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Application of Newton’s method to a homogenization problem
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Abstract. The homogenization of a family (P,) of uniformly elliptic semilinear
partial differential equations of second order is studied. The main result is that
any non-singular solution # of the homogenized problem (P) is the limit of non-
singular solutions of (P¢). The method consists of specifying a function w, starting
from which the Newton iterates converge to a solution u, of P.. These solutions u,
converge to the given solution u of (P).
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1. Introduction

Let € C R" be a bounded open set with boundary I. Consider the following
family of second-order differential operators defined in £, depending on 2 para-
meter ¢ which tends to zero :

> >
.1y 4= —-&a(a:,(x)a).

(Here, as well as throughout this paper, the summation convention for repeated
indices will be assumed.) Various homogenization problems connected with
these operators have been considered in the literature. Benscussan ezal [1]
have studied the linear problem A%u, =f with various boundary conditions.
Kesavan [4] has analysed the corresponding eigenvalue problems. In this paper
the following semilinear problem will be studied :

(1.2)  A%u =1 (o) in 2,
1.3) w4, =0on/l,

where £: R —» R is a given function.

Indeed the identification of the homogenized problem is not difficult and will
not occupy ihe principal part of this study. In fact Mythily [5] has homogenized
(1.2) with & more complicated boundary condition. The mor® important ques-
tion, which will be the main preoccupation in this paper, is the following : * given
a solution u of the homogenized problem, does it approximate a solution u, of
the real problem ¥ In other words, is u the limit of a sequence {1} of solutions 7’
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230 S Kesavan

In the case of the linear problem, the uniqueness of the sclutions of the various
problems concernad trivially answers the above question in the affirmative,
In the case of the eigenvalue problem Kesavan [4] has shown that eigenfunctions
u of a simple eigenvalue of the homogenized problem occur as limits of eigen-
functions ue of the given family of problems. The case of multiple eigenvalues
is still open. In this paper, it will be proved that, under suitable conditions, a
non-singular solution u of the homogenized problem is the limit of a family {u;} of
solutions of (1.2)-(1.3), which, for sufficiently small €, will also be non-singular,

The main idea of the proof is the following : First a function w, is defined
as the unique solution of the auxiliary linear problem :

(1.9 A*w.=f(w)in £,
1€.5 we=0onlr,

where u is the given non-singular solution of the homogenized problem. Then
it is shown that for sufficiently small ¢, the hypotheses of the Newton-Kantorovich
theorem. can be verified if w, is used as the starting vector for the Newton method.
Hence the Newton method will converge to a solution u, which will be unique
in a neighbourhood of we and of u. Thus {u} will converge to u owing to the
property of lacal uniqueness.

In § 2, the important hypotheses are made and some preliminary results are
recalled. In § 3, the existence of solutions to the various problems is proved and
the homogenized problem is identified. In §4, the eXistence of a sequence {u)
converging to a given solution u is proved. §5 is reserved for conclusions and
various commenits,

2. Preliminaries

The following hypotheses are made on the coefficients af:

(H1) There exists a constant M > 0 independent of ¢ such that
Q.1) |a®l<Mae,l<ij<n

(H2) Theie exists a constant o, > 0 such that
(2.2)  VE=(8)eR" ay(0) & = abibiae.

Deﬁm‘tion 2.1. An operator 4 of the form,

@y 4=-(a@s)

’
F]

is said to be tl}e homogenized operator,w.1.t. thé family {49} if the following holds : -
Let u. — u in H;(2) weakly and A°u, —» g in H-'(Q) strongly. Then

. ou, )
& = af}(x)b*—xj"’ aii(x)bl;j = fh;

in L2(Q) weakly, 1 <i < n.
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This definition is due to Tartar [8]. As a consequence, given { fe} in H1(Q)
converging strongly to £, and {u} the unique solutions of the problems
(2.4) VoveH} (Q), a.(ue,v)={(f,v)HT HY)
where for w, v e H; (),

B . Ow ov
2.5 a(wv)= j “u(x)g}‘j”a}; *

Q t

then, 4, — u in H2(Q) weakly [and hence in L*(Q) strengly] to the unique solu-
tion, u, of the homogenized problem,

(2.6) VoveH}(Q), a(wv)={fvE Hp)
where for w, v € H2(Q),
N1 «_3_1;_

@7 a(mv)= j a5 () 5% 3
¢« QT S

ax.

