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Abstract—New numerical algorithms are proposed for the accurate evaluation of transverse stresses in
general composite and sandwich laminates. A set of higher-order theories with C® isoparameteric finite
elements and exact three-dimensional equilibrium equations are used. The integration of the equilibrium
equations is carried out through exact surface ﬁttmg method, direct mtegratlon method and forward and
central direct finite difference methods. Sixteen- and nine-noded quadrilateral Lagrangian clements with
selective numerical integration techniques based on Gauss-Legendre product rules are used in the analysis.
Validity of the present numerical techniques and the higher-order theories are demonstrated by comparing

vresent results with the available elasticity and other closed-form solutions for cross-ply, angle-ply and
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sapdwich laminates. The exact surface fitting method is seen to give accurate estimate - of the transverse

stresses compared to other methods.

INTRODUCTION

Composite materials are currently enjoying a variety
of engineering applications and their strength and
weaknesses are begmnmg to be properly appreciated
by designers, and they are being emp]oyed in a more
rational maﬁﬁerp }. One form of these materials,
being used in current design studies for aircraft, is the
unidirectional fibre reinforced plastic lamina. Conse-
quently, these design studies incorporate structural
elements such as plates and shells which are fabri-
cated from a number of unidirectional laminae and
the desired strength/stiffness properties of these el-
ements are achieved by suitably orienting the laminae
relative to the plate or shell principal axes.

In many instances these laminate structural el-
ements will be moderately thick in relation to their
span dimensions and in consequence of this a more
refined analysis, one that takes into account trans-
verse shear deformation, is required if the flexure
response is to be adequately predicted. The classical
lamination theory based on the Kirchhoff hypoth-
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esis [1] and the first-order shear deformation theories

based on Reissner [2] and Mindlin [3] cannot be em-
ployed for this analysis. This is because the classical
lamination theory ignores the effect of transverse
shear deformation, normal stress/strain and non-
linear in-plane normal strain distribution through the
laminate thickness [1] and the first-order shear defor-
mation theory even though it considers the effect of

trancverce gchear deformation but assumes it ag con-

SIRNSVYOISE iRl GLIOIINGLRL, DLt QSSGMS 2L a5 LOIN

stant, thus a fictitious shear correction coefficient
is used to correct the strain energy of deformation.
To overcome ali these discrepancies, Reissner [4],
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Lo et al.[5,6] and Kant[7] presented higher-order
theories which take care of the shear deformation,
transverse normal stress/strain effects. Kant er al. [8]
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lation of a higher-order theory.

Pandya and Kant[9-11] and Kant and Manju-
natha [12, 13] have extended this theory for general
composite and sandwich laminates. Reddy [14],
Phan and Reddy{15] and Pucha and Reddy[16]
have presented a closed-form, C' displacement
finite element and C° mixed finite element formu-
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displacement model given by Murthy[17] and
Levinson [18]. But these neglect the effects of trans-
verse normal stress/strain. Pandya and Kant[11]
have also given a novel approach of imposing the
zero transverse shear stress conditions on top and
bottom bounding planes of the laminates by modify-
ing the shear rigidity matrix instead of the displace-

ment model {14, 17, 19].

Further, in the evaluation of in-plane and trans-
verse stresses, the constitutive relation can be used to
accurately evaluate the in-plane stresses, but the same
cannot be used for the evaluation of transverse
stresses as it violates the continuity of these stresses
at the interfaces. Thus, transverse stresses are gener-
ally evaluated by using the three-dimensional equi-
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librium equations. Engblom and Ochoa {20, 21] have

modified the displacement field to specify element
behaviour and to get a good estimate of in-plane and
transverse stresses by using higher-order theories.
But, in estimation of these stresses, the formulation
obtains » equations in #n —1 unknowns, thus the
equations set becomes overdetermined. These

equations are solved by utilizing a least square
orthonormalization procedure.
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The main aim of the present work is to accurately
evaluate the transverse shear and normal stresses by
using three-dimensional equilibrium equations. The
integration of the equilibrium equations is attempted
through direct integration method, forward and
central direct finite difference methods and a new
approach called exact surface fitting method.
The numerical results obtained by these methods
for different models are compared with the
available two-dimensional finite element[14-21],
elasticity [22,23] and two-dimensional closed-
form [24-27] solutions.

THEORY AND FORMULATIONS

The formulations are developed with the assump-
tion of displacement (Fig. 1) models for an
anisotropic laminate in the following form

HOST?
u(x, y,2) = ug(x, y) + 20, (x, ) + 2’0} (x, y)
v(x, p,z) = vo(x, ¥) + z0,(x, y) + 2°0 ¥ (x, )

W(st’aZ)=Wo(x«,V) n

HOST9
ulx,y,z) = u(x, y) + 26 (x, y)
+ 2% (x, p) + 20 (x, »)
v{x, y, 2} = vy{x, ¥) + 26,(x, ¥}
+ 2% (x, y) + 230% (x, y)

wix, y, 2} = wy{x, y)

HOSTI1
u(x, y,z) = uy(x, y) + 20 (x, y)
+ 22U () + 2203 (x, )
v{x, y, z) = vy(x, y) + 20,(x, y)
+ 2208 (x, y) + 2°0 (x, ¥)

w(x, y,2) = Wy(x, y) +20.(x, ) + 2w (x, y)
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Fig. 1. Laminate geometry with positive set of lamina/laminate reference axes, displacement components
and fibre orientation.
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HOSTI12
u(x, y,z) = uy(x, y) + 26,(x, y) + 2°u (x, y)
+2°0¥(x, y)
v(x,y,2) =vy(x,y) + 20,(x, p) + 2208 (x, y)
+2%9%(x, y)
w(x, y,2) = wo(x, y) + 20,(x, y) + 2w (x, y)

+2°02(x, »). @

In the above relations, the terms u, v and w are the
displacements of a general point (x,y,z) in the
laminate domain in the x, y and z directions
respectively. The parameters u,, v, are the in-plane
displacements and w, is the transverse displacement
of a point (x, y) on the middle plane. The functions
0,, 0, are rotations of the normal to the middle plane
about y and x axes, respectively. The parameters u§,
v¥, wg, 0%, 0), 0F and 0, are the higher-order terms
in the Taylor’s series expansion and they represent
higher-order transverse cross sectional deformation
modes.

