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Exact N-wave solutions for the non-planar Burgers
equation

By P.L.Sacupev!, K. T.Josepu? aAND K. R. C. NAIR?

1 Department of Mathematics, and > TIFR Centre, Indian Institute of Science,
Bangalore 560 012, India
3 Central Power Research Institute, Bangalore 560 094, India

An exact representation of N-wave solutions for the non-planar Burgers equation
Uy +uuz+%.7u/t = %auxx’

j=m/n, m < 2n, where m and n are positive integers with no common factors, is
given. This solution is asymptotic to the inviscid solution for |x| < 1/(2€,¢), where @,
is a function of the initial lobe area, as lobe Reynolds number tends to infinity, and
is also asymptotic to the old age linear solution, as ¢ tends to infinity; the formulae
for the lobe Reynolds numbers are shown to have the correct behaviour in these
limits. The general results apply to all j = m/n, m < 2n, and are rather involved;
explicit results are written out for j = 0, 1, , 5 and ;. The case of spherical symmetry
j = 2is found to be ‘singular’ and the general approach set forth here does not work;
an alternative approach for this case gives the large time behaviour in two different
time regimes. The results of this study are compared with those of Crighton & Scott
(1979).

1. Introduction

One of the most fascinating partial differential equations (PDE) in the description of
nonlinear phenomena is the Burgers equation

U+ U, = 30Uy, (1.1)

(see Lighthill (1956), Crighton (1979), Sachdev (1987) for a detailed physical
interpretation and important solutions). The well-known Hopf-Cole transformation
takes (1.1) exactly to the heat equation, and hence the solution to an initial value
problem for the former can be explicitly obtained. In physical applications, however,
the model equations often happen to be more complicated than (1.1), involving as
they do either a geometrical expansion term, a nonlinear damping term, a variable
coefficient on the right-hand side of (1.1), or a more general convection term, as in
the so-called modified Burgers equation with w*u, replacing uu,. The generalized
Burgers equation (GBE)

wy+uu, +3d/di[In 4 (t) u = §0u,, (1.2)

describes the propagation of weakly nonlinear longitudinal waves in a gas or liquid,
subject not only to the diffusion effects associated with viscosity and thermal
conductivity represented by the term on the right-hand side of (1.2) but also the
geometrical effects of change of the ray tube area A(t) represented by the last term
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on the left. The derivation of (1.2) is sketched by Lighthill (1956) and Leibovich &
Seebass (1974). For almost all these equations no Hopf-Cole-like transformation
exists. Indeed, the work of Sachdev (1978) and Nimmo & Crighton (1982) shows that
the only aBE for which a generalized Hopf-Cole transformation exists is the
inhomogeneous Burgers equation with an additional term, f(x, ¢), on the left of (1.1).
Therefore, one must deal with aBEs directly, instead of seeking to linearize them. In
a series of papers, Sachdev and his collaborators (Sachdev ef al. 1986 ; Sachdev & Nair
1987; Sachdev et al. 1988) treated GBEs with reference to single hump initial
conditions and introduced a new class of nonlinear ordinary differential equations
(opE), which they called Euler—Painlevé transcendents.

In this paper, we consider (1.2), where the ray tube area A(t) is of the form
A(t) = Ayt’, j being a positive constant, with N-wave initial conditions. In this case
(1.2) takes the form -+ win, +Lju/t = 1u,,. (1.3)
In this context, we refer to an attempt by Sachdev et al. (1986) to solve this problem
both analytically and numerically for spherical (j =2) and cylindrical (j=1)
Burgers equations. This study was largely numerical, except for the cylindrically
symmetric case j = 1. By a curious matching of the exact inviscid solution of (1.3)
and the exact solution of the linearized form of the same, an exact representation of
the solution of the cylindrical Burgers equation was found. It turns out that this
approach can be used for general j = m/n, m < 2nin (1.3), where m and » are positive
integers and have no common factors (m=1,n=1forj=1and m =2, n =1 for
J = 2; m > n for super-cylindrical area change and m < » for the sub-cylindrical area
change). We now summarize this approach. It is easy to verify that the inviscid form
of (1.3) has the exact N-wave solution (3.3). It also has an antisymmetric exact
solution (3.5) if the nonlinear term wu,, is dropped. The basic idea is to find an exact
form which embeds these two forms: it should tend to the former for large initial
Reynolds number and to the latter as ¢t co. In fact, this idea was implicit in an
earlier study of Sachdev & Seebass (1973) and is also supported by the singular
perturbation analysis of Crighton & Scott (1979) who showed that the inviscid
solution is the right outer solution, correct to all orders in a matched asymptotic
expansion. A more detailed motivation of the present approach is given in §2, where
we adopt it to recover the well-known exact N-wave solution for the plane Burgers
equation. We first peel off most of the inviscid behaviour from the solution and
introduce a reciprocal solution function. An infinite series solution for this function,
in powers of 9 = x?/2t0, the similarity variable, with coefficients depending on 7 =
/2", n an integer (recall that j = m/n), is sought such that the solution goes to the
exact linear N-wave solution as ¢t - c0. The substitution of the series in the equation
for the reciprocal function leads to an infinite system of coupled nonlinear oDEs,
which is solved exactly for the unknown functions of 7. The solution ultimately
involves a large system of coupled nonlinear algebraic equations. These algebraic
equations can be handled with reasonable effort for m+mn < 5; for larger values of
m+mn, this effort mounts rapidly. In fact when m+n < 5, by using an appropriate
scaling, the coupled nonlinear algebraic equations can be reduced to an algebraic
equation of finite degree in a single variable (see §4). In some cases, the algebraic
system admits either complex roots or more than one real root. The former may be
ruled out as physically inadmissible; the unique choice of the relevant real root may
have to be made by reference to the numerical solution.

