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ABSTRACT
We calculate the self-consistent response of an axisymmetric galactic disk perturbed by an elliptical

halo potential of harmonic number m\ 2 and obtain the net disk ellipticity. Such a potential is com-
monly expected to arise due to galactic tidal encounter and also during the galaxy formation process.
The self-gravitational potential corresponding to the self-consistent, nonaxisymmetric density response of
the disk is obtained by inversion of the Poisson equation for a thin disk. This response potential is
shown to oppose the perturbation potential because physically the disk self-gravity resists the imposed
potential. This results in a reduction in the net ellipticity of the perturbation halo potential in the disk
plane. The reduction factor denoting this decrease is independent of the strength of the perturbation
potential and has a typical minimum value of D0.75È0.9 for a wide range of galaxy parameters. The
reduction is most important at 1.4 exponential disk scale lengths and is progressively less so at higher
radii. For the solar neighborhood region of the Galaxy, the reduction factor is 0.8. Beyond twice the
Holmberg radius, the reduction is negligible, and there the disk asymmetry in the atomic hydrogen gas
traces the true ellipticity of the halo potential. The reduction is negligible at all radii for higher harmon-
ics (mº 3) of the halo potential. On correcting for the negative disk response, the true ellipticity of the
halo potential for a typical spiral galaxy is shown to be higher by D20% than the typical halo ellipticity
of ¹0.1 deduced in the literature from observations of isophotal or kinematical asymmetry of disks.
Subject headings : galaxies : halos È galaxies : ISM È galaxies : kinematics and dynamics È

galaxies : spiral È galaxies : structure

1. INTRODUCTION

It is now realized that the disks of spiral galaxies display
a rich variety of nonaxisymmetry in their light and hence
mass distribution. Lopsided galaxies such as M101 and
NGC 1637 show a global asymmetry, with a much larger
spatial extent on one side than on the other, as seen opti-
cally (Sandage 1961) and particularly strongly in the atomic
hydrogen gas (Baldwin, Lynden-Bell, & Sancisi 1980). Thus,
the disk mass distribution in these is characterized by
m\ 1, where m is the harmonic number or the azimuthal
number of the Fourier component being studied. For the
elliptical case (m\ 2), similar globally asymmetric distribu-
tions with a constant phase with radius are not easy to
discern. This is because it is difficult to separate the projec-
tion e†ects from the intrinsic ellipticity of the disk, and
hence this needs a careful photometric study of nearly
face-on galaxies as done, for example, by Rix & Zaritsky
(1995). On the other hand, the m\ 2 spiral features with a
phase varying with radius, say, as in M81 or M51 (Sandage
1961), are well studied and indeed are responsible for the
““ spiral ÏÏ nomenclature for these galaxies. These earlier
studies were done in the blue band, and hence the features
show a much stronger contrast than the asymmetry in the
underlying stellar mass distribution, which is harder to
measure.

Recent near-infrared observations allow one to measure
the mass asymmetry in the underlying, old stellar disk
population (Block et al. 1994 ; Rix & Zaritsky 1995 ;
Zaritsky & Rix 1997 ; Rudnick & Rix 1998 ; Kornreich,
Haynes, & Lovelace 1998). Rix & Zaritsky (1995) have
given a quantitative measure of the amplitudes of the com-
ponents with various harmonic numbers and their radial
variations. The amplitudes of the higher harmonics (m[ 3)
are observed to be generally smaller than those for m\ 1, 2,

or 3. The asymmetry at a higher radius beyond the optical
disk or the Holmberg radius is better studied using the H I

as a tracer as shown for the m\ 1 case, with mapping
(Baldwin et al. 1980) and with the global velocity proÐles
(Richter & Sancisi 1994 ; Haynes et al. 1998). The disk asym-
metry can also be deduced from the kinematic study of the
H I velocity Ðeld observations (Schoenmakers, Franx, & de
Zeeuw 1997).

