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Scaling theory of quantum resistance distributions in disordered systems
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Abstract. We have derived explicitly, the large scale distribution of quantum Ohmic
resistance of a disordered one-dimensional conductor. We show that in the thermodynamic
limit this distribution is characterized by two independent parameters for strong disorder,
leading to a two-parameter scaling theory of localization. Only in the limit of weak disorder
we recover single parameter scaling, consistent with existing theoretical treatments.
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1. Introduction

There have been many studies on zero temperature quantum Ohmic resistance and
fluctuation of a disordered one-dimensional conductor in the absence of electron
interactions [Anderson et al 1980; Abrahams and Stephen 1980; Abrikosov 1981;
Melnikov 1980; Kumar 1985; Heinrichs 1986; Rammal and Doucot 1987; Shapiro
1987]. It is now well established that coherent interference effects, due to elastic
scattering by the serial static disorder, lead to strong localization of electronic
eigenstates for arbitrarily weak disorder [Erdos and Herndon 1982]. The localized
nature of the eigenstates manifests as an exponential increase of ensemble averaged
resistance {p) with the sample length L. Experiments on quasi-one-dimensional wires
confirm this length-scale dependence of resistance, with the Thouless length Ly = (D1)i/?
effectively replacing the sample length [Giordano 1980; Bishop and Dolan 1985;
Farrell et al 1985]. In addition to being non-additive, the quantum Ohmic resistance
is also known to be non-self-averaging in that the resistance fluctuations over the
ensemble of macroscopically identical samples dominate the ensemble average, ie., -
there is no typical resistance. In fact the relative fluctuation of resistance is much larger
than the relative fluctuation of the underlying impurity concentration for large sample
lengths. Resistance fluctuations get somewhat suppressed by the multiple connectivity
of higher dimensions (d > 1). It has been shown that [Lee and Stone 1985; Altshuler
and Khmelnitskii 1985; Altshuler ez al 1986; Heinrichs et al 1988] in higher dimensions
a metallic domain is characterized by the universal fluctuations (€?/h),1.e., conductance
of a metal self-averages in three dimensions but the relative variance decreases more
slowly than the inverse volume dependence expected classically. Several other results
suggest that the fluctuations persist right up to the mobility edge on the insulating
side in higher dimensions (d > 2) and are suspected to have an important bearing on

611




612 A M Jayannavar

the physics of the mobility edge [Kumar and Jayannavar 1986; Ioffe et al 1985; Efetov
1984; Cohen et al 1988].

The purpose of the present work is to discuss the scaling properties of the resistance
distribution in one-dimensional random systems. In particular, we show that in the~
thermodynamic limit one obtains a limiting universal distribution. This distribution
which determines the macroscopic behaviour (i.e., insensitivity to microscopic details)
is characterized by two independent parameters (two-parameter scaling) in the strong
disorder limit [Cohen et al 1988]. Only in the limit of weak disorder one finds a
single parameter scaling [Abrahams et al 1979] in agreement with previous results.
Our results are consistent with the recent study of Cohen et al [Cohen et al 1988]
and we also point out the approximations made in the earlier studies that point
towards a single parameter scaling [Anderson e: al 1980; Abrahams and Stephen
1980; Abrikosov 1981; Melnikov 1980; Kumar 1985; Heinrichs 1986; Rammal and
Doucot 1987; Shapiro 1987]. Our treatment is based on the invariant imbedding
approach, applicable in any linear or nonlinear problem with serial randomness

[Kumar 1985; Heinrichs 1986; Rammal and Doucot 1987; Bellman and Wing 1976;
Chandrasekhar 1960].

2. Method and calculations

We start with the well-known Landauer formula [Landauer 19707, which expresses
the residual resistance of a one-dimensional system in terms of its scattering properties
at the Fermi energy. The expression for the resistance p, measured in the units of
(mh/e?) and including the spin is given by

_ R(DR*(L) |
PETZRORD* M

where R(L) is the complex amplitude reflection coefficient for the one-dimensional

conductor of length L. The model Hamiltonian for the one-dimensional disordered
system is,
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where V(x) for 0 < x < L is the random potential assumed to be a delta correlated
Gaussian variable with,

{V(x)> =0, (3a)
V) V(X)) =2V2(x — ). (3b)