The full three-dimensional and its reduced
forms of strain displacement and constitutive
relations appropriate to the chosen displacement
models are used in this formulation [9-13, 31].
The theories based on the above higher-order
displacement models lead to non-vanishing trans-
verse shear and normal stresses on the top and
bottom bounding planes of the laminate. Pandya
and Kant[11] have modified the shear rigidity
matrix as against the displacement model [14, 17, 19}
to incorporate the zero shear conditions. Their tech-
nique retains the C° continuity of displacements
including the higher-order ones. This procedure is
used for displacement model with seven degrees
of freedom (HOST7B). But the results obtained by
models which do not satisfy top and bottom zero
shear condition are in general better compared to
models where this condition is satisfied. This
was seen to be more true in the case of thick
laminates [11].

The evaluation of transverse stresses (7., 7)., 7;)
from the stress-strain constitutive relations leads
to discontinuity at the interface of two adjacent
layers (laminae) of a laminate and thus violates the
equilibrium conditions. The three-dimensional
analysis becomes very complex due to the thickness
variation of constitutive laws and continuity require-
ments of transverse stresses and displacements across
the interfaces. Thus, elasticity equilibrium equations
are used to derive expressions for the transverse

stresses in the Lth lamina of a multilayered laminate,
namely

do, Oty Ot
ox Oy + 0z =0 )
or,, 0o, Or,
o Ty T " ©
ot , 01, 0o,
ox oy 0z 0. @

The integration of these equilibrium equations is
attempted here through different novel approaches:
direct integration method, forward and central direct
finite difference methods and a new approach called
an exact surface fitting method. These methods are
explained below.

(a) Direct integration method

The three differential equations of equilibrium
given by eqns (5)«(7) give three relations, namely,

Ot,, (0o, O,
3z - (ax M 6y) ®
o,  (de, 01,
oz <6y + ox ®
and
d%s, 0%, d%, 0%,
R . N St 4 bt 0
il P oy T oxdy (19)

from which the transverse stresses 7,;, 7,, and o, can
be evaluated through integration with respect to the
laminate thickness z. The in-plane stresses o, and o,
and the in-plane shear stress 7,, obtained by constitu-
tive relations are substituted in eqns (8)—(10). It can
be seen that eqns (8) and (9) are first-order equations
in 7,, and 7,,. Solving these equations one obtains
only one constant of integration, this being an initial
value problem. However, this problem is vexing
because the value of transverse shear stresses are
normally known at both top and bottom boundary
surfaces of the laminate. Thus one obtains only a
non-unique solution for transverse shear stresses as
two prescribed condition for these stresses cannot be
simultaneously enforced in the solution. In the case
of transverse normal stress [eqn (10)] a second-order
equation is obtained. By integrating the second-order
differential equation twice, two constants of inte-
gration are obtained. These constants of integration
can be determined by substituting the two boundary
conditions on the top and bottom surfaces of the
laminate.
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The final form of the computational algorithms for
.., T,; and o, after integration through the laminate
thickness can be written as follows:

L [Zie fdg, Ot
7L = - 4+ 2ldz+C, (11
tea=-3 [ (e 52)e e an
L fZ+ (3o, ot
Thlig=— =4 ”)dz+c 12
yrlL+1 :=Zl ,[Z, (ay ax 2 ( )
L 2+ d*c, 0%
ol = —+—
P 1=1Jz, (J‘z(ax2 6}’2
oty
+2 = Vdz Jdz + 2G5 + C,. (13)
Ox dy

The constants C, and C, are obtained from the
known values of 1,, and 1,, at either of the two
boundaries at z = +4/2 while constants C; and C,
are obtained from the known values of o, at
z = +h/2. However, eqn (13) requires the use of third
derivatives of displacements. For this reason cubic
sixteen-noded quadrilateral Lagrangian elements in
addition to nine-noded elements are used here. The
presence of second and third derivatives of displace-
ments in the stress evaluation dictates the use of high
degree polynomial elements and further introduction
of numerical error in the estimation of transverse
shear and normal stresses. Thus, forward and central
direct finite difference (FDM) methods and a new
approach called exact surface fitting method (ESFM)
are proposed to accurately estimate the transverse
shear and normal stresses. Here a formulation for
sixteen-noded element is presented. The same pro-
cedure is also used for nine-noded element.

(b) Finite difference methods

Here also in-plane stresses are evaluated by using
constitutive relations at different Gauss points in an
element (4 x 4 sixteen points for sixteen-noded and
3 x 3 nine points for nine-noded). After that, the
forward difference method (stresses are maximum at
the edges of the laminate) is used in the x—y plane to
evaluate the derivatives of in-plane stresses at a
particular Gauss point inside the element and either
a forward difference or a backward difference method
is used for the evaluation of the same at the edges of
the laminate depending on whether the edge is a
positive or negative one. The following equations
corresponding to eqns (8) and (9) are obtained

01, (GP)

37 —AA (14)
01,.(GP) _ —BB (15)
oz
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A = I:ax(GP +4)— ax(GP)]
Ax

txy(GP + 1) - TX)'(GP)
+ [ AY :} (16)

BB - [ay(GP +1)— a.,.(GP)J
AY

Txy(GP + 4) - Txy(GP)
+ [ AX ], amn

where GP is the Gauss point number at which stresses
are evaluated and GP +4 and GP + 1 are the next
Gauss point numbers in the x and y directions
respectively, where the stresses are evaluated.

Forward difference method. The final form of the
computational algorithms for 7., and 1, after using
the forward difference operator along the thickness
direction in eqns (14) and (15) are written as follows
(these are designated as the forward-direct difference
method)

rlezL.H:tizl:L_[AA]L*(ZL+I*“L) (IS)
T,lv'z zL+|=T)l:z|zL_[BB]L*(:L+1~'~L)' (19

Central difference method. The following compu-
tational algorithms are obtained for 7., and t,. after
using the central difference operator along the thick-
ness direction in eqns (14) and (15) (these are desig-
nated as central-direct difference method) [30]

|:sz(2,_+1) - (1 — az)‘rx:(:“ - a"--c‘:m |)] - —[AA]
(e + Dz, —2)

(20)

[Tyz(z,_ 1) (1 - az)Ty:(:L) - altyz(:l_ _ 1):, — —[BB]

a(@+ 1Dy —2z;)
@n

in which

=(ZL+1_2L)‘ 22)
(zp—z1y)
As the central difference method is a two-step
non-self-starting method, the forward difference
method is used to evaluate the transverse stresses at
first step and for subsequent steps central difference
method is used. This method can be effectively used
for isotopic laminates. For laminates having different
isotropic, orthotropic or anisotropic laminae, the
in-plane stresses are discontinuous and two values are
obtained at an interface of two layers. As the trans-
verse stresses are continuous through the interface of
two layers, the derivatives of in-plane stresses must
also be continuous through the interface. Thus, an
average of the two values at the interface is used in
the above techniques.