Despite the small value of the observed disk asymmetry
of a few percent, it is becoming an interesting topic for study
since the disk asymmetry is tied into the asymmetry of the
halo and indeed provides a quantitative measure or diag-
nostic of the halo asymmetry. This is because the global
asymmetry in the disk is attributed as a response to the halo
distortion (e.g., Weinberg 1995 ; Jog 1997). Thus, the halo
asymmetry can be deduced from the observed isophotal
(Rix & Zaritsky 1995) or the kinematic (Franx & de Zeeuw
1992) disk asymmetry. Binney (1978) Ðrst proposed that a
galaxy halo would be nonaxisymmetric/triaxial and studied
its e†ect on the embedded disk. The halo asymmetry could
arise due to tidal interactions between galaxies (Weinberg
1995), or the triaxiality of the halo could be attributed to the
galaxy formation process itself (e.g., Dubinski & Carlberg
1991 ; also see Binney 1996 and Rix 1996). Thus, the mea-
surement of the disk asymmetry allows one to constrain the
details of galaxy formation mechanisms.

Since the disk and halo in a galaxy overlap and interact
with each other gravitationally, the nonaxisymmetry in one
structural component will a†ect that in the other. In the
inner galaxy, inside of the Holmberg radius, the disk consti-
tutes a signiÐcant part of the total mass of the galaxy, and
the disk self-gravity can result in a substantial decrease in
the net nonaxisymmetry of the halo potential as shown for
m\ 1 by Jog (1999). Physically, this is because the disk
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self-gravity resists change and thus leads to a decrease in the
magnitude of the net lopsided potential in the galactic
plane. In this paper, we study a similar self-consistent, nega-
tive disk response to higher order halo perturbations
(m\ 2, 3) and discuss the implications of our results for
observations. A similar opposing disk response for m\ 2
has been mentioned by Rix (1996), and the decrease in ellip-
ticity of the potential has been estimated approximately by
Binney (1996). Here we study this e†ect quantitatively, and
self-consistently, and Ðnd that the typical reduction in the
elliptical potential is D20%.

The orbits in an m\ 2 and m\ 3 perturbation potential
are calculated using the Ðrst-order epicyclic theory, and the
density response of the disk is obtained (° 2). Further, the
self-gravitational potential corresponding to the self-
consistent density response of the disk to the halo potential
is obtained by applying to m\ 2 and 3 the general formal-
ism developed by Jog (1999) (° 2). The reduction factor for
the halo potential due to the self-gravity of the disk is
obtained for a wide range of galaxy parameters, including
for the Milky Way, and the ““ true ÏÏ halo asymmetry is
obtained (° 3). Section 4 contains a discussion of a few
general points, and the conclusions from this paper are
summarized in ° 5.

2. POTENTIAL CORRESPONDING TO DISK RESPONSE

2.1. Density Response in a Nonaxisymmetric Halo Potential
We obtain the equations of motion for closed orbits, and

the density response of these, in an azimuthally symmetric
galactic disk perturbed by a nonaxisymmetric halo poten-
tial and also obtain their relation to the isophotal shapes in
an exponential disk (see Appendix A). This is analogous to
the lopsided case (m\ 1) studied by Jog (1997). We use the
galactic cylindrical coordinates (R, /, z).

The unperturbed potential for the axisymmetric galactic
disk at a given radius R is chosen to be a logarithmict0potential that is applicable for a region of Ñat rotation, with

being the constant rotational velocity :V
c

t0(R)\ V
c
2 ln R . (1)

The nonaxisymmetric perturbation halo potentials t2and corresponding to the m\ 2 and 3 components are,t3respectively, chosen to be

t
m
(R)\ V

c
2 v

m
cos m/ , (2)

where and are small, constant perturbation param-v2 v3eters and / is the azimuthal angle in the plane of the disk.
Note that the ellipticity, or the elongation, of the potential
in the plane is given by and respectively, for the2v2 2v3,
m\ 2 and 3 cases. The amplitude, of the pertur-V

c
2 v

m
,

bation potential (eq. [2]) is assumed to be constant with
radius for simplicity, as in Franx & de Zeeuw (1992) and
Rix & Zaritsky (1995). This assumption is physically rea-
sonable for a global distortion of a halo as in a triaxial halo
potential (see ° 1). We have also assumed the phase of the
perturbation potential to be constant with radius for simpli-
city, as was done by Rix & Zaritsky (1995) for m\ 2 and by
Jog (1997) for m\ 1. This is also justiÐed for a global halo
distortion assumed.