The present approach fails for the spherical case j = 2, for which the exact inviscid
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solution involves a logarithmic term: » = x/(tIn¢). For this case, we give in §6 some
approximate asymptotic solutions holding in various time régimes, and compare
them with the matched asymptotic solution of Crighton & Scott (1979).

The present solution is an exact representation of the N-wave solution for (1.3) in
the sense that the solution (2.5) is for the planar Burgers equation (2.1). Tt does not
hold for some early time when the embryonic shock settles down to a certain steady
state where the viscous and geometric terms come to a certain balance with the
convective term. The solution (3.6) involves one arbitrary constant, just as the
planar solution (2.5) does. The arbitrary constant (which we may refer to as the old
age constant) is a function of two independent parameters, the initial Reynolds
number and a spreading parameter denoted by j in this paper (see also equations
(2.2)-(2.5) and (3.1)—(3.2) of Crighton & Scott (1979)). The explicit solution, for each
old age constant, would itself arise from very specific, usually singular and
complicated initial conditions, (see Whitham 1974 for the planar Burgers equation)
but is an intermediate asymptotic, which the solution of a class of initial value
problems would approach, as time becomes large (see Barenblatt 1979).

For related studies, we have already referred to the important matched asymptotic
expansion approach of Crighton and his collaborators (Crighton & Scott 1979; Lee-
Bapty & Crighton 1987; Nimmo & Crighton 1986), which we discuss in greater detail
in §7.

The scheme of this paper is as follows: Section 2 deals with the exact solution of
the plane Burgers equation ; it brings out clearly, by reference to the planar N-wave,
the motivation for the present approach. Section 3 gives the solution of the N-wave
for general j(= m/n). Explicit solutions for some special values of j = 1,3 4,1 are
presented in §4. Explicit forms for the lobe Reynolds number R,(t) for j = 0,1,3,3 are
given in §5. Section 6 deals with the singular case j = 2. Section 7 sets forth the
conclusions of this study.

2. Planar N-waves

We consider the planar Burgers equation with N-wave initial conditions

Uy +un, = 30U, ,, (2.1)
Mmm=$’ﬂ'”5“ 2.2)
0 otherwise.

The well known Hopf-Cole transformation can be used to find explicitly the solution
of (2.1) and (2.2) and hence its asymptotic form for large ¢. In fact

(20):€
3t = 1 1 2 +0 1 t > 23
e t) = oy T O (23)
2 lo/(26)% 2 1
where Cy= —-lelo/zaj e dz—(2/md)zl, (2.4)
e o

and £ = x/(2t0):. This estimate is uniform in £ as ¢ becomes larger. It is easily
checked that the first term in (2.3), namely

x/ts
(1 +8e7720/Cy)

w0, t) = (2.5)
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is an exact solution of (2.1). Let

Q) = fo u®(x,t) de. (2.6)

0

The lobe Reynolds number for (2.5) at time ¢ is

R(t) = %Q(t) = %J:O u®(x,t)de
— —ln[l-}-Oo —x2/2t6:| OO
0
= In(14C,/t). 2.7)
Let R,=R(t,) =In(1+C,/t}) and Q,= Q(t,). (2.8)
In terms of R,, €, = (eRo—1)t., therefore (2.5) can be written as

2?/2t8 \—1
u®(x,t) = ( ( ) R0_1> . (2.9)

For R, > 1, (2.9) may be approximated by

0 ~ g 1 % x_z_ -
u®(x,t) & t[1+(t0> exp [RO (QQOt 1)]] , (2.10)
for all  and ¢. Now for fixed t and R, — o0, (2.10) gives
W t) A {x/t, —(2Q, 1) < x < (2Q, 1), @.11)
0, o[>/ (2Q1),

which is the exact inviscid solution for (2.1). On the other hand if we let ¢— o0,
keeping ¢ fixed, we have, from (2.5),

e A Coge‘”zm", (2.12)

which is the old age behaviour. Thus the solution (2.5) appropriately embeds the
inviscid behaviour and the old age behaviour. This motivates our approach for
general 7. Let

a=1/C,, T=t and 7 =§ =a2/26. (2.13)
We can rewrite (2.5) as .
u®(x, t) = (20):§/V(n, T, (2.14)
where Vig,T) = X fi(T)n'/3! (2.15)
i=0
and fo(T) = T+aT?,
fity=aT® forall i>1. (2.16)

