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Scaling properties of proton and anti-proton production

in
√

sNN = 200 GeV Au+Au collisions
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We report on the yield of protons and anti-protons, as a function of centrality and transverse
momentum, in Au+Au collisions at

√
sNN = 200 GeV measured at mid-rapidity by the PHENIX ex-

periment at RHIC. In central collisions at intermediate transverse momenta (1.5 < p⊥ < 4.5 GeV/c)
a significant fraction of all produced particles are protons and anti-protons. They show a centrality-
scaling behavior different from that of pions. The p/π and p/π ratios are enhanced compared to
peripheral Au+Au, p+p and e+e− collisions. This enhancement is limited to p⊥ < 5GeV/c as
deduced from the ratio of charged hadrons to π0 measured in the range 1.5 < p⊥ < 9GeV/c.

PACS numbers: 25.75.Dw

Heavy-ion collisions at RHIC energies permit the study
of nuclear matter at extreme energy densities. Hadrons

originating from fragmentation of partons that have un-
dergone large momentum transfer (hard) scatterings are
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sensitive probes of the hottest and densest stage of the
collision. Data collected during the first RHIC run
at
√

sNN = 130 GeV led to the discovery of suppression of
high transverse momentum (p⊥ ≥ 2GeV/c) hadron pro-
duction in central Au+Au collisions [1, 2, 3] when com-
pared to expectations from nucleon-nucleon collisions.
This effect, quantified in terms of a nuclear modification
factor RAA = (yieldAA/Ncoll) /yieldpp, where Ncoll is the
average number of binary nucleon-nucleon collisions, had
been discussed as a possible consequence of the energy
loss suffered by partons moving in a dense medium [4, 5].
Unexpectedly, it was found that RAA is more strongly
suppressed for π0 than for charged hadrons [1], and that
the yields of p and p near 2 GeV/c in central events [6]
are comparable to the yield of pions (p/π ∼ 1). This is
in contrast to the p/π ratios of ∼ 0.1 - 0.3, measured in
p+p [7] and e+e− [8] collisions, and to perturbative quan-
tum chromodynamics phenomenology [9]. These results
suggest that an investigation of particle composition is
important for understanding the medium effect on high-
p⊥ phenomena at RHIC. During the 2001 Au+Au run
at

√
sNN = 200GeV the PHENIX experiment collected

data to study the scaling properties of p and p produc-
tion as well as the p/π, p/π and charged hadron to pion
(h/π) ratios as a function of centrality.

The PHENIX detector [10] combines high momentum
resolution with diverse particle identification (PID), re-
sulting in hadron identification over a broad momentum
range. The present results combine the measurements of
π±, p and p with those of neutral pions [11] and inclusive
charged hadrons [12]. A “minimum bias” trigger based
on signals from the Beam-Beam Counters (BBC) and
Zero-Degree Calorimeters (ZDC) sampled 92.2+2.5

−3 % of
the inelastic Au+Au cross-section of σAuAu

inel = 6.9 b [11].
The collision vertex is restricted to ± 30 cm of the nomi-
nal origin. Approximately 2 × 107 (3 × 107) minimum
bias events are used in the charged (neutral) particle
analysis. These samples are subdivided into 7 central-
ity classes based on cuts in the combined ZDC and BBC
response: 0-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-
60%, 60-92% of σAuAu

inel . The average number of partici-
pants (Npart) and collisions Ncoll for each centrality class
are derived from a Glauber model calculation [11].