The unperturbed surface brightness of a typical galactic
disk is observed to have an exponential dependence on
radius (Freeman 1970). Assuming a constant mass-to-light
ratio for the disk, this gives the unperturbed mass surface

density, of the stellar disk to bekun,

kun(R) \ k0 exp
A
[ R

Rexp

B
, (3)

where is the central extrapolated surface density andk0is the scale length of the exponential disk.RexpFor the perturbed case due to the nonaxisymmetric
potential, the resulting isophote will be elongated along the
same axis as the perturbed orbit, as argued by Franx & de
Zeeuw (1992). Since the perturbed orbit, dR, is proportional
to cos m/ (see, e.g., eq. [A6] for m\ 2), the resulting e†ec-
tive surface density for the perturbed orbits in an exponen-
tial disk can be deÐned (see Rix & Zaritsky 1995 ; Jog 1997)
to be

k(R, /) \ k0 exp
G
[ R

Rexp

C
1 [ (viso)m

2
cos m/

DH

\ k0 exp
A
[ R

Rexp

B
exp

AA
m

A0
cos m/

B
, (4)

where is the ellipticity of an isophote at R for m\ 2(viso)mand m\ 3, respectively, and is the fractional ampli-A
m
/A0tude of the mth azimuthal Fourier component of the disk

surface brightness. Note that for small perturbations, this
choice reproduces the deÐnition of (eq. [A12]), as(viso)mrequired. The second relation on the right-hand side of
equation (4) follows from the relation between and(viso)m(eq. [A13]) for an exponential disk.A

m
/A0Thus, the change in the surface density, resultingkresponse,from the response of the disk to the perturbation halo

potential is given by subtracting the unperturbedkun,surface density (eq. [3]), from equation (4), and for small
perturbations we obtain the density response for m\ 2, 3 to
be, respectively,

[kresponse(R, /)]
m

\ kun(R)
AA

m
A0

cos m/
B

. (5)

Thus, the disk response density is linearly proportional to
or to the perturbation parameter, (see eq. [A15]),A

m
/A0 v

mas expected from the linear perturbation theory used in this
paper. Note that the response density is maximum along
/\ 0¡, along which the magnitude of the perturbation halo
potential is also a maximum. This result will be valid for
any self-gravitating, centrally concentrated realistic disk
mass distribution.

2.2. Disk Response Potential : om o \ 2, 3 Cases
The self-gravitational potential t (R, /, z) for a general,

nonaxisymmetric, thin disk with a surface density k (R, /, z)
was obtained by Jog (1999). This was obtained by solving
the Poisson equation using the inversion technique involv-
ing the Hankel transforms of the potential-density pairs.
The expression for the nonaxisymmetric potential for the
thin disk is (see eq. [22] from Jog 1999)

tdisk(R, /, z) \ [ G ;
m/~=

=
exp (im/)

P
0

=
J
m
(kR)

] exp ([k o z o ) dk
P
0

=
J
m
(kR@)R@ dR@

]
P
0

2nk(R@, /@) exp ([im/@) d/@ , (6)
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FIG. 1.ÈDimensionless self-gravitational potential of the disk response
vs. the dimensionless radius for the azimuthal wavenumber,(c)

m
R/Rexpm\ 2 and 3. The maximum occurs at a radius of 1.42 and 1.17 exponential

disk radii, respectively, for m\ 2 and 3.

where is the cylindrical Bessel function of the ÐrstJ
m
(kR)

kind, of order m. We apply this to the disk response density,
for m\ 2 and m\ 3 (eq. [5]). The[kresponse(R, /)]

mresulting potential deÐnes the response potential,
respectively, for m\ 2 and(tresponse)m \ [tresponse(R, /)]

m
,

m\ 3. We consider the potential in the plane of the disk, so
that z\ 0.