In §3, we shall seek a solution of (1.3) for j = m/n which meets the rather ‘unusual’
requirement that it goes to the inviscid form of the solution as the Reynolds number
tends to infinity and to the linear solution as time tends to infinity.
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3. Exact N-wave solution for general j =m/n, 0 <j <2
In this section we give an analytic approach to the N-wave solution of the equation
U+ uth, +3ju/t = 30u,,, (3.1)

where 0 <j <2, j =m/n, a rational number, with m <n» or m > n; the positive
integers m and n have no common divisors. The inviscid form of (3.1),

uy +ur, +3mu/nt = 0, (3.2)

has an exact N-wave solution

(20f @ 1

¢ i 3.3
U = 5] @n—m) 2ot (-3

The old age (linear) form of (3.1),
u, +3mu/nt = 0u,,, (3.4)

has the ‘anti-symmetric’ solution
u(z,t) = C’f;e‘wz‘”, (3.5)

t% t(2n+m)/2n

where C is an arbitrary constant. The basic idea for the construction of the N-wave
solution for (3.1) is that the solution should have the form of the exact inviscid
solution (3.3) for large initial Reynolds number and asymptotic linear form (3.5) as
t—00. Motivated by our analysis of the plane Burgers equation in §2, we seek
solutions of (3.1) in the form

u(,t) = (20&/V(y, T), (3-6)
where £=uw/(26t)}, p=¢, T==t
Using (3.6) and (3.7) in (3.1) we get the partial differential equation
ViV —=TVy)+ QT —=V)(V—=29V,)+3VV,+29VV,, —49V: = 0. (3.8)

We seek a representation of the solution of (3.8) in the form
(oo}
V=3 fi(T)n'/il. (3.9)
i=0

Substituting (3.9) in (3.8) and equating the coefficients of like powers of 9 to zero, we
get

3fi+2T—Tf+(G—1)f,=0, (3.10)
5fofat2ifofi—fi—=T fofl ) —2Tf, =0, (3.11)
Tfofs+ 120+ 1) fo—Tfo—3fi—6T1fo—Tfofs+2fil(J+ 1) fi— Tf1=0, (3.12)
- Lfe Jie L e fi Ji Je fickrn i
"‘”Eﬁ(z’—%r”ﬁkﬁ(z—l’% rarfes 3 e ar
+2 2 fk fi—lc +2 Z fk fi—lc+1 _4121‘}(}“_1 fl _ O (313)

r—o k! (¢ _k_l) - ok‘( i—k—1)! Ko k! (1—k—1)!
for¢=3,4,5,....
Proc. R. Soc. Lond. A (1994)
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The system (3.10)—(3.13) is an infinite system of coupled nonlinear differential
equations. Its structure is such that once f, f; and f, are known, all other f;, j > 3 are
obtained by algebraic operations alone. We determine f,, f, and f, from (3.10) and
(3.11) by making use of the inviscid behaviour (3.3) and the old age behaviour (3.5).
Set

T =TY" = l/2n, (3.14)

In terms of 7, equations (3.10) and (3.11) become
Bf,+27" — (r/n) fy +(m—n)/m)f, = 0, (3.15)
5fofet 2m/n) fofi—fi—(1/n) (fof,) —27"f, = 0. (3.16)

The inviscid and old age solutions (3.3) and (3.5) suggest that the first term in the
expansions for f;(7) (i = 0, 1, 2) should be proportional to ## = 7, while the last term
should be proportional to ¢2#+m/2n = r2n+m Thys we seek solutions for f;(7) in the

form
n+m W

for)=1" % a;7,
=0
n+m
filr) =1 2 b7, (3.17)
i=0
n+m X
o) =71" X ¢

=0

Substituting (3.17) in (3.15) and (3.16) and equating coefficients of like powers of 7
to zero we obtain the following relations amongst the coefficients a;, b,, ¢, appearing
in the functions f,, f, and f,:

a,=2n/2n—m), b,=0, ¢,=0,

Cpim = nim = Coms (3.18)
b,=[2n+i—m)/3n]a,, t=1,2,... (n+m),
and S+ [(2m—2n—12)/n] f,—2b,—v, =0, 1=1,2,... (n+m), (3.19)

Sa,+[(2m—2n—1)/n]f,—y; =0, i=n+m+1,...,2(n+m)—1, (3.20)
where a;, §; and y, are defined by
(i