Here V,, measures the strength of the disorder. The disordered sample extends from
x=0to x = L, the two ends being connected to perfect leads. Consider the scattering
of an electron plane wave exp [ — ik(x — L)] of energy E incident at x = L from the
_ right (x > L). It is partially reflected with the complex amplitude reflection coefficient

R(L)and is partially transmitted with the complex transmission coefficient T(L). The
general principle of the method of invariant imbedding is to address the emergent
quantity, namely, R(L) (or T(L)) in a form which does not involve the wave function
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inside the conductor explicitly. This is done by reducing the boundary value problem
to an initial value problem relative to the imbedding parameters. The complex
coefficient R{L)is given by the Riccati equation [Heinrichs 1986; Rammal and Doucot
1987; Bellman and Wing 1976]

= V(L)1 + R?) —2(k& — V(L))R, | @)

where k, is the incident wave vector of an electron and k* = E (we have set units such
that (2m/h?) = 1). It is convenient to write R =rexp if, where 6 is the phase of the
reflected wave and r? is the reflection coefficient. Now substituting this form for R
in (4) and making use of the relation for the resistance (eq. (1)), we immediately get
the evolution for p and 6 as,

dp  2V(L)

aL= e Smole(e+ 11 (5a)
6 . V(L) @+

These nonlinear coupled stochastic differential equations can be converted into an
equation for the probability density P(p, 0, L) by use of the well-known van Kampen
lemma [van Kampen 1976]. To this end we introduce a spread of “phase points” of
density Q(p, 6, L) in (p,60) “phase space” evolving in L according to (5a) and (5b),
subject to the initial condition that p(L) =0 at L= 0. The phase fluid will now evolve
according to the stochastic Liouville equation,

Q9 0 op d o0
—| 0= | —==| 0= 6
L~ 6p(Q6L> 56<Q5L>’ (©)
where the velocities (0p/dL) and .(08/0L) are given by (5a) and (5b), respectively. We
have the well-known result [van Kampen 1976] that

P(p,0, L)=<Q(p,0, L), Y

where (---), denotes averaging with respect to the basic random variable V(x). Using
(5a), (5b), (6) and (7) we get,

oP d V(L) (o +1)
oL 69<Q[2k° ko (2+ 0[p(p+1)]”2>]>u

o/ 2v(L) .
+5;<Q ke s1n9[p(p'+1)]1’2>u- ‘ (8)

Now we must evaluate {(QV(L)>, appearing in the right hand side of (8). This is done
by using the Novikov identity (Novikov 1965) for the functional Q of the Gaussian
random variable V(L), namely, that;

L ! n 5Q ’
L VL) V(L )><5V(L,,)>dL,

V-
-5 9

CV(L)QD,
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with0 < L' < L. Here 6Q/0V(L)is a functional derivative and can be readily obtained
[Jayannavar and Kumar 1982] from (5a), (5b) and (6) as:

50 a1 2p+1) '
<5V(L)> 59{k0(2+ 9[p(p+l)]”2>P}/

8 (2 s
+5—{Esm9[p(p+ 1H]Y P} (10) ’
From (8)-(10) we finally get,
dP(p,6, L) _ P V2 d Qp+1)
T 69{< o+ 1)]1/2)
2 2p+1) o . .
V3o ol @ (2p+1)
+7<755{23m9[”(” 0] /2[59« SQ[p(pH)J”z)P)
+"a‘,3(2 sinf[p(p + 1)]1/2P)J}. o (11)

The above equation is exact for the joint probability distribution of p and 6 and is
quite difficult to treat analytically. From (11) it is readily seen that P(p,6, L) will
depend on at least two dimensionless parameters, namely, ko, L and (VE/k3).
Henceforth we will concentrate on the marginal distribution function W(p)=
[P(p,6, L)d8 for the resistance alone. In the present analysis we are interested in the
behaviour of the distribution function in the thermodynamic limit, i.e., the large length
limit. It should be noted that in this limit the reflection coefficient r? approaches the
value unity with probability one (or p > 1) and consequently the evolution equation
(5b) for 8 becomes independent of p. From (5b) it follows that for p > 1, we get

de 2V( 1)
57 =2ko -

(14 cosh). (12)
Correspondingly, one can immediately write down the associated Fokker-Planck
equation [Risken 1984; Jayannavar 1990] for the probability distribution P, (8, L)
which is given by,

?fi;%ﬂ = —2k0%+ (4V°> 0 [(1 + cos 9)—»(1 + cosO) P, } (13)