Consider the case om o\ 2 Ðrst. Since the density
response is proportional to cos 2/, only the values of
m\ ^2 need to be kept in the integral over /@ on the
right-hand side of equation (6) because only the contribu-
tion from these terms is nonzero. Further, since cos 2/ is an
even function of /, and since the termsJ2(kR)\ [J~2(kR),
for m\ 2 and m\ [2 contribute equally to the integral.
On substituting from equation (A15) for in terms ofA2/A0the expression for the response potential,v2, (tresponse)2,
simpliÐes to

(tresponse)2\ [2nGk0 v2 cos 2/
P
0

=
J2(kR) dk

]
P
0

=
J2(kR@)

A
1 ] R@

Rexp

B

] exp
A
[ R@

Rexp

B
R@ dR@ . (7)

The second integral over R@ can be solved using the rela-
tion (6.623.1) from Gradshteyn & Ryzhik (1980). The Ðrst
integral over R@ can be simpliÐed by writing in termsJ2(kR@)
of and using the standard recursion relation (e.g.,J1 J0Arfken 1970) and the resultingJ0(x) ] J2(x)\ (2/x)J1(x),
two terms can be solved using the relations (6.611.1) and
(6.623.2), respectively, from Gradshteyn & Ryzhik (1980).
On substituting these in equation (7), and writing x \ kR,

and setting equation (7) simpliÐes tof (x) 4 x2(Rexp/R)2] 1,

(tresponse)2\ [2nGk0Rexp v2 cos 2/
A R
Rexp

BP
0

=
J2(x)dx

]
A 2
x2
G
1 [ 1

[ f (x)]1@2
H

[ (Rexp/R)2
[ f (x)]3@2

B

[ 2nGk0Rexp v2 cos 2/
ARexp

R
B3

]
P
0

= J2(x)3x2 dx
[ f (x)]5@2 . (8)

Note that has a sign opposite to the pertur-(tresponse)2bation potential (eq. [2]), thus, the disk response is nega-t2tive. In the linear regime studied, the magnitude of the
response potential is proportional to the perturbationv2,parameter in and cos 2/. Similarly, the disk responset2,would be negative for any self-gravitating, centrally concen-
trated disk. Following a similar analysis, the response
potential is obtained for m\ 3 ; see Appendix B(tresponse)3,for details.

Next, deÐne to be a dimensionless quantity asg
m

(g
m
) 4 o (tresponse)m o /t

m
. (9)

Note that this is independent of the strength of the
imposed perturbation potential and depends linearly only
on k0Rexp/V c

2.
The integrals over x in equation (8) when solved analyti-

cally give terms involving hypergeometric series which need
to be calculated numerically. Instead, equation (8) is directly
solved numerically, and while doing this is obtainedJ2(x)
using a speciÐc program (Press et al. 1986, chap. 6) that
gives a stable value for n º 2.

DeÐne the dimensionless disk response potential, asc
m
,

c
m

4 g
m

V
c
2

2nGk0Rexp
. (10)

In Figure 1, versus is plotted for a Ñat rotationc
m

R/Rexpcurve for m\ 2 and 3. First, note that at any radius the
magnitude of is lower for the higher m value. This followsc

mfrom the form of the response potential (eq. [6]), which
involves a double integral over the Bessel function J

m
(x),

which decreases monotonically with m for a particular argu-
ment x. Second, the maximum of occurs at a lower radiusc

mwith increasing m. T he maximum occurs at a radius \
for m\ 2 and for m\ 3. For the cor-1.42Rexp 1.17Rexprected equations of motion for m\ 1 (see Appendix A), the

maximum occurs at which is slightly larger than1.98Rexp,the radius of obtained in Jog (1999). This radial1.4Rexpdependence is a robust result valid for any exponential disk
and is independent of the actual values of and Thek0 Rexp.observational consequences of this result will be discussed
in ° 4.

3. RESULTS

3.1. Net Nonaxisymmetric Potential :
Self-consistent Calculation

A particle in the disk will be a†ected by the imposed halo
potential and also the disk response potential. We follow
the approach of Jog (1999), which gave a self-consistent
calculation for m\ 1. Thus, for a self-consistent case the net
nonaxisymmetric perturbation potential, in the disk(tnet)m,
plane is given by the sum of the perturbation halo potential
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(eq. [2]) and the self-gravitational potential, (tresponse)m@ ,
which corresponds to the disk response to the net potential,

Thus,(tnet)m.