2 Ay iy, 1=0,1,...,(n+m),
q=0 ¢
o; = i (3.21)
2 ¢, = (m+m+1),..,2(n+m),
g=i—(n+m)
(Za’qbi—q? 7:=O71>"'7(n+m)?
=0
Bi={""vim (3.22)
Y agbi,, = m+m+1), ..., 2(n+m),
q=t—(n+m)
(i
2 b,b; 1=0,1,...,(n+m),
q=0
V=" e (3.23)
2 o bybi, = (ntmA41), ... 2(n+m).
q=i—(n+m)
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Using the expressions for b; as given by (3.18) in (3.20), we get the following linear
algebraic equations for ¢;,c¢,,...,c

n+m—1 :
ntm o2m—2n—1\ "™ [(Indi—qg—m
q=i—(n+m) g=i—(n+m) n
_ ”{Z" (2n+i—q—m> (2n+q—m)a 4 =0
g=i—(n+m) 377/ 3’/L e ’

t=n+m+1,...,2(n+m)—1. (3.24),

We begin with equation (3.24), for ¢ = 2(n+m)—1. Since we know that c,,,, =
@y m> W can solve for ¢, ,,_, in terms of a;. Then from the equation (3.24)y,1 -
we can solve for ¢, ,,,_,. Proceeding in this manner, we can solve for ¢, ,,_1, Crim—2
..., ¢y in terms of @, = 1,2, ..., (n+m). Substituting these relations in (3.19) we get
(n+m) algebraic equations for the (n+m —1) unknowns a,, a,, .. “1is
old age constant and must be obtained numerically.

By construction, f;/7*"*™ >aq, . as 7— 00, for i = 0,1, 2. From (3.12) and (3.13) it
can be shown by induction that f;/7?"*" —>a, .. as 7— 0, for 4 > 3. This confirms
that the solution (3.6) we have constructed has the correct old age behaviour (3.5)
with C = (a,,,)™"

The lobe Reynolds number for the N-wave solution u(x,t) of (3.1) is defined as

* a’n+m—1 > (a’n+m)

R(t) = —;;Jw u(x,t) de. (3.25)

Integrating (3.1) with respect to @ from 0 to oo and using (3.6), (3.9), (3.14) and

(3.17), we get
dR+mR 1 1 (3.26)
o T Toiarm .
" 2mt AT 4, i

=0

Multiplying (3.26) by #™/* and integrating the resulting expression from ¢ to co, we

obtain 1 " ds
R(t) = — . (3.27)
2t§m/n n+m L.
t S(zn—m)/an: Z a; ng/n:|
i=0

Notice that unlike in the work of Sachdev et al. (1986), we have imposed the
boundary condition R(f = c0) = 0; in fact, (3.27) requires that RE™™ 50 as t— 0.

4. Explicit solution for j = 1,311

Since the calculations in §3 for general j are rather involved, we illustrate them by
choosing some special values of j. For these values of j the solution can be obtained
explicitly, although the details become more complicated as n-+m increases; recall
that j = m/n.

(@) j=1

This case was analysed by Sachdev et al. (1986) and we give here the results of their
study. The constants a;, b;, ¢, in f,, f, and f, (see (3.17)) are given by

ay=2, a,= i3a%2,
by=0, by ==+2a}, b,=a,
=0, ¢ =1%a3 c¢,=a,.
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Sachev et al. (1986) ruled out the negative root by reference to the numerical
solution. Thus f,, f, and f, can be represented in terms of the old age constant (a,)™:

folt) = 26+ 3a5 t +a, 2,
fi(t) = 2a3t+a, b,

1
folt) = %a'gz tt+ay t%:

and hence all f;(t), ¢ > 3, can be found from (3.12) and (3.13). The asymptotic form
of the solutions as ¢t — 00, coincides with the linear solution (3.5).

b) =1
In this case ) .
T = T§ = tZ
and (3.15) and (3.16) become
3f1_%f0_%7f(;+27'2 =0, (4.1)
5ffatfofi _f12_27'2f1_%7'(f0f1)/ =0. (4.2)

We seek f,, f; and f, in the form

fo="ay+a, T+a, T +a, 77,

fi =1by+b, TH+b, T2+ b, T, (4.3)
fo=THco+ e TH e, T2 40y 70,
where a, =% (4.4)

(see (3.14), (3.17) and (3.18)).
Substituting (4.3) in (4.1) and equating coefficients of like powers of 7 to zero we
get
b,=0, b, =2a,, by,=2a, b,=a, (4.5)
Substituting (4.3) in (4.2) and equating coefficients of same powers of 7 to zero, we
get

¢o="0, ¢, =3%a,, C=—F0l+50 ;=04 (4.6)
and a,, a, and a, satisfy
' a3—6a, =0,
at+a,=0, (4.7)

1 1,3
a3+ 540, @ — 307 = 0.

Here a3 is the old age constant to be determined numerically. The system of three
equations (4.7) relates two unknowns @, and a,. The only real solution of the first of
(4.7) is

a, = 6ial. (4.8)
From the second equation of (4.7), we get
a, = — 6%, (4.9)

It is easy to check that the last equation of (4.7) is identically satisfied by (4.8) and
(4.9). Thus we have

11 2 2
ay=13% a, =603 a,=—06%0a}
11 2 2
by=0, b, =326%3 b,=—36%3 b,=a, (4.10)
— — 2@ % — 31028 -
=0, ¢, =260}, c,=—36%3, c,=a,.