Estimation of transverse stresses in multilayer laminates

(¢) Exact surface fitting method

Here also in-plane stresses are evaluated through
constitutive relations at different Gauss points in an
element. After obtaining the in-plane stresses acting
on lower and upper surfaces of a particular layer, the
variation of these stresses over a particular surface of
an eclement can be expressed as a polynomial in
laminate axes (x, y) as follows:

6,(2)=Ci+Cix +Ciy + Cix*+ Cixy + Ciy?

+ Cix3+ Cix?y + Cixyr 4 Ciyy?
+ Cix%y + Chx? + Cixp’ + Cix¥y?

+ Cisx%y® + Cigx*y*. (23)

Similar equations are obtained for ¢, and 7,,. The
parameter in eqn (23), z refers to a particular surface
in the laminate at a distance z from the middle plane
and this may be the top or bottom surface of a
particular lamina or a subset of a particular lamina
having same ply orientations. The following equation
is obtained by substituting the in-plane stresses at is
obtained by subsltituting the in-plane stresses at
different Gauss points in an element

[ A )G I=10%]

(16 x16) (16 % 1) (16 x 1)

(24)

Similar equations are obtained for o, and 7,,. The
above equation is solved and the sixteen polynomial
constants are obtained. Equation (23) is differentiated
with respect to x and y and thus derivatives of
in-plane stresses are obtamed These are written as
follows:

=C}+2Cix + Ciy +3Cix*+ 2Cixy + C3y?

0x
+3C4xYy + 2C%,xy? + Ci,p° + 3C%, x¥y?
+2Cisxy? + 3Cix?y? 25)

da,
Ox?

Xy +2Chy?

+6C3,xp? + 2Ciy® + 6Cigxy>. (26)

Similar equations are obtained for o, and t,,
These derivatives are then used in eqns (8) and ©®) and
the same procedure as used for the direct finite
difference method is used following eqns (18)-(22).
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The final form of the computational algorithm for
o, after using the central difference operator along the
thickness direction in eqn (10) is written as follows:

[az(z,_ s (l + a)az(zl,) + A0z, AI)]
a(l +a)(zz 4 — 2,
3%, O o

=ﬁ+3y7y+2ax‘;;‘ 27

The double derivatives of in-plane stresses are
substituted in eqn (27) and this equation is solved as
a boundary value problem by substituting the two
boundary conditions for transverse normal stresses at
top and bottom surfaces of the laminate.

The displacement models given by eqns (1)(4) are
used in conjunction with C° isoparameteric finite
elements in the x-y plane and the same has been
explained in detail in [12). Lagrangian quadrilateral
elements with 9 and 16 nodes are used. A selective
numerical integration technique based on
Gauss—Legendre product rules is used here for the
evaluation of the element stiffness properties.

NUMERICAL RESULTS AND DISCUSSION

To demonstrate the accuracy and efficiency of the
present higher-order theories and the new numerical
techniques, a set of computer program incorporating
the higher-order theories are developed for the elasto-
statics of general composite and sandwich laminates.
All the computations are carried out on a CYBER
180/840 computer in single precision with sixteen
significant digits word-length. A computer program
based on the Reissner/Mindlin theory has also been
developed to support the numerical evaluations of the
present formulations. The transverse shear energy
terms in the Reissner/Mindlin theory are corrected by
using a shear correction coefficient of 5/6 for all the
materials used here. Selective numerical integration
technique, based on Gauss-Legendre product rules,
namely 4 x 4 for flexure/membrane and 3 x 3 for
shear terms has been employed for sixteen-noded
elements and 3 x 3 for flexure/membrane and 2 x 2
for shear terms, has been employed for nine-noded
elements in the analysis. Due to biaxial symmetry,
only one quadrant of the laminate is considered in the
case of crossply laminates and for angle-ply and
general sandwich laminates full laminate is con-
sidered in the analysis.

The values of in-plane, transverse stresses are
evaluated at the Gauss points, whereas the displace-
ments are computed at the nodal points. A 2 x 2
mesh (four elements) for cross-ply laminates (quarter
laminate) and a 4 x 4 mesh (sixteen elements) for
angle-ply and general sandwich laminates (full lami-
nate) were seen to give generally converged displace-
ments and stresses for nine-noded elements.
Similarly, one element for cross-ply laminates and
2 x 2 mesh (four elements) for angle-ply and general
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Table 1. Comparison of maximum transverse displacement and transverse shear stress (f..) for simply supported laminate
under sinusoidal loading (a/h = 4)(0/90)

Transverse shear stress 7.

Surface fitting methods Direct
Direct Forward Central difference methods
Source Wy Constitutive integration diff. diff. Forward Central

HOST7A ON) 2.032656 0.252750 0.29600 0.301818 0.315878 0.313515 0.299480
HOST7A (16N)  2.032188 0.275000 0.34900 0.380743 0.363395 0.336813 0.321558
HOST7B (9N) 1.956250 0.212275 0.30050 0.319685 0.306055 0.318048 0.304440
HOST7B (16N)  1.954688 0.211650 0.35275 0.386018 0.369703 0.341053 0.326630
HOST9 (9N) 2.055469 0.270000 0.29025 0.309999 0.296528 0.307333 0.293098
HOST9 (16N) 2.055000 0.269750 0.33775 0.371570 0.355113 0.329003 0.314523
HOSTI11 (9N) 2.032813 0.271500 0.28725 0.308850 0.395635 0.306268 0.293098
HOST1H1 (16N)  2.031250 0.271500 0.33750 0.373483 0.356823 0.331018 0.316575
HOSTI12 (9N) 2.032813 0.271750 0.28775 0.309180 0.295960 0.306523 0.293353
HOSTI2(16N)  2.031250 0.271500 0.33700 0.372893 0.356248 0.330755 0.316315
FOST ON) 2.149844 0.221000 0.29825 0.315815 0.304130 0.313343 0.301678
FOST (16N) 2.149375 0.220850 0.34800 0.380200 0.365805 0.336455 0.323793
Elasticity [23] 0.31270

Ren {24] 0.32540

sandwich laminates were seen to give converged
results with sixteen-noded elements. Thus, unless
otherwise specified, these discretizations are adopted
in this paper.