(tnet)m 4 t
m

] (tresponse)m@ . (11)

In analogy with the disk response to the halo potential
alone (eq. [9]), the net self-consistent response potential

is given to be(tresponse)m@
(tresponse)m@ \ [g

m
(tnet)m . (12)

On substituting this in equation (11), we get

(tnet)m \ t
m

1 ] g
m

. (13)

Next, deÐne the reduction factor, to bed
m
,

d
m

4
1

1 ] g
m

. (14)

Here d(¹ 1) is the reduction or scaling factor by which
the magnitude of is reduced due to the self-consistent,t

mnegative disk response. Note that since is a positive deÐ-g
mnite quantity hence That is, the magnitude of the netd

m
¹ 1.

perturbation potential is always smaller than the magnitude
of the imposed halo perturbation potential. For d

m
\ 1,

there is no reduction and the disk response asg
m

\ 0
expected. The reduction factor at a given radius isd

m
R/Rexpindependent of the strength of the perturbation potential and

hence of and it depends inversely on and hencev
m
, g

minversely on We will obtain the actual values ofk0Rexp/V c
2.

in ° 3.2. The reduction factor will be a minimum at ad
m

d
mradius where is a maximum, that is, at andg

m
1.42R/Rexpfor m\ 2 and 3, respectively (see Fig. 1).1.17R/Rexp

3.1.1. Net Asymmetry

DeÐne the net, self-consistent, perturbation potential,
in terms of a small perturbation parameter to(tnet)m, (vnet)mbe

(tnet)m 4 V
c
2(vnet)m cos

m
/ . (15)

Substituting this, and (from eq. [2]), into equationt
m(13), we obtain

(vnet)m \ v
m
(d)

m
. (16)

Thus, the parameter denoting the strength of the(vnet)mnet perturbation potential in the galactic disk is reduced
compared to the parameter denoting the perturbationv

m
,

halo potential, by the reduction factor Observations ofd
m
.

the fractional amplitude of the mth azimuthalA
m
/A0,Fourier component of the surface brightness, will yield the

parameter Here is the net ellipticity of the(vnet)m. 2(vnet)mhalo potential. Hence, the halo-alone case (eq. [A15]) is
now modiÐed, and we get the net ellipticity to be

2(vnet)2\ 2A2/A0
[1] (R/Rexp )]

. (17)

Similarly, is given by the right-hand side of equa-(vnet)3tion (A15). The values of the true ellipticity will be(2v2)obtained in ° 3.3.

3.2. Reduction Factor, d
m

The value of the reduction factor (eq. [14]) is obtainedd
mnumerically, and its variation with the galaxy morphologi-

cal type, size, and radius in the galactic disk, and the com-
ponent m, is studied for the classical large or giant spiral
galaxies.

3.2.1. Giant Spiral Galaxies

The values of the typical disk parameters for the giant
spiral galaxies are taken to be the following : the centralk0,surface mass density, is 450 pc~2 ; the exponentialM

_
Rexp,disk scale length, is 3 kpc ; and a range of values of the

maximum rotation velocity, for a Ñat rotation curve areV
c
,

taken to be equal to 200, 250, and 300 km s~1. See Jog
(1999) for a discussion supporting the choice of these values.
Figure 2 contains a plot of the reduction factor, by(d)2,
which the elliptical halo potential is reduced due to the
negative response of the disk (eq. [14]), versus NoteR/Rexp.that the reduction factor is a minimum at and1.42Rexpincreases thereafter, as expected from equation (14) (see
° 3.1). The typical minimum value of d lies in the range of
0.75È0.9, and d is larger for galaxies with a larger value of
V
c
.
A similar plot of versus radius (not shown here) givesd3the minimum value of to be higher, in the range of 0.83Èd30.93. Thus, the reduction due to the disk self-gravity in the

perturbation halo potential is not important for m\ 3 and
for the higher values of the harmonic m. Therefore, for
mº 3 the observed asymmetry in the disk response rep-
resents the true halo asymmetry.

For the corrected equations of motion for the lopsided
case (m\ 1 ; see Appendix A), the resulting minimum in d is
found to span a range of 0.67È0.82 and it occurs at a radius
of These are slightly di†erent from the results of1.98Rexp.Jog (1999), mainly in the peak radius that was earlier
obtained to be Note, however, that the correct1.4Rexp.results obtained here are still in good agreement with the

FIG. 2.ÈReduction factor d due to the self-consistent, negative disk
response for the m\ 2 perturbation halo potential vs. the radius R/Rexp,for giant spiral galaxies, with a Ñat rotation curve with a velocity V

c
\ 200,

250, and 300 km s~1 and kpc. The minimum reduction factor liesRexp \ 3
in the range of 0.75È0.9, and it always occurs at and dR/Rexp \ 1.42,
increases steadily beyond this radius.
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observed radial variation in the net lopsided distribution,
which was a main result of Jog (1999).