Proc. R. Soc. Lond. A (1994)
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(c)j=3
Here we set 7= T% = #, so (3.15) and (3.16) become
3fi—=3fo—3rfo+2r° =0, (4.11)
5f0f2+%f0f1_f12_273f1_%'T(fofl)/ =0. (4.12)

In view of (3.17), for j = 1, we seek f,, f; and f, in the form
fo="lagta, T+a, P+ a1 +a, 1,
fi="7[by+b, T+by T2 +b, 78 +b, 7], (4.13)
fo=Tcot e, TH e, T ey P4, T,

where a, =$. (4.14)

Substituting (4.13) in (4.11), equating coefficients of different powers of 7 to zero and

using (4.14), we get

by=0, b, =2, b,=1Ia, by=23%a, b,=a, (4.15)
Similarly from (4.13) and (4.12) we obtain

— — 4 — 77 2 3 — 20 —
Co = 07 C1 = 9@, Co = 1350 — 2701, C3 = 373, C4 = Qy, (416)

where a,, a,, @, and a, are related by the coupled system of nonlinear algebraic
equations
a,+ 50, a;—8ai ay, +7505 = 0,
0y @y — T30 O3+ 5505 @y = 0, (4.17)
@y ay—Fa3—aja, =0,
a;—%at+%a,a, = 0.

Here a;! is the old age constant. Thus, the system of four equations (4.17) relates the
three unknowns, @,, @, and a,. Solving this algebraic system we get

11 2 2 3 3
a, = (o)1 ah, @y =5(Ho)ay, a5 = —FK)ial (4.18)
From (4.14)-(4.18) we finally have
v 1 2 2 3 3
a=% ay=Eal a,=5E)id, a,=—2Fid,)
12
b= 0, b =3
2 2 3 3
b2 = 3_;"(225_70)“11’ b3 = _42_()70(%):{&3’ (419)
1 1
=0, o =iEfd, c,=%E)id,
3 3
c; = —10%ep)al, ¢y =by,=a, J
) j=1

Pursuing the analysis which is a direct extension of that for the cases j =1,  and
3, that we have set out in detail earlier, we were able to obtain the coefficients in f;,
f1 and f, for j = % as well. Here we give the final results. With 7 = B, fo, f and f, have
the form

5 5 5
fo=1 [ Y a, Ti], fi= 74[2 b, Ti], fo=1t [ Y 7’], (4.20)
i=0 i=0 i=0
Proc. R. Soc. Lond. A (1994)
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where a, =% b,=0, b =3a,, b,=1a,,

by =305, by=1a4 b;=as (4.21)

— I — 9 7 42
6o =0, ¢ =150y, Cy = 1507301,
— 161 49 3 3 2 — 19 — .

C3 = —g60% @p t57601 T35, €4 = axpas  C5 = @53
az' is the old age constant and a,, a,, a, and a, are related to it by the following five
nonlinear coupled algebraic equations:

1 245 763 2 29 3.2 _
70, + 3001 — 280t a, + 5k, ay+3a3 = 0,

4 7 13 35 245 161

205+ 50, a, +530, 0, —Bat a,+2%at a, — 150, 0 = 0,

11 5,21 2452 _
Uy @5+ 330, 0,y + 5605 + 35507 4y — 1530, a0y —Hata, =0, (4.22)

30 a5+ 30y 0, + 150t 0, — Fa, a, 0, —Faja; = 0,
ay a; —30;+ 1503 as — e, ay 05 = 0.
By an appropriate scaling we were able to reduce (4.22) to a fifth degree polynomial
equation in a single variable and hence solve the latter numerically. We thus
obtained

a, = 0.34906a}, a,=047383a}, a,= 144718}, a,=—2.94671af. (4.23)

Using (4.23) in (4.21), we get the coefficients of f,, f; and f, in terms of the old age
constant a;', which itself must be determined numerically.

We have also carried out the analysis for the case j =3 for which m+n = 5, the
same as for j = 1. All the details, including the structure of the algebraic equations
analogous to (4.22), are entirely similar; therefore we omit the discussion of this case
for the sake of brevity.

5. The lobe Reynolds number

It is possible to write the explicit form of the lobe Reynolds number R,(t) for some
special cases from (3.27). We recall that we here impose the condition t/2R,(t) >0 as
t—> 0.