The displacements, as well as in-plane and trans-
verse stresses are presented here in the non-dimen-
sional form using the following multipliers

_10E;h*wy(a/2, b/2,0)

Wy 4 ’ xz
w4’ 1 h(0,b)2,2)
God
Ty
_4:h(a/2,0,z2) . _0:{a/2,b)2,2)
dod | ; 9o
a=E2u(Os b/2,z) (28)

hqq

The percentage difference (PD) in the results are
calculated as follows:

PD = [approximate value — true value] « 100
true value

(29)

(a) Orthotropic laminate. A simply supported two-
layered general cross-ply (0/90) square laminate sub-
jected to sinusoidal loading is considered for
comparison of displacement and stresses. The follow-
ing material properties are used here [23]

E, |E, =25,

G,/ E; = 0.50; G, /E,=0.20

E,=E;; G;=Gyy;

Vo = V3 = v;3 = 0.25.

(30)

The results of maximum transverse displacement
W,, transverse shear and normal stresses are presented
in Tables 1-6 for the two a/k ratios (a/h = 4 and 10).
The variation of maximum transverse displacement
W, with a/h ratio is shown in Fig. 2 and the variations
of transverse shear and normal stresses (7., 7,.,6,)
through the laminate thickness are shown in Figs 3-5
for alh =4.

The results show that (Tables 1-6), out of all the
models used for evaluation of transverse shear stress
(f,,), the model HOST7A results are close to the
elasticity [23] (—0.260633PD) and closed-form sol-
utions [24] (Fig. 3). But in the case of transverse shear
stress (f,.), it is seen that model HOSTI11 gives a

Boundary conditions

These are clearly specified below

edge
At x = constant vo=0§ =
At y = constant Ug=uy =

simply supported

symmetry line

we=wg =0 Uy=uf =0
6,=0r=0 8,=0*=0
wy=wi=0 ve=0vF=0
0.=0*=0 0,=0=0
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Table 2. Comparison of transverse shear stress (%,,) for simply supported laminate under sinusoidal loading (a/# = 4)(0/90)

Transverse shear stress 7,,

Surface fitting methods Direct
Direct Forward Central difference methods
Source Constitutive integration diff. diff. Forward Central

HOST7A (9N) 0.2750 0.29050 0.293795 0.293158 0.294540 0.293950
HOST7A (16N) 0.2750 0.34900 0.368240 0.367645 0.322775 0.322195
HOST7B (9N) 0.2785 0.29575 0.302445 0.298760 0.303623 0.299993
HOST7B (16N) 0.2117 0.35450 0.376105 0.371475 0.329635 0.325538
HOST9 (9N) 0.2838 0.28450 0.288605 0.287533 0.289323 0.288295
HOSTY (16N) 0.2835 0.34150 0.360890 0.359755 0.316363 0.315315
HOST11 (9N) 0.2768 0.28375 0.290025 0.289123 0.290443 0.289590
HOSTI11 (16N) 0.2680 0.35600 0.367943 0.367165 0.320135 0.319233
HOSTI12 9N) 0.2808 0.28400 0.290318 0.289443 0.290718 0.289885
HOSTI12 (16N) 0.2683 0.34600 0.368248 0.367480 0.320235 0.319463
FOST (9N) 0.2210 0.29225 0.295715 0.294550 0.296535 0.295420
FOST (16N) 0.2209 0.35150 0.371278 0.370045 0.325375 0.324240
Elasticity [23] 0.31880

Ren [24] 0.32580

better estimate of this stress than other models, when
compared with elasticity (0.13582PD) and other
closed-form solutions (Fig. 4). The sixteen-noded
element gives good estimate of the transverse stresses
compared to nine-noded element.

In the case of transverse normal stress (Fig. 5), the
central difference exact surface fitting method and the

direct integration method give almost similar vari-
ation through the thickness of the laminate which is
slightly different from the elasticity and the CPT
results, but it converges to the same value as in
elasticity and CPT results at the top and bottom
surface of the laminate. Since the elasticity or
closed-form solutions are not available for transverse

Table 3. Transverse normal stress (G,) for simply supported laminate under sinusoidal loading (direct
integration method) (a/h = 4) (0/90)

Transverse normal stress &, (displacement models)

Thickness HOST7A HOST7B HOST9 HOSTI1! HOSTI12 Elasticity [22]
-0.5 0 0 0 0 0 0
-0.4 0.072450 0.071702 0.072587 0.068390 0.068505 0.078940
-03 0.175368 0.173535 0.175074 0.171356 0.171758 0.250000
-0.2 0.289661 0.286134 0.289113 0.287604 0.288268 0.460526
-0.1 0.399147 0.393730 0.399094 0.398570 0.399358 0.671050

0.0 0.489579 0.482951 0.491027 0.487923 0.488650 0.789474
0.1 0.581884 0.574045 0.584600 0.578146 0.578746 0.868421
0.2 0.696006 0.687427 0.698580 0.691239 0.691730 0.921053
0.3 0.816158 0.809214 0.817625 0.811028 0.811367 0.960526
0.4 0.924480 0.921438 0.924730 0.920247 0.920384 0.973684
0.5 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

Table 4. Transverse normal stress (¢,) for simply

supported laminate under sinusoidal loading (central

difference exact surface fitting method) (a/h = 4) (0/90)

Transverse normal stress &, (displacement models)

Thickness HOST7A HOST7B HOST9 HOSTI11 HOSTI12 CPT [22]
-0.5 0 0 0 0 0 0
—-04 0.050674 0.054515 0.049754 0.040865 0.040777 0.078940
-0.3 0.148434 0.158050 0.146378 0.133993 0.134141 0.263150
-0.2 0.268517 0.279560 0.265800 0.252848 0.253262 0.500000
—0.1 0.389826 0.397000 0.387564 0.374165 0.374733 0.723580

0.0 0.493748 0.494420 0.493407 0.477170 0.477470 0.847368
0.1 0.592460 0.586593 0.594320 0.575045 0.575550 0.921050
0.2 0.711721 0.701161 0.714315 0.696275 0.696675 0.952636
0.3 0.833640 0.823384 0.835752 0.821926 0.822163 0.978947
0.4 0.937712 0.932668 0.938725 0.930980 0.931029 0.989470
0.5 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000




358

T. KaANT and B. S. MANJUNATHA

Table 5. Comparison of maximum transverse displacement and transverse shear stress (f,.) for simply supported
laminate under sinusoidal loading (a/k = 10) (0/90)