Identified charged particles are measured over a subset
of the PHENIX East-arm spectrometer covering pseudo-
rapidity |η| < 0.35 and ∆φ = π/8 in azimuthal angle.
PID is based on particle mass calculated from the mea-
sured momentum and velocity. The momentum resolu-
tion is δp/p ≃ 0.7%⊕1%×p (GeV/c) and is provided by a
multi-layer drift chamber (DC) followed by a multi-wire
proportional chamber with pad readout (PC1). The ve-
locity is obtained by measuring the time-of-flight (TOF)
and the path length along the trajectory. The timing sys-
tem uses the BBC to provide a global start signal; hits
on the TOF scintillator wall, located at a radial distance
of 5.06m, provide individual stop signals. The resolution

is σ ≃ 115ps, which allows a 4σ π/K and K/p sepa-
ration up to p⊥ ≃ 2 GeV/c and p⊥ ≃ 4GeV/c, respec-
tively. A 2σ momentum dependent cut in mass squared
is used up to p⊥ = 2GeV/c and p⊥ = 4 GeV/c to select
π and (p)p. Asymmetric cuts are applied at higher mo-
menta to extend the π/K and K/p separation up to p⊥
of 3 and 4.5GeV/c. The spectra are corrected for geo-
metrical acceptance, decay-in-flight, and reconstruction
efficiency using a GEANT-based Monte Carlo (MC) sim-
ulation and embedding simulated tracks into real events
with different particle multiplicities.

The p and p yields are corrected for feed-down from
weak decays using a MC simulation and the measured
Λ/p and Λ/p ratios at

√
sNN = 130 GeV [13] which

include contributions from Ξ and Σ0. Corrections for
feed-down from Σ± are not applied, but estimates based
on HIJING MC give less than ∼ 5% contribution. At
p⊥ = 0.65GeV/c, about 40% of the inclusive (p)p come
from weak decays. This fraction reduces to ≈ 25%
at 4GeV/c. The systematic uncertainty of this correc-
tion is estimated at 6% by varying the Λ/p (Λ/p) ra-
tios within the ±24% errors of the

√
sNN = 130 mea-

surement and assuming mT -scaling at high-p⊥. The
above uncertainty could be larger if the Λ/p (Λ/p) ra-
tios change significantly with p⊥ and beam energy. The
additional systematic error on the overall normalization
is 8% for p⊥ < 3GeV/c and 12% above 3GeV/c. Added
in quadrature, the total systematic errors are 11% and
14%; the larger value is for p⊥ > 3GeV/c.

Inclusive charged hadrons are measured in the West-
arm spectrometer covering |η| < 0.35 and ∆φ = π/2.
Two pad chambers (PC2, PC3) located at 4.2m and 5m,
respectively and a Ring Imaging Čerenkov Counter [12]
are used to reject and subtract high-p⊥ background. The
systematic error on the yields range from 11% for p⊥ <
5GeV/c to 45% at 9 GeV/c.

Neutral pions are reconstructed via the decay π0 → γγ
through an invariant mass analysis of γ pairs detected in
the electromagnetic calorimeter (EMCal), which covers
∆η = 0.7 and ∆φ = π. The absolute energy scale is
known to ≤ 1.5%. The systematic errors on the π0 spec-
tra range from 10% to 17%, from low to high p⊥ [11].

Figure 1 shows the p/π and p/π ratios as a function
of p⊥ measured at mid-rapidity in central (0–10%), mid-
central (20–30%), and peripheral (60–92%) Au+Au col-
lisions. The open symbols represent the p/π+ and p/π−

measurements, while the closed symbols represent the
corresponding p/π0 and p/π0 ratios. The error bars are
the quadratic sum of statistical errors and point-to-point
systematic errors. There is an additional normalization
uncertainty of ∼ 8% (for p/π+, p/π−) and 12% (for p/π0,
p/π0), which may shift the curves up or down, but does
not affect their shapes. In the region of overlap, the π±

and π0 measurements, with very different systematics,
are consistent to within 5% to 15%. For all centralities
the ratios rise steeply at low p⊥ and then, at a value of
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FIG. 1: p/π (left) and p/π ratios for central(0-10%), mid-
central(20-30%) and peripheral (60-92%) Au+Au collisions
at

√
sNN = 200 GeV. Open (filled) points are for π± (π0),

respectively. Data from
√

s = 53 GeV p+p collisions [7]
are shown with stars. The dashed and dotted lines are
(p + p)/(π+ + π−) ratio in gluon and in quark jets [8].