@ =0: Ry =tn|t+-1] 5.1)
a,
) j=1 (t)———l—ln[l—l— ! ] (5.2)
J ! (taz)é 1+ (taz)% ’
9 (6%00% H_1— \/3)%(\/3+1) ]
=1 th T 1 11 1 11 3 I 1 5.3
= BO=gra n[(ﬁmgti—/l) (6%} i— 1 ++/3)FV3D 53

(d) j=13: Ryt) =81/125T

(7*2+pT+q)%<A+B>] (Cp )[ ( p+27T ) ]}
1 B < Mt PR )
x{n[(’l’—a)“‘(’l’—ﬁ)B gl Vg —pm) i 69

where 7' = 27/250%a%té A= (a®—1)/ap, B=(f2—1) /ac/)’ C=@2-p—a2)/af, D=
(o) (1 =)+ (B+p) (1~ )| farp, p = =3 g = F—3f—(9/50) and @ and f are
the real roots of the equation 74 —(9/5) 7%+ (27/50) 72 + ( 27/25O)T+(81/625) =0;in
fact & = (6/5) and £ =~ 0.99222.
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It is curious that R, has a form very similar to R,, the additional factor 1/(ta,):
being simply the geometrical attenuation. It is easy to conclude from these results
that the Reynolds number formulae, and hence our solution, become valid earlier in
time, the smaller the initial Reynolds number. This becomes evident if we write for
(5.1), (5.2) and (5.3) the large-time expansions:

1 1

RBy() =—F——+..., .

e (5.5)
1 3

R t =__—ﬁ+..., 5.6

)= 3t (5.6)

Ry(t) = ! 4 +.... (5.7)

Here we note that the first terms in (5.5)—(5.7) are simply the Reynolds number
obtained from the old age (linear) solution (3.5).

In the large Reynolds number régime, if the initial Reynolds number R;(%,) is taken
into account, R,(t) for t > ¢, is given by

— 0 AN R R VL)
() 7=0: Ry(t) = Ry(t,) ln[1 T (1/a, t%)il' (5.8)
B B AR (abth+1) (a1 +2)
(f)g=1: R, = Rl(t0)<t) (a2t)% n[(aézt%-i- 0 (ai t%+2)]. (5.9)
W =t mo=ro)(2)

2 ln{[ﬁ%ait%—4][(6%a§t%—1+\/3)%W3—1>] /[(G%ait%—1—\/3)%w3+l>]} 5.10)
6ias ¢t [ 6%d ff —4 ][ \6iaiti —1++/3 6iai i —1—+/3 o

3
If we now expand the expressions (5.8)—(5.10) for ¢ > £, and R,(f) > 1, we obtain
Ry(t) = By (ty) —31n (to/1),
R\(t) % Ry (t) (to/1)F—3(1 = (to/1)),
Ry(t) ~ Rafto) (fo/ 1) —3(1 = (to/1))-

These are the appropriate large Reynolds number forms, obtained earlier by
Liebovich & Seebass (1974) for j = 0, 1, 2 on using an approximate analysis. We again
emphasize that R,(t,) does not denote the lobe Reynolds number for any (particular)
known initial conditions.

6. Spherical N-wave
Now we consider the spherical Burgers equation
uy+un, +u/t = 0u,,, (6.1)
with N-wave initial condition

x if |x <1,
0 otherwise.

u(x,0) = {
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We introduce the new variables, namely ¢ and
= A
3 = xt*(Int)’, (6.3)
Vin,t)y = (t+c)*(n(t+c)Pu,

and write (6.1) as

1

t+c  (t+c)In(t+c) tint
+(t+c)*[In (t4¢)]° ¢(Int)’ VV, = §06**(In £)* V. (6.4)

In the limit ¢ > 1, different balances of terms in (6.4) are possible, of which only two
are relevant here. We consider each of these balances separately.

Casel. a=0,=0,a=—1,b=—1.
In this case (6.4) has the form

1 1 .
Ve [(t+c) In (t+c)] e+ (t+c)In(t+c) Ve = 20V (6.5)
and the initial data (6.2) become
(clnc)x if || <1,
0) = .
V.0 {0 otherwise. (6:6)
Seeking the solution of (6.5) in the form
1
V—VO+WT)V1+..., (6.7)
we have Ve =1511,,
Vo(x,0) = {(olnc)x if ¢l <1, (6.8)
’ 0 otherwise,
and V= 1Vh 4 V=@ | 69
Pz, 0) =0, —o0<x< oo.J
The explicit solution of (6.8) is
1 Lo
Vox,t) =clne—— —2@=0)*/t8 )y Quy. )
(x,t) =c¢ nc(2nta)§ﬁle ydy (6.10)

We try to write (6.10) in a more convenient form. For this purpose, consider
d 1
do ),

d * 1 2 1* 1 2 x (1 1 2

— —2 @Y Jy = — —5(Z=¥)°/t0 34y — 2 —5(Z—y)°/td

g _le Y wf-lye dy tﬁjﬁle dy. (6.12)

From (6.11) and (6.12), we have

19
e_%<x_y)2/w dy = — f @ (e_%(x"y)2/t6) dy — e_%(x_"l)z/w — e_é(zhl)z/w, (6 11 )
-1

and

1 1
J y e 1V dy = xJ e HEmVY dy 4 (18) [ @D _ g H@-DY] (6 .13)
-1 -1
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Using (6.13) in (6.10), we get

1 1
VO(oc,t)=olnc[(-2—£§)-l j e—%<x—y>’/wdy+(%)§(e—%<z+1>2/t<*-e—%<x—1>2/w)]. (6.14)
)