Transverse shear stress T,

Surface fitting methods Direct difference

Direct Forward Central methods

Source Wy Constitutive integration diff. diff. Forward Central
HOST7A (ON) 1.2203 0.2564 0.2980 0.315881 0.303760 0313420  0.301321
HOST7A (16N)  1.2201 0.2565 0.3476 0.380247 0.365304  0.336454  0.323314
HOST7B (9N) 1.2128 0.2780 0.2975 0.315874 0.303209 0.313437 0.300749
HOST7B (16N)  1.2124 0.2782 0.3476 0.380389 0.365335 0.336571 0.323273
HOST9 (9N) 1.2237 0.2728 0.2972 0.315226 0.303227 0.312724 0.300749
HOST9 (16N) 1.2236 0.2729 0.3463 0.378674 0.363899  0.335126  0.322131
HOST11 (SN) 1.2200 0.2735 0.2974 0.315731 0.303784 0.313193 0.301270
HOST11 (16N) 1.2200 0.2736 0.3467 0.379306 0.364467 0.336032 0.323012
HOSTI12 (9N) 1.2200 0.2735 0.2974 0.315743 0.303795 0.313200 0.301277
HOST12 (16N) 1.2200 0.2736 0.3467 0.379293 0.364455 0.336026 0.323006
FOST (9N) 1.2378 0.2209 0.2983 0.315853 0.304167 0.313375 0.301710
FOST (16N) 1.2377 0.2208 0.3480 0.380177 0.365781 0.336416 0.323752
Elasticity {23] 0.3310
Ren [24] 0.3320

displacement w;, this has been compared with
Mindlin theory for model HOST9 (Fig. 2).

(b) Angle-ply laminate. A two-layered simply sup-
ported general angle-ply (15°/—15°) square laminate
subjected to sinusoidal loading is considered. The
following material properties are used [25]

E | |E, =40,

G /E,=0.50:  Gyp/E, =0.60,

E,=Ey; Gi3=Gy; Vi =¥y =V;3=0.25.

(31

The results of maximum transverse displacement
Wy, transverse shear and normal stresses for a/h = 10
are presented in Tables 7-10. The variation of the
maximum transverse displacement w, with a/h ratio
is shown in Fig. 6 and the variations of transverse

shear and normal stresses through the laminate thick-
ness are shown in Figs 7-9 for a/h = 10.

The results show that the transverse displacement
W, obtained by model HOST9(9N) is close to closed-
form solution [25] (—1.5148PD) compared to other
models. The classical plate theory underestimates the
value and gives a poor estimate for thick laminates
(Fig. 6) (—28.0111PD). As the laminate thickness is
reduced (a/h = 50 and above) all the theories almost
give same results, thus showing the validity of the
present higher-order theory.

The transverse shear stress (f,.) results show
that the model HOST9 gives a good estimate of
the stress (—0.02158PD) compared to other
models. Out of the two elements used, it is seen
that sixteen-noded elements give a better estimate
of these stresses compared to the other element.

Table 6. Comparison of transverse shear stress (7,.) for simply supported laminate under sinusoidal
loading (a/h = 10) (0/90)

Transverse shear stress 7.

Surface fitting methods Direct difference

Direct Forward Central methods
Source Constitutive  integration diff. diff. Forward Central
HOST7A 9N) 0.2811 0.2922 0.295680 0294610  0.296484  0.295463
HOST7A (16N) 0.2811 0.3513 0.371078 0.369960  0.325146  0.324110
HOST7B (9N) 0.3178 0.2917 0.294803 0.293813 0.295586  0.294645
HOST7B (16N) 0.3179 0.3513 0.371053 0.369942  0.325034  0.324020
HOST9 (9N) 0.2880 0.2914 0.295259 0.294108 0.296050  0.294946
HOST9 (16N) 0.2881 0.3501 0.369912 0.368695 0.324131  0.323011
HOST11 (9N) 0.2816 0.2898 0.293897 0.292744  0.294885  0.293779
HOSTI11 (16N) 0.2869 0.3509 0.369420 0.368222  0.306180  0.300894
HOST12 (9N) 0.2868 0.2898 0.293920 0.292768 0.294898  0.293793
HOST12 (16N) 0.2869 0.3509 0.369435 0.368238 0.323298  0.322191
FOST (9N) 0.2209 0.2924 0.295917 0.294750  0.296736  0.295618
FOST (16N) 0.2208 0.3517 0.371634 0.370399  0.325621  0.324483




Estimation of transverse stresses in multilayer laminates 359

2.25
[ - e Host9(SN)
2.00}- © 0 O Host9(16N)
o » » » Fost(SN)
B y7sf- == - CPT
E 1.50}
& 125
A
L e e ® e )
1.00}
1 \ ) \ ]
0.755 020 30 40 %0

a/h Ratio

Fig. 2. Convergence of transverse displacement w, with a/h
ratio for simply supported laminate under sinusoidal load-
ing (0/90).

Thus, in Fig. 8, the variation of transverse shear
stress obtained by different methods has been shown
for the model HOST9. From this figure, it can be
seen that direct finite difference method gives good
estimate of transverse shear stresses compared to
other methods. As the closed-form solutions for
transverse shear (f,,) and normal stresses are not
available, these results are compared with the
Reissner/Mindlin theory for model HOST9. These
results show that central difference exact surface
fitting method gives a much better estimate of the
transverse normal stress compared to direct inte-
gration method.

(¢) Sandwich laminate. A clamped general eight-
layered sandwich laminate (0°/45°/—45°/30°/core/
0°/90°/0°) under uniformly distributed loading is
considered. The following material properties are
used [28, 29]

0.50?

ooo Elasticity [23]
AAA Ren[24]

= = = Present FD-BSFM
Present FD-FDM

© OO Present direct Integ.

030

-0.30

- 0.50:

Fig. 3. Variation of transverse shear stress (1., ) through the
thickness of a simply supported laminate under sinusoidal
loading (a/h = 4) (0/90) (HOST7A)(ON).
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AAA Ren[24]
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Fig. 4. Variation of transverse shear stress (t,, ) through the
thickness of a simply supported laminate under sinusoidal
loading (a/h = 4) (0/90) (HOST11)(16N).

stiff layers
E =0.1308 x 10*psi; E,= E;=0.106 x 107 psi
G, =G, =06 x 10°psi; Gy =0.39 x 10° psi

v, =v;3=0.28; vy =0.34

core layers

Gy =0.1772 x 10°psi; G, = 0.5206 x 10° psi

h./hy=8 [other properties are zero]. (32)
0.50
0.30 |- @
(27N
0.10 [~ oa
1 LoaJ
C . . 0.8 10
-0.10 s 04
-0.30 |- voo Elasticity [22]
aaa CPT [22]
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-0.50

Fig. 5. Variation of transverse normal stress (o. ) through
the thickness of a simply supported laminate under sinu-
soidal loading (2/h = 4) (0/90) (HOST9)(16N).
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Table 7. Comparison of maximum transverse displacement and transverse shear stress (f,.) for simply supported
angle-ply laminate under sinusoidal loading (a/h = 10) (15/—15)

Transverse shear stress .