The existence of such an operator is known (¢f. Tartar [7]). The operator 1s
also elliptic with the same constant of ellipticity. The coefficients are bounded.
(If they are symmetric, the samé bound works.) In case of the ¢ havirg a
periodic structure the operator 4 can be explicitly written (¢f. Bensoussan et dl

[1D.

Let £:R — R be a function which verifies the following hypothesis :
(H3) fis a C! function such that both f and f' are Lipschitz continuous with
constants K, and K; respectively. Further, it is assumed that K, < « the ellipti

city constant of the bilinear forms a. (-, -) and a (", 3

Proposition 2.1. Suppose that the hypothesis (H3)is verified. Then if ue L* (Q)
for some p>1, f (u)and f’(u) are also in L (Q). If u. — u in L7 (2), then
f () = f (u) and [’ (ue) = f () in L?(2). .
Proof.

gf [f (u(x)) — f(0) " dx < KT S{ [u(x) |Pdx < + o0.
Since constant functions arein L* () for 2 bounded it follows that f (1) € L? (Q).
Similarly '

ﬁf |f (e (x)) = f(u(x)) |? dx < KT S{ e (x) — u(x) I* dx,
which converges to zerc. Thus the assertions proved for f (u). The proof for

f'(uw) is identical. '
~ The problem (1.2)-(1.3) can now be written as follows in its weak form :

(P.) To find u. € H} (2) such that
(2.8 VveH} (@), o (uov) = [ f(w) . vdx.

One can define the nonlincar operator
T. : H:(Q) - H}(Q) as follows;

P.(A)—S5
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2.9 VoveH{(Q), a.(T.(u),v)= ff(u) v dx.

Then the problem (P,) reduces io finding fixed points of T, or the zeros of F, whme
(2.10) F.=1 —T..

Remark 2.1. Since the injection Hj (2)— L2(R) is compact, it follows that
T, is compact. v

Analogously, the operators T and F(= I — T), associated to the homogenized
operator A4, can be defined.

Finzlly, an abstract theorem relating to solution of nonlinear equations in
Banach spaces will now be recalled.

Theorem 2.1. Let X and Y be Banach spaces and F: DC X — Y. Suppose
that on an open convex set Dy C D, Fis F.échet differentiable and

2.11) Vx,peD, [F () -F®|<Klx—yl.
For some x,e Dy, assume that I’y = (F' (xg))-! is defined on all of Y ard that
h=BKn<% where || Io]|< B, and || I, Fx, || <n. Set

(2-12) t* = ﬁK(l-\/l 2, r**—-—~(1+\/1

Suppose that S={x ||| x — x || < t*} C D,.
Thzn the Nawton iterates {x;} given by
(2-13) X = xp — (F' (x))? F(xk): k=0,1,00.

are all wall defined, lie in S, and converge ¢ 8 solution x* of F(x) = 0, which
is unique in Dy N {x ||| x —x,[ < t**}. Moreover, if & < % the order of conver-
gence is ai least quadratic.

"~ Known as the Nowton-Kantorovich Theoram, the above was proved by Kanto-
rovich (¢f. [2], [3]). Ortega [6] has given a simpler proof to the same. Tkis
theorem will be used o prove the main result in § 4.

3. Existence and homogenization results

Throughout this section we assume that the hypotheses (H1)-(H3) are verified.
Proposition 3.1. There exists a consiant C > 0, independent of e, such that

G- Julh,e <C
Proof. Set v = u, in (2.8). Then
allUelB, o < e (Ue» ig) = £ f (ue) ue dx
= [ (f @)~ @) wdx +[ f @ueds, f (a) =0
SKog.g | Ue — @] |t | dx + C; Ikue;lo,ﬂ

<Ko lUe i3, 0 +Cylu. lo Qs
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or

ll U, ”1,9 <

2
Ko ‘ lig 10,9 < — K() H ue “1, Q>

which proves (3.1).
Remark 3.1. In the above proof, the hypothesis K, < o has been used.
Theorem 3.1. There exists at least one solution, to the problem (Pe).