Once V°(x, ) is known, V(x,t) can be found from (6.9):

x t) f j VO )21( 5) e~ (@) (2(t—5)%) dy ds. (6.15)
0J- [275 t* s) 0]
Thus we get the following expansion for u(z,?):
clnc x 1 2 1 2 1 2
,t — : _E(z Y) /t&d + 1t5 § (x+1) /t6 __ a—3(x—1)°/ts ]
U = oy n (o) [(ma)g j © y+ Gio/m) ¥ )

clne V(y V)2 (y, ) a8
+(t+c [In (¢+¢)] Lf_ [2nt—3)5]2 e dyds+.... (6.16)

The constant ¢ must be chosen suitably. Since

1 1 . 1 (x+1)/(2t6)2 .
] e‘?(x W dy = — e dz>1, as 00
(2med)E ) - @D/t

for |¢| <1, the first term of the right-hand side of (6.16) tends to c(Inc)z/
[(t+c)In(¢+c)] as 00 provided |z| < 1. Now we find ¢ > 0 such that ¢clnc=1;
in fact ¢ & 1.763. It can easily be shown that the second term of (6.16) is of the order
O(1/(t+c¢)(In(t+¢))?) as 6—>0. Thus (6.16) has the correct behaviour as §—0 for
this choice of ¢: the first term tends to the inviscid solution which is also the outer

solution correct to all orders in the matched asymptotic analysis of Crighton & Scott
(1979).

Case2. a=0,=0,b=0,a=—1
In this case (6.4) becomes

1 _1
V.+ 4% oV, 6.17
t ¢ z 2Y Vxa ( )
The initial condition (62) becomes

V(w,0) = {cx if x| <1, (6.18)

0 otherwise.

Seeking an expansion of V in the form
1
— PO
vV V+t CV‘+..., (6.19)

we get from (6.17) and (6.18) the following systems for V° and 1*:
e =1or,,
Po(,0) = {cx if |l <1, (6.20)
’ 0 otherwise,
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and V} = %61/:1090_%(1/0)2’ (6.21)
VHx,0) =0, —o0 <x< 0.

As for the case 1, we obtain

V"(x,t)=c{@3”w-—)1 f —3E-08 Qg 4 (46 /1) ( —-<x+1>2/”—e—%@-l)z/w)] (6.22)
n 2

1 0\2
. J J 3V o (@=0*/2(t—5) ) dy ds. (6.23)
0J o [27( t—s 6]2

The solution for the variable u(x,t) becomes

C x 1 1 2
M= —3(z—y)* 8 dy + lté‘ )2 e—§($+1) /w_e—g(x 1) /m]
ww ) =G [(ma)a f Y60/ )

c

+m Vi x, t)+..., (6.24)

where V'(x,¢) is given by (6.23). Here the constant ¢ remains to be determined. This

constant is again a complicated function of two parameters, the initial Reynolds

‘number and a spreading parameter. For each pair of values of the parameters, one

would have to solve the generalized Burgers equation exactly, follow the solution to

larger times and compare the results with (6.25). We consider the first term of (6.24),

calling it u®(x, t). We show that is essentially the old age asymptotic form of Crighton

& Scott (1979), up to a constant, obtained by matched asymptotic expansion. For
this purpose, we recall that

erfe (y) = glj e dz

and note that

1 1 . 1 (z+1)/(2t6)% .
—IJ e TV qyy = e % dz
(2mtd) @)/t
= Yerfe ((x— 1)/(2t6)%) —erfe ((z+ 1)/(2t8)%)].
Hence
1 cx r—1 x+1 ¢ (o) 20t 20,k
f == fo ) — rr N ) R I L R T
u(x,t) = 2(t+c)[ r ((2t8)?> erfc((2¢3)§)]+t+c(2n> le e ]
(6.25)
Letting {— oo in (6.25), we get
0 2 x o—7%/2t
u(x,t) &~ 11:2(Y_§ . (6.26)

Using matched asymptotic expansions, Crighton & Scott (1979) obtained the old age
form as

ud(x, ) = 1X[erfc V(X —1)]—erfe[»(X +1)]]+ L [e V(XHD' _ev (XD (6.27)
2t 2t
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where X = a/T%, v = Le 247 and 7T}, solves eT; e = 1, ¢ = 18, and showed that as
{00

11 . .
O, t) % ——— T2 ——e % /20 .
el O e i 629
Since € = 4, we get
L% .
W, t) ~ T Bn%%%e—x fats, (6.29)

The asymptotic forms (6.26) and (6.29) are the same except for a constant multiple.
Crighton and Scott were able to find the arbitrary constant in (6.29) by suitably
matching it to solutions holding in earlier time régimes. Our solution (6.25) would
have to be supplemented by numerical solution in order to identify the unknown
constant.