Generally the phase distribution evolves towards the stationary distribution once the
length of the sample is larger than that of the localization length ¢ (defined below).
This has been shown to be the case also in the tight binding Anderson model with
diagonal disorder [Stone et al 1983]. Hence, in the asymptotic limit L> &, one can
decompose P(p,0, L)= W(p, L)P5(), where P5(6) is the stationary distribution for
the phase which can be obtained by setting (6P, (6)/éL) =0 in (13). Almost all the
earlier studies have assumed that P(6) is uniformly distributed over [0,2n] (i.e.,
P35 (0) = 1/27). Hence the stationary distribution of phase does not depend on any
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material parameters. We call this the random phase approximation. With this
approximation one can easily write down the marginal distribution of the resistance.
Using (11), after some algebra, we get

W (p,l 0 ow
R et (14

where /is the dimensionless length measured in units of the localization length (! = L/¢)
and ¢ = (k§/2V3). In the large length limit, the solution of (14) is given by a well-known
log-normal distribution [Kumar 1985; Shapiro 1987] and explicit expressions for the
moments have also been obtained in the earlier literature [Anderson et al 1980;
Abrahams and Stephen 1980; Abrikosov 1981; Melnikov 1980; Kumar 1985; Heinrichs
1986; Rammal and Doucot 1987; Shapiro 1987]. To this end we introduce an
appropriate scaling variable u =In (1 + p) (or u=In p, for p > 1). From (14) one can
easily derive the evolution equations for the probability distribution W, (u,[) of u in

the asymptotic regime, '

W) _ oW | W,

al bu ou? (15)..
The solution for (15) is a Gaussian and is given by,
—u(D)?
Wl(u,l)=—1——exp{—(-l—l——-___y—_(_f)_)~}, (16)
2nAu*(l) 2Au2(0)

where the mean is u(l) = [ and the variance is Au?(I) = [. Note that the mean and the
variance are dependent variables. Hence in the large length limit W, (u) with a random
phase approximation approaches the universal Gaussian distribution characterized
by a single parameter (u(l) or Au*(l)), i.e., the large scale distribution is characterized
completely by one parameter.

It has already been pointed out that the uniform phase distribution (or random
phase model) is indeed a property of a random system in the weak disorder limit
[Jayannavar 1990; Stone et al 1983; Heinrichs 1990] and naturally leads to the single
parameter scaling theory in the weak disorder limit. This can be understood physically
as follows: in the case of weak disorder the localization length can be arbitrarily large.
The electron, therefore, samples a very large number of scattering sites (or penetrates
deep inside the sample), thereby strongly randomizing the phase of the reflected

~ electron. In the strong disorder limit the electron cannot sample the random potential

effectively. In the strong disorder limit, the stationary phase distribution is non-
uniform and its nature is sensitive to the statistics of the random potential [Jayannavar
1990; Stone et al 1983]. We will now derive the analytical expression for the stationary

- distribution of 8 by setting (6P, /8L) = 0 in (13). We would like to point out a technical

problem involved in evaluating the stationary distribution. In (13) the diffusion term,
namely, the coefficient in front of the highest derivative (6%/06%), can vanish for
particular values of 6 and this consequently leads to divergences in the stationary
distribution. This difficulty is generally encountered for Fokker-Planck equations
arising from multiplicative Gaussian white noise terms [Schleich and Scully 1988] in
the original Langevin type equations. For the case when noise is correlated such
divergences do not appear. To avoid this difficulty one generally introduces an
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additional new diffusion coefficient ¢ and finally at the end of the calculations one
lets ¢ —0 (see Schleich and Scully 1988 for details). Now following closely the method
of Schleich and Scully one can write down the expression for P3 (6) as:

Pi(0)=1m NP(6,¢), (17a) |

where o
PR 9.+ 2 e 17b
P(6,e)=e™" L [8+(4V JIE)1 + cos 02T (170)
_ [2ko +(4V3/k2)sin @ (1 + cos6')]
6= jkndg e+ @V (1 +cos 0] (17¢)
and

N= H"dep(e,g)]_l. (17d)

In particular, we note that Pj() depends on the material parameters through the
dimensionless variable 4 =(2V/k3) where ‘4’ being small and large compared to
unity implies weak and strong disorder respectively. In figures 1-4 we have plotted