p⊥ which increases from peripheral to central collisions,
level off. In central collisions the ratios are a factor of
∼ 3 larger than in peripheral events. At p⊥ > 2 GeV/c
the peripheral Au+Au data agree well with the ratios ob-
served in p+p collisions at lower energies [7] (shown with
stars). The (p + p)/(π+ + π−) ratio in gluon and quark
jets produced in e+e− collisions [8] is shown with dashed
(dotted) line. Above 3 GeV/c the p/π, p/π ratios from
peripheral collisions are also consistent with gluon and
quark jet fragmentation, which should be independent
of the collision system. Deviations from jet fragmenta-
tion below 3 GeV/c indicate the absence of soft hadron
production in the e+e− data.

Hydrodynamic models have had success reproducing
(p)p [6, 14] and π data [6] from

√
sNN = 130GeV Au+Au

collisions [15, 16] and preliminary 200GeV data [17]. The
calculations show good agreement with the central p, p
and π± spectra up to p⊥ ≃ 3 and 2 GeV/c, respectively.
In peripheral collisions the calculations deviate from the
data above p⊥ ≃ 1 GeV/c. Within these models the large
p/π ratio is a natural consequence of the strong radial
flow [18]. All particle spectra converge to the same slope
if p⊥ is sufficiently larger than the particle mass p⊥ ≫
m0. The p/π ratio is Rp/π ≃ 2 exp(−µb/Tch), governed
only by the baryon chemical potential µb and the chem-
ical freeze-out temperature Tch. Using Tch = 177MeV
and µb = 29MeV [19] Rp/π reaches a limiting value of

1.7. Within 10%, the same limiting behavior is expected
for all centralities, since the thermal parameters vary only
weakly with centrality [20]. The data are not only below
the asymptotic value but also show a more pronounced
centrality dependence than can be accommodated by hy-
drodynamics models. This suggests that other mecha-
nisms begin to play a role before the asymptotic value is
reached. At intermediate p⊥ (2 < p⊥ < 4 GeV/c), hard
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FIG. 2: p and p invariant yields scaled by Ncoll . Error bars
are statistical. Systematic errors on Ncoll range from ∼ 10%
for central to ∼ 28% for 60-92% centrality. Multiplicity de-
pendent normalization errors are ∼ 3%.

scattering is one possible mechanism that competes with
“soft” processes as described by hydrodynamics.

Figure 2 shows the p and p spectra for different cen-
tralities (0–10%, 20–30%, 40–50%, 60–92%) scaled by the
corresponding value of Ncoll [11]. Error bars are statis-
tical only. Multiplicity dependent systematic errors are
of the order 3%. Errors on Ncoll range from ∼ 10% for
central to ∼ 28% for the peripheral event class. Below
p⊥ ≃ 1.5GeV/c the p and p yields scale slower than Ncoll

as expected for soft processes, and the effect of the radial
flow on the shape of the spectra is clearly visible. The
inverse slopes gradually increase from the most periph-
eral to the most central event class. Beyond p⊥ ≃ 1.5
GeV/c all spectra converge to the same slope and seem
to obey Ncoll scaling as expected for production due to
hard processes in the absence of nuclear effects.

Figure 3 compares the Ncoll scaled central to periph-
eral yield ratios,

RCP =
yield0−10%/N0−10%

coll

yield60−92%/N60−92%
coll

, (1)

for (p + p)/2 and π0. In the p⊥ range from 1.5 to 4.5
GeV/c, p and p are not suppressed in contrast to π0

which are reduced by a factor of 2-3. Moreover, this be-
havior holds for all centrality selections (Fig. 2), while
the suppression in the π0 yields increases from periph-
eral to central collisions [11]. The apparent scaling with
Npart for p⊥ ≃ 4GeV/c, of inclusive charged hadrons [21]
which has been interpreted in terms of saturation sce-
nario [22] appears to be somewhat coincidental, since we
observe a strong species dependence not expected in the
model. However, the interpretation in terms of soft and
hard processes is also not straightforward. If both π and
p, p originate from the fragmentation of hard-scattered
partons that lose energy in the medium, the nuclear mod-
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these quantities.

ification factor RCP should be independent of particle
species contrary to our result. As discussed above, for a
“hard” description to hold, the particle ratios p/π and
p/π should reflect the fragmentation function, which fa-
vors pion production.