Surface fitting methods Direct difference
Direct Forward Central methods
Source Wy Constitutive integration diff. diff. Forward Central

HOST7A ON)  0.62360 0.2998 0.3055 0.316829 0.307303 0.318074 0.308574
HOST7A (16N)  0.62359 0.3001 0.3609 0.387928 0.376566  0.345425  0.335205
HOST7B (9N) 0.61948 0.3186 0.3044 0.316276 0.306203 0.317491 0.307427
HOST7B (16N) 0.61951 0.3185 0.3597 0.387345 0.375324 0.344931 0.334120
HOST9 (9N) 0.63779 0.3036 0.3054 0.316352 0.307223 0.318079 0.308946
HOST9 (16N) 0.63774 0.3040 0.3623 0.389425 0.378470 0.346239 0.336357
HOST11 (9N) 0.63430 0.3025 0.3039 0.314813 0.305811 0.316312 0.307302
HOST11(16N)  0.63430 0.3018 0.3593 0.393045 0.378470 0.343811 0.334066
HOST12 (9N) 0.63440 0.3026 0.3039 0.314746 0.305747 0.316283 0.307275
HOST12 (16N)  0.63430 0.3019 0.3593 0.392913 0.379935 0.343813 0.334068
FOST (9N) 0.63647 0.2524 0.3068 0.317322 0.308682 0.318566 0.309962
FOST (16N) 0.63646 0.2526 0.3625 0.388543 0.378295  0.345961 0.336727
Ren [25] 0.64760 — —

Turvey [27] 0.46760 — —

CPT [26} 0.46620 — —

Table 8. Comparison of transverse shear stress (7,,) for simply supported angle-ply laminate under
sinusoidal loading (a/h = 10) (15/—15)

Transverse shear stress 7,.

Surface fitting methods Direct difference
Direct Forward Central methods

Source Constitutive  integration diff. diff. Forward Central
HOST7A (9N) 0.06627 0.07483 0.078771 0.076366  0.076027  0.073687
HOST7A (16N) 0.06083 0.08017 0.084976 0.082348 0.078247  0.075816
HOST7B (9N) 0.07097 0.07453 0.075807 0.076039 0.075779  0.073372
HOST7B (16N) 0.07062 0.07995 0.084835 0.082100 0.078125  0.075592
HOST9 (9N) 0.06983 0.07347 0.077283 0.075070 0.074462  0.072313
HOST9 (16N) 0.06958 0.07833 0.082808 0.080420 0.076365  0.074146
HOSTI11 (9N) 0.06633 0.07386 0.077656 0.075446 0.074765  0.072624
HOST11 (16N) 0.06941 0.07836 0.082924 0.080520 0.076598  0.074368
HOST12 (ON) 0.06633 0.07386 0.077645 0.075435 0.074765  0.072624
HOST12 (16N) 0.06502 0.07832 0.082874 0.080474 0.076578  0.074349
FOST (9N) 0.05652 0.07538 0.079200 0.076944 0.076453  0.074255
FOST (16N) 0.05629 0.08083 0.085533 0.083055 0.078724  0.076538

Ren [25) 0.07413

Table 9. Transverse normal stress (¢.) for simply supported angle-ply laminate under sinusoidal loading
(direct integration method) (a/h = 10) (15/—15)

Transverse normal stress 6. (displacement models)

Thickness HOST7A HOST7B HOST9 HOSTI11 HOSTI12 FOST
-0.5 0 0 0 0 0 0
-04 0.064180 0.066407 0.061398 0.062888 0.062887 0.061493
—0.3 0.185102 0.190181 0.178793 0.180703 0.180740 0.178978
-0.2 0.334033 0.340720 0.324729 0.326901 0.326980 0.326312
—0.1 0.484538 0.491339 0.473509 0.476119 0.476238 0.477349

0.0 0.611708 0.617966 0.600413 0.603598 0.603774 0.605944
0.1 0.708096 0.714068 0.697938 0.701466 0.701678 0.703392
0.2 0.787364 0.792734 0.779724 0.783140 0.783325 0.783661
0.3 0.857099 0.860976 0.852794 0.852794 0.855626 0.854610
04 0.925194 0.926854 0.923963 0.925685 0.925721 0.924103

0.5 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
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Table 10. Transverse normal stress (¢.) for simply supported angle-ply laminate under sinusoidal loading
(central difference exact surface fitting method) (a/h = 10) (15/—-15)

Transverse normal stress &, (displacement models)

Thickness HOST7A HOST7B HOST9 HOSTI11 HOST12 FOST
-0.5 0 0 0 0 0 0
—-04 0.046765 0.047343 0.046776 0.047250 0.047250 0.045767
-03 0.138376 0.139929 0.137452 0.137947 0.137977 0.135768
-0.2 0.253995 0.255835 0.252429 0.253302 0.253343 0.250970
-0.1 0.374325 0.375566 0.373186 0.374740 0.374771 0.372341
0.0 0.481108 0.481269 0.481767 0.483730 0.483758 0.480850
0.1 0.584960 0.584001 0.587567 0.589245 0.589284 0.586451
0.2 0.708632 0.706888 0.711581 0.712717 0.712757 0.711448
0.3 0.832948 0.831281 0.834912 0.835578 0.835600 0.835704
0.4 0.937403 0.936627 0.937914 0.938286 0.938284 0.938721
0.5 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.50~ * %% % REN [25] - — ~ Present FD-FDM
- =+ CPT[26] 0.50 Present Cl_)-FDM
L AAA Turvey [27] © 00 Present Direct Integ
B Present HOSTI(9N) oQo Ren [25).
B 000 Present HOST9(16N)
8 1.00 0.30
g ¥
o
2 o075}
&
'5 0.10
0.50— J
§ 0 008 0.10
1 ] 1 L
0255 10 20 30 40 30 -0.10
a/h Ratio 1o

Fig. 6. Convergence of transverse displacement w, with a/A
ratio for simply supported angle-ply laminate under sinu-
soidal loading (15/—15).

