres (Seradyn, U.S.A.) in water, with vol- 
ume fraction 4 = 0.03, contained in a cylindrical quartz 
cell of 8 mm diameter with a mixed bed of ion-exchange 
resins at the bottom of the cell to  reduce the ionic impu- 
rity. Light from Kr+ laser ( X L  = 647.1 nm) is scattered 
at 0 = 165' and the normalized intensity autocorrela- 
tion Gz(t)  [= Cvv(t) or C H H ( t ) ]  is measured using a 
Malvern correlator (model 7032CE). G1 ( t )  is extracted 
using Gz(t)  = f jGl(t)/', where constant f is determined 
by the system optics. 

Our observations are summarized in Figs. 1 and 2. The 
inset of Fig. 1 shows the fluid-phase Gz( t )  before adding 
resins, which fitted well to the form fexp[-2y(6t /~0) ' /~]  
with TO = 1.8086 msec and y = 1.89 for CVV and 2.87 
for CHH.  The value of DO taken for estimating TO via 
Stokes's law corrected for the hydrodynamic interaction 
[lo] is DO = (k~T/67r77a) (1 - 1.84) where 77 is the vis- 
cosity of water ( = 0.01089 P) and a the radius of the 
particles (= 0.0577 pm) determined from QELS exper- 
iments. That this behavior is entirely consistent with 
expectations and, in particular, that f is very close to its 
ideal value of unity (fvv = 0.99 and f H H  = 1.06), re- 
flects the high quality of our data and gives us confidence 
in our surprising new results. 

The remarkable main graphs of Fig. 1 correspond to 
a microcrystalline suspension, confirmed by its Bragg- 
iridescence, obtained by waiting for about 120 h after 
adding resins. The measurements apply to  a region 5 mm 
above the top of the resin bed. We see that while CVV 
decays to a nonzero constant,  as expected for a frozen 
phase, CHH decays to zero at essentially the  same  rate 
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FIG. 1. The polarized (VV) and depolarited (HH) inten- 
sity autocorrelation functions Gz(t)  (while freezing) versus 
(t/~o)’’’ (the labels t i m e  and ensemble averaged are explained 
in the text). Inset shows Gz(t) in the liquid state (circles), 
before adding resins, their fits (straight lines), and the decay 
of the depolarized “ensemble averaged” Gz(t) in the frozen 
state (solid line). 

as zn the ltquad (the inset). Transmisston measurements 
done in the  same state also show a nondecaying C V V ,  
implying that  the  sample is throughout in a state of ar- 
rested translation motion (nominally solid). 

Since the  system is in a frozen but disordered (i.e.. non- 
ergodic) state. we have averaged the correlation functions 
obtained from ten spatially separated regions in the  sus- 
pension. The curves so obtained are labeled “ensemble 
averaged” in Fig. 1, while those from a single region are 
called “time averaged.” 

Furthermore, after about 7 weeks CHH also eventually 
acquires the  time-persistent piece expected of a crystal 
or a glass [see Fig. 2(a)]. Lastly, if we reverse the  experi- 
ment by adding ionic impurities to  a well-formed colloidal 
crystal (with nondecaying CVV and C H H )  the  resulting 
states for two values of impurity concentration are shown 
in Fig. 2. In Fig. 2(b), we see clearly the extraordinary 
intermediate state earlier observed in the freezing stud- 
ies, and in Fig. 2(c), we find again ordinary liquidlike 
behavior. If we assume that  the  intermediate state is an 
imperfect crystal of some kind, clearly the H H  correla- 
tions are more sensitive to  the  type of disorder present. 

We attempt to understand these results through a 
model which is also of interest as a new treatment of 
waves in random media. We work in the  limit XL > 
a @ ~ - l / ~ ( >  a) , unlike the  usual treatments, which are for 
XL << In our case, several particles are contained 
within a ( ~ a v e l e n g t h ) ~ ,  so that  the  local, instantaneous 
dielectric tensor (a) is anisotropic and (b) can be treated 
as a smoothly varying field. i.e., 

FIG. 2 Results of the melting experiment on the same 
sample as in Fig. 1 at 12 mm above the resin bed about 
7 weeks after adding ion-exchange resins. (a) Both VV and 
H H  correlations are nondecaying in the well-formed iridescent 
crystalline sample. (b) With an addition of 40 microequiva- 
lents/l of HC1 in the sample (which still remains iridescent). 
the unexpected simultaneous existence of a nondecaying Cv I 
and a liquidlike decaying C H H  , as seen in Fig. 1) is repeated 
(c) An addition of 400 microequivalents/l of HC1 melts the 
sample to liquid in the region probed. 