Proof. Firsi of all it was remarked in the previous seotion that T. is compact.
Further if 0 < 4 < 1 it can be proved that any sclution of the problem

(3-2)  ze = ATz
is such that
(3:3) llzeh,e <G

where C > 0 is as in Proposition 3.1. (The proof of this fact is identical to that
of the above-mentioned proposition.) Thus by Schaeffer’s Theorem T, admits
at least one fixed point in B (0; C), the ball centre 0 ard radius C in HI(Q).
Theorem 3.2. There is at least one solution to the homogenized problem
(P):u=1Tu

Proof. The proof is identical to that of the preceding theorem.

Theorem 3.3. Let u, be a solution to (Pc). Then there exists a subsequence
(again indexed by ¢) such that w, — u in H; (£2) weakly, # being a solution to
the homogenized problem (P).

Proof. By Proposition 3.1, the u, are all bounded in Hg(£). Thus we can
extract a weakly convergent subsequence with limit, say, w. Then v, — u in
L2 (Q) strongly. Hence by proposition 2.1, f (1)) = f(u) in L? () strongly and
thus in H™'(Q) strongly. Now by the definition of the homogenized operator
(cf. definition 2.1) we have

(3-49 ypoveH}(Q), alu,v) = ‘{ f (v dx,

Wthh proves the theorein.
The idea of using Schaeffer’s Theorem is quite classical in the existence theory

of nonlinear cquations (¢f. Rabinowitz [7]).

4. The main theorem

Under the hypotheses (H1)-(H3), we already know that the ploblems (P) and
(P.) admit at least one solution each. We will prove now thatif n <5, and u &
non-smgular solution of (P), among the solution of (P,) there exists a solution
u, which is non singular, tendirg to u. This is an important step towaid the
study of the stability of homogenization for the associated evolution equation.

‘Proposition 4.1. Let n < 6. Then T, (resp. T) is Fréchet dlﬁ‘cremxable on all
of V. .The family {T7, T} ‘is uniformly Lipschitz continuous:
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Proof. Since n < 6, the following inclusion holds :
Hi(Q) > I3 (D).

Then for u,v,we H:(Q), the integral
' (wyv wdx,

is well defined and is continuous w.r.t. v and w. Tt is easy to check that the Fréchet
derivative of T. at u is defined by

(4.1) VweHi(Q), 6. (Te(w)v,w) = ,gfzf'(u)v w dx,

for any v € H? (). Now, let u;, u, € H3 (). Set
(4.2 =T, (W)ov,i=12,
where v € H: (£2). Then

allze = z5 |2, o < @ (25 — 25, 25 — 23)
= é (f" () — f' (up)) (25 — 2z5) v dx

<K Jlug—ullzf—z]|v]dx
<K lw—Ulgselz —2Zl,sal?losa
< CK Yy —upllooll 25 — 25 M, @ lo lh, 0o
or H(To(w) — T, W) lh,e < Kllu —u, “1, ol a-
which gives

4.3 Ty~ Ted b, o < Kllw —tall, 0

K being independent of e. The proof for T is identical.

Proposition 4.2. Let n< 5. Then for any wue Hj(Q), T, (u) (resp. T' (1) is
compact.

Proof. Form <5, the injection
(4.4 H(Q->LY(Q

is compact. The result is a direct consequence of this fact.

Remark 4.1. If n = 6, then the inclusion (4.4) is not compact and the above
result does not hold.

Henceforth, it will be assumed that u is a given solution of the homogemzed

problem (P). Let, for each ¢, w.c H}(2) be defined as the unique solution of
the following linear problem. ,

4.5y vveH;(Q), a. (W, v) = sj'; f () v dx.

) From the theory of homogenization of linear problems, it follows that we —> 4
in H}(2) weakly [and in L2(Q) strongly].