7. Conclusions

The non-planar Burgers equation (3.1), like most generalized Burgers equations,
does not admit a Hopf—Cole transformation, and therefore, must be treated directly.
In the present paper we are concerned with the N-wave solutions of this equation.
We attempt to mimic the planar N-wave solution (2.14) by ensuring that the non-
planar N-wave solution tends, in the limit of large initial Reynolds number, with ¢
fixed, to the inviscid solution (3.3) and, in the limit ¢ - co to the old age solution (3.5).
Fortunately, it becomes possible to do that for 0 < j < 2, where j = m/n, m and n
being positive integers with no common factors. The case j = 2 is exceptional since
the inviscid solution w = x/(tInt) involves a logarithmic term and our method does
not work. We return to this special case presently. To obtain the desired asymptotic
solution we found it convenient to peel off ‘most’ of the inviscid behaviour and
introduce a reciprocal function (see equation 3.6). The infinite series form (3.9) of the
reciprocal function leads to an infinite system of coupled opEs for the time functions
fi(1). These equations have a special structure, so that if the first three functions f,,
[ and f, can be obtained from the first two equations, all other f;(¢ > 3) can be found
by algebraic operations alone. The knowledge of the inviscid form and the (linear) old
age form of the solution helps us to accomplish this.

The analysis of the infinite system of opes leads finally to a system of coupled
nonlinear algebraic equations for the coefficients a,,a,, ...,a,,,_;, occurring in the
first unknown function f,(t) = # X7%4" a, /" which, after some non-trivial manipu-
lation and scaling, can be reduced to an algebraic equation of finite degree in one
of the unknowns. The roots of this equation help us to find all the unknown constants
in the polynomial functions f,(t) in terms of the old age constant a;!,,, which must
remain unknown and be related to the numerical solution of a given initial value
problem. The roots of the algebraic equation must be examined for each j. For j =
1, 2 there is only one real root; for j = 1, of the possible two roots, one was chosen after
comparison with the numerical solution. The solution that we have found here for
general j = m/n is an exact representation of the N-wave which holds for all time
except for some initial time over which all the effects — convective, geometrical and
diffusive — come to a certain balance (see Leibovich & Seebass 1974).

Now we turn to the ‘singular’ case of spherical symmetry with j = 2. In this case,
our general approach does not work. If there does exist a single exact representation,
it must be much more complicated than (3.6)—(3.9) and must involve logarithmic
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terms in f;(¢). However, we have adopted a different approach for this case, as
explained in §6, to discover large time behaviour. We introduce new independent and
dependent variables (6.3) and seek suitable ‘balances’ in the transformed equation
to obtain simpler forms of (6.1). It turns out that there are two important balances:
(a) which leads to a correction to the inviscid solution, w = «/(¢Int), to include linear
diffusive effects (see 6.16), and (b) which corrects the linear diffusive solution to
incorporate the effects of nonlinearity.

The approximate solution corresponding to (a) is fully determined in the form
(6.16) while that corresponding to (b) is found within an arbitrary constant. Indeed
the latter approximate solution in the limit ¢+ oo is exactly the same as found earlier
by Crighton & Scott (1979) using matched asymptotic expansions; they were also
able to find the arbitrary constant by matching this solution to other solutions
holding in earlier time régimes. The approximate solution (6.16) is new and has the
right behaviour in the early evolution of the N-wave.

Now we compare our exact analytic representation (3.6) of the N-wave solutions
for general j =m/n with matched asymptotic solutions of Crighton and his
collaborators (Crighton & Scott 1979; Nimmo & Crighton 1986). Assuming the
diffusivity to be small (which is a physically correct assumption), Crighton and his
collaborators have solved the N-wave problem for j = 1,2, using matched asymptotic
expansions. Crighton & Scott (1979), assuming a discontinuous initial N-wave, found
some solutions valid for moderate times; these hold if the following conditions are
met:

(i) the shock width must be small compared with the overall scale of the N-wave;
(ii) the correction due to diffusivity must not displace the shock too far from its
location according to weak shock theory;

(iii) the Taylor shock solution itself remains valid as a leading order ap-
proximation.

They diagnosed the regions of space-time in which one or more of these conditions
is violated and found new solutions of an asymptotic kind in each of these domains.
For example in the case of spherical N-waves the complete solution is found with the
exception of one region of space-time in which an irreducible nonlinear problem
remains unsolved. In this region the outer limiting behaviour is, nevertheless,
determined so that the solutions in all other regions are completely fixed. Even the
form of the old age constant, actually a complicated function of two parameters, the
initial Reynolds number and the spreading parameter, is completely determined by
their analysis. For cylindrical N-waves an irreducible problem again results, but the
motion can be followed right through into its old age phase, aside from an
undetermined purely numerical constant. Correct results were obtained for the
‘correction due to diffusivity’ to the weak-shock theory prediction of shock centre
location for plane, cylindrical and spherical N-waves.

We believe ours is the first exact representation of the solution for an important
and physical generalized Burgers equation, arising from N-wave type of initial
conditions. We hope to apply the method reported in the present paper to other
generalized Burgers equations (Sachdev & Joseph 1994).

We sincerely thank Professor Sir James Lighthill and Professor D. G. Crighton for their careful
perusal of the original version of the paper, constructive criticism and many useful suggestions.
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