(9) for various values of parameters 4 using the numerical method of continued
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Figures 1-4. Plot of P{(0) as a function of @ in the interval — n to+ n. The values of the
system parameter A are indicated on the graphs.

fractions [Risken 1984]. In this method we write an expansion for the stationary
distribution in Fourier series, P} (6) = (1/2n)X% _ C,exp(inf). Substituting this in
(13), with the right hand side equal to zero, we get the recurrence relation for the
expansion coefficients in which only coefficients from C,_, to C, , , are coupled. Now
by defining the vector C, = (C,,, C,,+, ), the recurrence relation can be written in the
form of tridiagonal vector recurrence relation. Further procedure for evaluating all
the vectors C, (or coefficients C,) involves a repeated application of the matrix
continued fractlons (for details see Jayannavar 1990). It is clearly seen that Pj(0) is
indeed distributed uniformly in the weak disorder limit (Figures 1 and 2), while it is
non-uniform in the strong disorder limit (Figures 3 and 4). Having established the
fact that P9(0) is in general non-uniform we again carry out the same procedure as
mentioned earlier for the marginal distribution function. By setting P(p,0,]) =
W,(p,) P;(0)in (11) and after some algebra, the large scale dlstrlbutlon for the variable
u(~ In p) is given by the differential equation,

oW(u, 1) ow W

—r = 2L =)+ ]+ 23 (18)
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where x = {sin?60), and y = {cos 8),. The angular brackets {--- >, denote the averaging
over the functior of § with respect to the stationary distribution P*(6). The solution
for W is given by (16) with mean u(l) =2[(1 — x) + y]! and variance Au?(l) = 2xl.
Again in the strong disorder limit the distribution function for the variable u
approaches the universal Gaussian distribution. Variables x and y appearing in the
expressions for u(l) and Au(l)*> depend on the material parameter 4 and I This in

general leads to a two-parameter scaling theory of localization. Both u(l) and Au?())
depend explicitly on I and implicitly on 4. We now check for the validity of single

parameter scaling (i.e., to show u(l) and Au?(l) are dcpendeni\_lgriables) for which the

necessary and sufficient condition is that the Jacobian J (4, Auz )/, A), should vanish
identically [Kumar 1983], i.e.

a(g,}g_u'f)_ ol 0A _o ' (19)

o(LA4) | oA oAW?
al 0A
This gives the differential equation
dx dy
Fy)— =Xx—, 20
L+ =*34 (20)

the solution of which is given by [x/(1 + y)] = constant independent of 4. We have
computed x and y using the known coefficient C, in the Fourier expansion of P (6)
and we have verified numerically that indeed [x/(1+ y)] does depend on A in the
strong disorder limit. We therefore arrive at the two parameter scaling theory of
jocalization with the full probability distribution characterized by two independent
parameters.

3. Concluding remarks

We would like to state that our basic model at the microscopic Hamiltonian
level has only two system dependent dimensionless parameters, [ and A. This is a
minimal case for which we obtain a two parameter scaling in the strong disorder
limit. We can in principle introduce several other independent parameters in the basic
microscopic Hamiltonian through the statistical distribution of random potential, e.g.
(i) a Gaussian correlated potential in that the correlation length enters as an additional
parameter, (ii) a non-Gaussian potential with several independent moments. In the
above cases it is not clear whether the large scale distribution function for the variable
u approaches the universal Gaussian distribution with two independent parameters
or some other distribution function characterized by several independent parameters
{(many parameter scaling!). At present it is possible to obtain the closed Fokker-Planck
type equations for joint distribution of p and 6 only for the dichotomic correlated
(binary) random potentials [Rammal and Doucot 1987]. Generalization along these
directions may still prove fruitful. '

Finaily we remark on the analogy with phase transition. By two parameter scaling
all we mean here is that the probability distribution of In p cannot be described by
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the single parameter namely <In p) even in the limit of infinite length (the so called

“thermodynamic limit”). One needs to specify independently the variance also. In
contrast the one parameter scaling would require that the distribution be characterized
entirely in terms of {In p). It should be noted that otherwise tempting analogy with
phase transition (scaling behaviour) is somewhat misleading here in that there is no
phase transition in the one-dimensional case, i.e., there is no localized to delocalized
transition. The question of scaling behaviour in the sense of phase transition can be
addressed only in higher dimension where there is a mobility edge (fixed point).

- However, we do not have the analogous probabilistic treatment for higher dimensions
at present.
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