.-.. 
where E ~ Z  and €0 A are the local fluctuations in the 
isotropic and anisotropic parts. respectively, of ct3  ~ and 
EO is the average dielectric constant of the medium which 
is isotropic. We assume that  the  randomization of the 
direction of propagation, and hence the diffusion paths 
followed by the  light, are determined by Z, with (<c Z) 
serving only to disorient the polarization. As is usual in 
weak-scattering treatments of DWS ill] , we ignore the 
interference between the scattered electric fields due t,o 
distinct paths. 

Along each of the random-walk paths R(s) (where s 
is the path parameter) traced by the light, we assume 
that  a p a r t  from t h e  effect of A. the polarization vec- 
tor is “Fermi transported,” i.e.. rotates at  a rate equal 
to minus the torsion [12]. \Ve therefore use a mov- 
ing 1131 coordinate system along each path. with the 
2. y, and z axes being, respectively, the unit tangent 
(=/ 1 = t (s ) ,  unit normal w / l  n(s), and 
binormal b(s) = n(s) x t ( s ) .  We need only to  keep track 
of the  projection of d,j into the b-n plane. The  dephas- 
ing due to T(r, t )  affects both CVV and CHH in the  same 
way as would be seen by MacKintosh and John’s treat- 
ment [7] ,  and cannot therefore explain our observations. 

We begin with the wave equation for Ew(r, t ) ,  t he  wth 
Fourier component of the electric field, with the  usual 
assumption that  the  time dependence in Eu(r, t )  is purely 
because the  medium is changing in time: 

I 
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- (v2 + l~i) E, = k i  [Z (r, t )  + ~ ( r ,  t ) ]  E,, (2) 

where ko = w&/c; c is the speed of light an vacuo. Suit- 
able statistical properties for Z and 2 will be introduced 
later. Along a path R(s), the electric field then evolves 
with s, according to 

(3) 
where 1 )  and I are directions along and perpendicular 
to the parallel-transported polarization, respectively, and 
we have suppressed the subscript w.  Since we are con- 
cerned only with the part of A that acts in the b-n plane, 
we can model it by a random symmetric traceless tensor 
in two dimensions: 

CI 

At3 = ao(NtN3 - $&), (4) 
where rV, = N,(R(s), t )  is the local, instantaneous, axis 
of anisotropy of the projection into the b-n plane of the 
dielectric tensor and a0 = ao(R(s), t )  is the overall am- 
plitude of the anisotropic local fluctuations. 

For a0 = 0, to lowest order in Z(s), E(s) = 

E(O), where k ( s )  = kod-. For a0 # 0, e 
it is still useful to separate the effects of Z from those of 
2 by defining 

z s’ k(s’)ds’ 

E(s), ( 5 )  &(s) = e-+(5’)ds’ - 
where the s evolution of & is governed purely by A. Equa- 
tion (3) then yields 

ko ( C O S ~ B ( S )  sin2e(s) = -,ao(s) sin2B(s) -cos2B(s) 

( 6 )  

where terms of order & have been dropped in a “forward 
propagating wave” approximation [ 141, valid for a0 and 
B varyingAslowly on the scale of AL.  Here B is the angle 
between N and n. 

Ignoring for the moment the actual tame dependence 
of B and ao, we see that for each path R(s), Eq. (6) 
is the Schrodinger equation for a quantum spin-; state 
with Hamiltonian 31 = -$Q . h(s) in a magnetic field 
h(s) = koao(s)(  sin2B(s),O, cos2B(s)), lying in the 2-2 
plane and fluctuating with respect to  the “time” s. 

Let us work in the “interaction picture,” treating the 
az term as the interaction. This choice is motivated by 
the fact that the initial state is an eigenstate of uz. We 
define 

and let 

Then 

Of course, we cannot solve Eq. (9) exactly either since 
31 does not commute with itself at different “times” s, so 
that the solution involves a “time-ordered” exponential. 
We, however, solve the problem only in the approxima- 
tion where the consequent interference between the spin- 
flip and non-spin-flip terms is neglected. This is reason- 
able since the coefficients of oz and 0, involve sin2B(s) 
and cos2B(s), respectively, and these are expected to be 
statistically orthogonal. Then, Eq. (9) becomes 

Solving Eq. (10) (which is trivial) we see that 

(11) 
We approximate a0 sin 28 and a0 cos 28 by mutually 

uncorrelated Gaussian random noise sources, with zero 
mean, and with covariances 