It is possible that nuclear effects such as the “Cronin
effect” [23, 24] contribute to the observed large (p)p/π
ratios. In p+A collisions at energies up to

√
s = 38.8

GeV a nuclear enhancement beyond Ncoll scaling has
been observed for π, K, p and their anti-particles [25].
The effect is larger for p(p) than for π which leads to
an enhancement of the (p)p/π ratio compared to p+p
collisions. For p + W the increase is a factor of ∼ 2 in
the range 3 < p⊥ < 6 GeV/c. Theoretical descriptions
assume that the effect is due to initial state scattering or
p⊥-broadening [26]. Recent results comparing charged
hadrons to π0 in d+Au at

√
sNN = 200GeV suggest

that the Cronin effect in baryons is different from that in
mesons [27]. Another possibility is that the variation in
the p/π ratio with centrality reflects a medium-induced
difference in the formation time of baryons and mesons -
an effect which has been cited to explain DIS results [28].

Recently, the abundance of p relative to π in cen-
tral collisions has been attributed to the recombina-
tion, rather than fragmentation, of quarks [29]. In this
model, recombination for p and p is effective up to
p⊥ ≃ 5 GeV above which fragmentation dominates for
all particle species. Another explanation of the observed
large baryon content invokes a topological gluon config-
uration: the baryon junction [30]. A centrality depen-
dence, which is in qualitative agreement with our re-
sults, has been predicted [9]. In both theoretical models,
the baryon/meson enhancement is limited to p⊥ < 5–
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FIG. 4: Charged hadron to π0 ratio in central (0-10% -
squares) and peripheral (60-92% - circles) Au+Au collisions.
The peripheral data points are offset by +130 MeV/c for clar-
ity. The line at 1.6 is the h/π ratio measured in p+p colli-
sions [7]. The lower panel shows fractional normalization error
common to both centrality selections (solid) and the relative
error between the two (dashed).

6GeV/c. The identification of charged particles beyond
p⊥ ≈ 4.5 GeV/c is not yet possible with the current
PHENIX configuration, however the baryon content at
high p⊥ can be tracked indirectly using the h/π0 ratio.

Figure 4 shows h/π0 for central and peripheral Au+Au
collisions. The error bars represent the quadratic sum of
statistical and point-to-point systematic errors. In pe-
ripheral Au+Au collisions, R

h/π0 is consistent with the

measurement in p+p. In central collisions in the region
1 < p⊥ < 4.5 GeV/c, R

h/π0 is enhanced by as much as

50% above the p+p value. As shown in Fig. 1, this en-
hancement is due to a large baryon contribution. Above
p⊥ ≃ 5 GeV/c, the particle composition is consistent with
that measured in p+p collisions. This indicates that the
centrality-scaling of the p yields should become consis-
tent with that of π at higher pT (>∼ 5 GeV/c). Similar
trends are observed in Λ and K0

S measurements by the
STAR collaboration [31].

We have presented a systematic study of high-p⊥ parti-
cle composition in Au+Au collisions at

√
sNN = 200GeV

as a function of centrality. A large p and p contribution
which increases from peripheral to central collisions is
observed in the range 1.5 < p⊥ < 4.5GeV/c. In this p⊥
range, the p and p yields scale with Ncoll , as expected
for hard-scattering. This is in contrast to the centrality-
dependent suppression of π0 production. The baryon
enhancement with respect to π seems to be limited to
transverse momenta p⊥ ∼ 5GeV/c, as deduced from the
measurement of the ratio of inclusive charged hadrons to
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π0. We conclude that π and (p)p have different dominant
production mechanisms for p⊥ < 5GeV/c.
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