The results of maximum transverse displacement
Wy, transverse shear and normal stresses are presented
in Tables 11-16 for a/h = 10 and 50. The variations
of transverse shear stresses (7,,, 7,,), transverse nor-
mal stress (6,) and in-plane displacement through the
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Fig. 7. Variation of transverse shear stress (z,, ) through the
thickness of a simply supported angle-ply laminate under
sinusoidal loading (a/h = 10) (15/—15) (HOST9)(16N).
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Fig. 8. Variation of transverse shear stress (,. ) through the
thickness of a simply supported angle-ply faminate under
sinusoidal loading (a/h = 10) (15/—15) (HOST9)(16N).
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Fig. 9. Variation of transverse normal stress (0. ) through

the thickness of a simply supported angle-ply laminate

under  sinusoidal  loading (a/h=10) (15/-15)
(HOST9)(16N).
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Table 11. Comparison of maximum transverse displacement and transverse shear stress (f,,) for clamped general
sandwich laminate under uniformly distributed loading (a/h = 10) (0/45/—45/30/core/30/90/0)

Transverse shear stress 7.,

Surface fitting methods Direct difference
Direct Forward Central methods
Source Wy Constitutive  integration diff. diff. Forward Central
HOST7A ON)  2.21540 0.10240 0.3821 0.412020 0.391712  0.404891 0.384793
HOST7A (16N) 1.88489 0.10030 0.3965 0.430220 0.410952  0.370800  0.355310
HOST7B (9N) 1.81536 0.09762 0.3279 0.348582 0.334808 0.342354 0.328515
HOST7B (16N) 1.92189 0.09556 0.3449 0.372943 0.358484 0.340535 0.329518
HOST9 (9N) 2.26427 0.12260 0.3929 0.424156 0.402516  0.416522  0.395107
HOST9 (16N) 1.92581 0.12320 0.4083 0.443873 0.422986  0.381884  0.365075
HOSTI11 (9N) 2.25568 0.12540 0.3884 0.418365 0.396700 0.413275 0.391924
HOSTI11 (16N)  1.92390 0.11271 0.4050 0.438911 0.417986  0.380258  0.363431
HOSTI12 (9N) 2.27158 0.13780 0.3754 0.405076 0.385445 0.393505 0.374439
HOSTI2(16N)  1.93026 0.13800 0.4050 0.441727 0.421482 0.378987 0.362909
FOST (9N) 1.20586 0.10880 0.3297 0.343860 0.336622 0.333840 0.326624
FOST (16N) 1.20193 0.10780 0.3415 0.363291 0.354409 0.332340 0.324794

Table 12. Comparison of transverse shear stress (7,,) for clamped general sandwich laminate under
uniformly distributed loading (a/h = 10) (0/45/ —45/30/core/30/90/0)

Transverse shear stress 7,.

Surface fitting methods Direct difference
Direct Forward Central methods
Source Constitutive  integration diff. diff. Forward Central
HOST7A (9N) 0.07191 0.19060 0.197163 0.194537  0.192243  0.189660
HOST7A (16N) 0.03243 0.21130 0.230643 0.227588  0.192959  0.190494
HOST7B (9N) 0.03528 0.22490 0.234654 0.233014  0.226215  0.224599
HOST7B (16N) 0.03487 0.24770 0.266756 0.265128  0.226008  0.224582
HOST9 (9N) 0.04469 0.19340 0.200892 0.197583  0.195567  0.192269
HOSTY (16N) 0.04364 0.20910 0.229725 0.226161 0.190678  0.187909
HOSTI11 (9N) 0.04524 0.19470 0.203255 0.199490  0.198053  0.194291
HOST11 (16N) 0.04455 0.20580 0.225372 0.221257  0.188731  0.185588
HOSTI12 (9N) 0.04846 0.20170 0.216290 0.211936  0.202786  0.198791
HOSTI12 (16N) 0.04815 0.21470 0.234758 0.231736  0.190630  0.188495
FOST (9N) 0.03691 0.24890 0.255624 0254392  0.245254  0.244044
FOST (16N) 0.03641 0.26770 0.282116 0.280673  0.243843  0.242606

laminate thickness are shown in Figs 10-13 for
a/h =10. As the elasticity and other closed-form
solutions are not available for this problem, the
results have been compared with Reissner/Mindlin
theory.

A comparison of maximum transverse displace-
ment W, (—46.74398PD) and transverse shear
(—16.21259PD for 7,, and —24.10318PD for 7,,) and
normal stresses show a large difference between the
results of present higher-order theory (HOST9) (16N)

Table 13. Transverse normal stress (¢,) for clamped general sandwich laminate uniformly distributed loading (direct
integration method) (a/h = 10) (0/45/—45/30/core/30/90/0)

Transverse normal stress ¢, (displacement models)

Thickness HOST7A HOST7B HOST9 HOST11 HOST12 FOST
-0.50 0 0 0 0 0 0
~-0.46 0.253412 0.120091 0.345277 0.311682 0.154449 0.012800
~0.42 0.304468 0.122620 0.515862 0.442858 0.365606 —0.074818
~-0.38 0.342245 0.177984 0.581164 0.482060 0.469585 —0.038654
-0.34 0.497789 0.273473 0.858696 0.724058 0.723075 —0.043678

0.41 0.290064 0.821224 0.595232 0.416973 0.268363 1.249890
0.44 0.446190 0.918987 0.646431 0.530174 0.320487 1.178470
0.47 0.834263 0.9446353 0.911620 0.849561 0.737319 1.093010

0.50 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
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Table 14. Transverse normal stress (¢, ) for clamped general sandwich laminate uniformly distributed loading
(central difference exact surface fitting method) (a/A = 10) (0/45/—45/30/core/30/90/0)

Transverse normal stress &, (displacement models)

Thickness HOST7A HOST7B HOSTY HOST!1 HOSTI12 FOST
—-0.50 0 0 0 0 0 0
—0.46 0.085398 0.087944 0.103682 0.089628 0.106582 0.018231
—0.42 0.204132 0.203720 0.243022 0.216715 0.247263 0.057263
-0.38 0.339203 0.338140 0.398867 0.361769 0.406251 0.116415
-0.34 0.478337 0.480593 0.556702 0.510081 0.569144 0.192099

0.41 0.622189 0.624164 0.684619 0.642993 0.692596 0.404741
0.44 0.760971 0.762994 0.802725 0.771268 0.806239 0.620268
0.47 0.890262 0.890873 0.910865 0.893421 0.911901 0.819961
0.50 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

Table 15. Comparison of maximum transverse displacement and transverse shear stress (7,,) for clamped general
sandwich laminate under uniformly distributed loading (a/h = 50) (0/45/—45/30/core/30/90/0)