'Proposition 4.3, Let n<5. Let u be a non-singular solution of problem (P),
ie. F(uw= I-T (4) is invertible. Then for sufficiently small e, F.(we) =
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I— T:(w,) is also invertible. Further, there exists a >0, independent of e,
uch that

@.6) NI - Tc(w*lI< b

Proof. Assume the first assertion false. Then there exists a sequence e, — 0
such that

I - T::n (M)En)ﬂ

is singular. (Hsnceforth, purely as a matter of convenience, the index n will be
uppressed.) Since Tt (w,) is compact, there eXists a non-zero function z, € Hj (2)
such that .

@7 ze=T:(we) Z.

It can be further assumed that
“4-8)  fzely, e = 1.

Now (4.7) can be rewritten as

4.9 VweH}Q), a(z,, W) = ;Ef' (We) ze W dx.

Now for a subsequence (again indexed by €) z. = 2 and w, - uin HE(Q) weakly.
Consider, for any we H;(2),

Ig(f'(we)ze —f’(U)Z)deI
égf lf'(we)llze—ZHWde*l's{ Vf P w) =f @zl wldx

4
-

<C(lze— zlosa t+ Lf (we) — f' () lo,3,0) |l wll, o-
Since z. — z in L3(Q) strongly (n<5) and f "(we) = f' (1) in L3 () strongiy
[¢f. Proposition (2.11)] it follows that

f W ze = (W) 2

in H-1(Q) strongly. Then by the defintion of the homogenized operator,
@.10) yweH}(Q), a(z0) = sg () zwdx,
or, equivalently,
4.11) z=T"(u)z. :
By assumption, thi> is possible only if 7 =0. Hence ze— 0 in H(2) weakly

(L3 (R)) strongly. _
Now, choosing w = z in (4-9) and taking into account (4. 8), it follows that

0<a égj‘ I (we) ze zedx < | f' (We) lo,3,0 | Ze lo, 3, Qs

which converges to zero, thus giving 2 contradiction. Hence the first assertion

is true. ‘
Assume now that (4.6) is false. Then there exists a sequence (denoted, as usual,

by e itself) y, and a sequencc v, in H:(Q) such that
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ve = (I = T2 (W) ye
(4.12) {” velh,o =1, Iyell, @ = 0.
Set,

(4-13)  z. = T. (we) v -

Then

(4-14) Ve = Ve — Ze.

Clearly, || 2., lli, @ < C and hence (for a subsequence) v, » v, ze — z, say, in H(Q)
weakly. Since y, —» 0 in H}(Q) strongly it fullows that z = v. As before it can
be shown that

f (W ve = f' (W) v,
in H-1(Q) strongly. ‘Passing to the limit,
4.15) VweH}RQ), a(z,w) = £f’ (u) z wdx,

which again implies z =0 =v». Once again,
(4.16) ol ze 2,0 < a, (ze, Zg) = sfzf' (We) ve 2g dx.

The integral converges to zero since v, - 0, z. > 0 in L3 (22) strongly. Hence
it follows from (4.16) that z, - 0 in H2(®) strongly and hence from (4.14) that

ve—> 0 in Hy (L) strongly. But this contradicts the fact that ||v el,a=1.
Thus, (4.6) is established. |

Proposition 4.4.

lim ” Fe (we) ”19 Q= 0.
€->0

Proof. Set
4-17)  ye= T we.

Then H F, (we) ”1, Q= ” We — Ve l 1, Q-

Now by definition,

(4-18) VweH;(Q), ag(We — y, w) = sg (f (@) — f (we)) wdx.
Thus, it follows that

allwe—yellf,‘n SKnlu“‘we[o’Q‘we

or, for some C > 0, independent of €,

_yellh Q>

419 [1We = Yel o< Clu—w,l,, 0

’

“which converges to zero, thus proving the result.

The main theorem can now be stated and proved.
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Theorem 4.1. Let the hypotheses (HI-H3) be true. Let n< 5. If u is a given
non-singular solution of the homogenized problem (P), then for sufficiently small
e, the problem (P,) admits a solution u. such that u. - u in H} () weakly and
L3(Q) strongly. Further, the solution u, iS also non-singular.