- (ao(s,  ko2 

g ( a o ( s ,  t )  cos 2qS, qao(o, 0) cos 2q0 ,o) )  

t )  sin28(s, t)ao(O, 0) sin 2B(O, 0)) 
2 

= SS(s)e- t /TA,  (12) 

2 
= C6(s)e-t/Tz, (13) 

%(ao(., 2 t )  cos2e(s, t )ao(o,o)  sin28(0,0)) = 0. (14) 
This amounts to assuming a local optical axis uncorre- 
lated in space and weakly correlated in time, which is 
reasonable for a system without significant quadrupolar 
orientational correlations. 

In the reference frame in which Eq. (3) is written, the 
initial condition is El, (0, t )  = EO and Cl(0,  t )  = 0. We can 

then solve for (gsi;:)) and transform back using Eq. (8) 

to get E l ( s , t )  . Using Eq. (14) to decouple the correla- 
(gll(s,t) ) 



tions of y and /3, we find that  the correlation functions 
of the electnc f ie ld  components along and perpendicular 
to the Fermi-transported initial polarization are. respec- 
tively, 

Cvv(t) = -e 
2 

El) - C s t C y e - ' / ' I - S s  eSye-' ' A  -Sse- ' /T4  ( - e  & 
2 

(15) 

and 

For t >> TI, TA we see that  

c$,(t) - E:e-(sLc)s (17) 

C&,(t) - EiSSe-(S+C)se-t/rA. (18) 

while 

The measured correlation functions are. of course. 
Cvv =/ Cev l 2  and CHH =I  CSH 1'. To claim that  the  
observed lab frame CVV and CHH correspond to  those we 
have calculated requires tha t  in the absence of anisotropic 
fluctuations, the  output and incident polarizations are 
nearly parallel. This would be exact only if the multiple 
scattering were confined to a plane perpendicular to  the 
incident polarization. Inasmuch as the observed output 
scattered intensities are in the ratio N 3, our approx- 
imation is not too bad. With this preamble, we return t o  
Eqs. (15)-(18), whence we see clearly tha t  the effect of 
decorrelated onentatzonal fluctuations is to cause CHH 
to decay, while leaving CVV unaffected. More precisely, 
the ratio CHHICVV decays as ec t l rA for r >> T A ,  inde- 
pendent of t lq. Thus, if other dynamic fluctuations of 
a purely translational type are frozen, then weak orien- 
tational fluctuations can decorrelate CHH in preference 
to Cvv. Of course, we must average over a suitable dis- 
tribution of path lengths P ( s ) ,  but the result tha t  CHH 
decays while CVV does not is unchanged. 

It is appropriate to  remark at this point on the re- 
lation between our approach and that  of MacKintosh 
and John [ 7 ] .  Note that  for short times t < 7 ~ ~ 7 1 ~  the 
overall time dependence of the  correlation functions is 
of the form e--(const)st/rl .  This. when averaged using 
P ( s )  x exp[-(const)?], for backscattering. will give de- 
cays which are exponential in 4. Such a restriction to  
"short" times is implicit in [7] [see their Eqs. (3.11)- 
(3.12)]. 

Our conjecture for the  underlying origin of these fluctu- 
ations is as follows. Our system, in the amperfectly crys- 
tallized regime contains some anisotropic entities, per- 
haps interfaces between fcc- or bcc-symmetric (and hence 
optically isotropic) crystallites for which quadrupolar or 
higher shape fluctuations cost little energy and therefore 

1 2  

contribute appreciably mainly to  depolarized scattering 
and to  the decay of H H  correlations. If these defects 
were absent, all depolarization would contribute identi- 
cally to  Crrv and C H H ,  and both would saturate, but in 
their presence, the mechanism outlined above can act to 
give the startling difference between CVV and C H H .  As 
time goes on, because of either the growth of the crystal- 
lites, or the annealing and "hardening" of the interfacial 
regions (or both) ~ this anomalous scattering mechanism 
freezes out. This leaves only the  translational motions 
of the colloidal particles, which dephase C~nv and C H H  
in essentially the  same way. A small-angle x-ray or neu- 
tron scat'tering study could tell us more about the state 
of order of the  colloidal suspension in the various stages 
of crystallization, and allow us to refine our model of the 
medium. Pending such a study, we must content our- 
selves with pointing out this unusual and perhaps uni- 
versal transient property of light multiply scattered from 
crystallizing colloidal suspensions. 
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