Transverse shear stress 7,

Surface fitting methods Direct difference

Direct Forward Central methods

Source Wy Constitutive  integration diff. diff. Forward Central
HOST7A (UN)  0.62662 0.10256 0.3524 0.362388 0.353498  0.355146  0.346266
HOST7A (16N)  0.59857 0.10606 0.3888 0.411172 0.400344  0.360626  0.351558
HOST7B(YN)  0.60301 0.10668 0.3504 0.358934 0.350516  0.352030  0.343620
HOST7B (16N)  0.59950 0.10876 0.3836 0.406526 0.396038  0.357104  0.348314
HOST9 (9N) 0.62990 0.13594 0.3524 0.362790 0.353800  0.355496  0.346520
HOST9 (16N) 0.60059 0.13544 0.3890 0.411410 0.400508  0.360936  0.351808
HOST11(9N) 0.62684 0.13706 0.3596 0.372296 0363166  0.360222  0.351188
HOST1I (16N)  0.59750 0.13676 0.3956 0.421338 0.410338  0.364406  0.355268
HOST12 (9N) 0.62684 0.13888 0.3596 0.372344 0.363154  0.360222  0.351172
HOSTI2(16N)  0.59750 0.13902 0.3956 0.401370 0.410304  0.364422  0.355256
FOST (9N) 0.57508 0.12068 0.3498 0.356864 0.348728  0.350380  0.342250
FOST (16N) 0.56766 0.12394 0.3866 0.407498 0.397234  0.355806  0.347196

and the Reissner/Mindlin theory for thick sand- present theory and the Reissner/Mindlin theory
wich laminates (a/h < 10). The error is due to the decreases and for very thin laminates (a/h > 50),
simplifying assumptions made in the Reiss- the results of both the theories converge to the
ner/Mindlin theory. As the laminate thickness is same value (—8.70297PD for w, and —0.81746PD
reduced, it is seen that the discrepancy between the for 7,.).

Table 16. Comparison of transverse shear stress (,,) for clamped gencral sandwich laminate under
uniformly distributed loading (a/h = 50) (0/45/—45/30/core/30/90/0)

Transverse shear stress 7,,

Surface fitting methods Direct difference

Direct Forward Central methods

Source Constitutive  integration diff. diff. Forward  Central
HOST7A ON) 0.04570 0.2432 0.243496 0.242154  0.237242  0.235908
HOST7A (16N) 0.04548 0.2692 0.281160 0.279576  0.237432  0.236114
HOST7B (9N) 0.04324 0.2500 0.249488 0.248230  0.243034  0.241784
HOST7B (16N) 0.04398 0.2772 0.289012 0.287490  0.243248  0.241974
HOST9 (9N) 0.06667 0.2422 0.242710 0.241350  0.236468  0.235116
HOST9 (16N) 0.06346 0.2680 0.280242 0.278644  0.236728  0.235402
HOST11 (9N) 0.06684 0.2534 0.257768 0.256116 0.244336  0.242798
HOST11 (16N) 0.06372 0.2780 0.294420 0.292546  0.242052  0.240594
HOSTI12(9N) 0.06746 0.2534 0.257768 0.256056  0.244336  0.242756
HOSTI2 (16N) 0.06446 0.2780 0.294408 0.292474  0.242052  0.240570
FOST (9N) 0.04098 0.2530 0.251250 0.250008  0.245086  0.243850

FOST (16N) 0.04198 0.2842 0.293978 0.292448  0.246078  0.244802
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Fig. 10. Variation of transverse shear stress (r,, ) through
the thickness of a clamped general sandwich laminate under
uniformly distributed loading (a/h = 10) (HOST9)(16N).

0.50 "‘

o 4
t
\ = =~ = Present Direct Integ.
0.30 - 1 Present BSFM
0 00 FOST ESFM
\
\
0.10 (- \
\
% 0 i N }
0.5 \ 1.0
\
-0.10 T— %, \
\
\
\

-0.30

-0.50

Fig. 12. Variation of transverse normal stress (g, ) through
the thickness of a clamped general sandwich laminate under
uniformly distributed loading (a/h = 10) (HOST9)(16N).

The transverse normal stress variation distinctly
shows the difference between the present higher-order
theory and the Reissner/Mindlin theory (Fig. 12). As
seen in previous problems, here also the exact surface
fitting method gives a good estimate of the stress
compared to the direct integration method. The
in-plane displacement variation clearly brings out
the realistic cubic variation of the cross-section of the
laminate for model HOST9 (Fig. 13). But the Reiss-
ner/Mindlin theory gives an unrealistic straight line
variation through the thickness of the laminate.

CONCLUSIONS
It has been demonstrated in this paper that the
versatile finite element analysis of the C? higher-order
theories can accurately predict the complex transverse
stresses and deformation behaviour of composite and
sandwich laminates subjected to a variety of loadings.
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Fig. 11. Variation of transverse shear stress (7,. ) through
the thickness of a clamped general sandwich laminate under
uniformly distributed loading (a/h = 10) (HOST9)(16N).
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Fig. 13. Variation of in-plane displacement through the
thickness of a clamped general sandwich laminate under
uniformly distributed loading (a/h = 10) (HOST9)(16N).

These theories assume the realistic non-linear vari-
ation of displacements. The numerical results for
displacement and transverse stresses when compared
with the available elasticity and other closed-form
solutions show good agreement. The convergence has
been demonstrated in all cases in the limit when a/h
ratio tends to be large. The results obtained by models
when zero top and bottom shear conditions are not
enforced are close to the elasticity and other closed-
form solutions compared to the models when this
condition is enforced especially for thick laminates.

The delamination stress evaluation using the finite
element method under any type of loading conditions
is not going to be a simple job in composite and
sandwich laminates. This is due to the higher-order
numerical differentiation (third derivative) in the
longitudinal direction associated with the integration
of the elasticity equilibrium equations in the thickness
direction. The use of the proposed new methods and
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cubic C° elements seems to have given fairly accurate
estimates of these stresses.

The proposed exact surface fitting method can be
efficiently employed for evaluating the transverse
shear stresses and central difference exact surface
fitting method is recommended for evaluation of
transverse normal stress. The results obtained by
these methods are close to the available closed-form
elasticity solution when compared to direct inte-
gration and finite difference methods. The results of
transverse shear and normal stresses are also pre-
sented for new problems where elasticity solutions are
not available with a view to provide data for future
reference.

The displacements and transverse stresses obtained
by model HOST9 (nine degrees of freedom per node)
are close to the closed-form elasticity solutions com-
pared to the other models. Thus, this model is
recommended for general composite laminates. But
for sandwich and highly anisotropic composite lami-
nate, model HOST12 is recommended as this model
considers the three-dimensional material properties
and non-linear variation of transverse displacement
through the thickness of the laminate.
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