Proof. For the first assertion, it will be shown that all the hypotheses of the
Newton-Kantorovich theorem are verified.

Step 1. First of all for every ¢, Fe exists on all of Hg (2) and is Lipschitz conti-
nuous with a constant K, independent of e« (Proposition 4.1).

Step 2. Consider w, defined by (4.5). Then for sufficiently small e, I3
= (F, (w))™ exists and || Iy, ¢ I| < 5, independent of e (Proposition 4.3).
Step 3. Finally set |

(4-20) ne=CBlu—welo 0
where C is as in (4.19). Then

| Tos & Fe (We) | < e
and 7. > 0 as « — 0. Hence for sufficiently small e,
4.21) he=Kfne < 1/2.
In fact, i, —» 0 as e — 0. Thus the Newton iterates
Wil = b — (FL (D)™ Fe (up)

ug = We

(4.22) {

are all well-defined, lie in the ball

(4.23) S, ={w|llv = welh, o < teh
with |
(4-24) 12 =1/BK(1 — /1 = 2k)),

and converge to a solution u, of (P¢) which also lies in S, by the Newton-Kanto-
rovich theorem (¢f. Theorem 2.1). ~

Step 4. Now by Theorem 3.3, given a subsequence of {u}, a further subsequence
can b2 extrasted converging to a solution, say, @ of (P). But since h, — 0,
it follows that z2 — 0 and hence | ue—Wwell1, @ = 0. Since both u¢ and w, converge
waakly, the limits must coincide and hence @ = wu. Thus irrespective of the subse-
quence, the limit is always u and so it can be deduced the entire family v, converges
to u weakly in H} (). ‘

Step 5. . To prove the non-singularity of u,, the invertibility of I — T (u,) must
be proved. This is done exactly as in Proposition (4.3).

Thus the theorem is completely proved. "

Remark 4.2. It may be wondered that i could be used as a starting point for
the Newton iterates for each e instead of w,, thus avoiding several estimates, But
then F, () = uy — W, Which does not converge to zero in H2(Q). Thus A, < 1/2
cannot be guaranteed. Thus ug converges to u only weakly while w, is always
sufficiently close to u, to guarantee the convergence of the Newton method
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5. Conclusion

It has been proved that non-singular solutions of homogenized problem are limits
of non-singular solutions of the given family of problems, (P,). The hypotheses
on the coefficients of the differential operator and on the given function f are fairly
minimal.

The hypotheses (H1) and (H2) are standard ones used in the linear theory of
homogenization. The Lipschitz continuity of f and f’ l2id down in hypothesi
(H3) was used to prove the Fréchet derivability of T, and the Lipschitzcontinuity
of T, an essential condition in the Newton-Kantorovich Theorem. It seems
possible that, working with classical solutions (¢f. Mythily [5]), the local Lipschitz
continuity of f and f’ may suffice. The only simplifying assumption is K, < a,
which has been used only to prove the existence of a solution via a priori estimates,
Indeed this condition can be removed and replaced by any other which guarantees
the existence of a non-singular solution of the homogenized problem alone. Then
the method of this paper can be used to prove (without new hypotheses) the
existence of a solution of (P.). This solution will be non-singular and willconverge
to . .

The principal drawback seems to be the restriction on the dimension, viz.,
n< 5. In the case n = 6, the theorem can be established with the additional
hypotheses that f' is bounded. Then f’(u)v e L2(Q) for u,v € H: (L) and the
compactness of the operators T, (u) and 7" (w) will follow.

The case n > 6 seems to be open. The main difficulty in this case is the diffe-
rentiability of T.. Itis not obvious [even for f'(x) = x] that £’ (u) v € H*(Q).
Of course, it will be so if ' is assumed bounded. Even then while 7”(u) can be
formally defined by (4.1), it cannot be proved that it is indeed the Fréchet deriva-
tive of T, at ». This is because in assuming f* to be bounded, while 1 (1) v € L2 (L)
- H-1(Q),f' (1) does not play any role in the estimates. Again for the same
reasons 77 cannot be proved to be Lipschitz continuous, ‘
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