3.2.2. T he Milky Way

Next consider the special case of a giant spiral galaxy,
namely, the Milky Way. We assume a Ñat rotation curve
with km s~1, kpc (Binney & TremaineV

c
\ 220 Rexp\ 3.5

1987), and pc~2 as discussed above for thek0\ 450 M
_giant galaxies. The plots of and versus ared2 d3 R/Rexpgiven in Figure 3. Several quantitative results follow from

this. First, the minimum values of and are 0.75 andd2 d30.88, respectively. Second, is 0.79 in the solar neighbor-d2hood of R\ 8.5 kpc, which is This is almost twice2.43Rexp.the value of for the reduction in the ellipticity estimated37from an order-of-magnitude calculation by Binney (1996).
Because of the general formulation in our paper, Figure 2
gives the reduction factor as a function of radius for m\ 2
for a variety of galaxy parameters.

Third, if the halo of our Galaxy has an elliptical halo
potential, then the disk response would reduce this poten-
tial at most by a factor of D0.75. Thus, for the observed
values of the disk parameters for the Galaxy and also the
other galaxies, while the negative disk response cannot be
ignored, it can never totally cancel or counteract the
imposed elliptical halo potential in the disk plane. This is
contrary to the suggestion by Binney (1996) that at high
enough disk-to-halo mass ratio, the galaxy could be treated
as axisymmetric.

3.3. Ellipticity of the Halo Potential
The true ellipticity of the halo potential is an important

physical property, possibly related to the process of galaxy
formation (° 1), and attempts have been made in the liter-
ature to estimate this from the observational data on disks
of galaxies. The resulting values span a large range. The
optical data on the elongation in the disk yield a typical
estimate of ellipticity for the halo of spirals to be 0.1 (Franx

FIG. 3.ÈReduction factor d vs. the radius for the Milky Way,R/Rexp,with a Ñat rotation curve with a velocity km s~1, andV
c
\ 220 Rexp\ 3.5

kpc, for m\ 2 and 3. The minimum reduction factor is 0.75 and 0.88,
similar to typical giant spiral galaxies (see Fig. 2) and occurs at 1.42Rexpand for m\ 2 and 3, respectively.1.17Rexp

& de Zeeuw 1992), while a value of 0.045 is obtained by a
similar analysis of the near-infrared study of a smaller
sample of 18 galaxies (Rix & Zaritsky 1995). From detailed
kinematical studies, an ellipticity of 0.1 is obtained for the
Milky Way (Kuijken & Tremaine 1994), and for NGC 2403
and NGC 3198 this is estimated, respectively, to be 0.064
and 0.019 (Schoenmakers et al. 1997). From the scatter in
the Tully-Fisher relation, the halo ellipticity is estimated to
be 0.1 (Franx & de Zeeuw 1992).

The observations measure the net ellipticity, 2(vnet)2,while the true ellipticity of the halo potential, given by 2v2,is higher by a factor of (eq. [16]). Since the typical1/d2minimum value of is 0.8 (Fig. 2), the true ellipticity isd2higher by 20% than the measured net value. Thus, for the
above observed typical range of net ellipticity of 0.045È0.1
in the literature, the true halo ellipticity is in the range of
0.056È0.12. This is an important new physical result from
our work. Of course, the above estimates would have sub-
stantial error bars due to the contamination by the spiral
arms or a central bar.

Note that the reduction factor at larged2 ] 1 Rº 8Rexp(Figs. 2 and 3), or about twice the Holmberg radius. Hence,
the true halo ellipticity can be directly sampled by studying
the tracer at larger radii, namely, atomic hydrogen gas. This
was done in the plane of IC 2006 (Franx, van Gorkom, & de
Zeeuw 1994), and the halo was found to be axisymmetric.
The ellipticity perpendicular to the plane of the galactic disk
could be obtained by studying the polar ring galaxies as
suggested by Rix (1996).

4. DISCUSSION

1. The net nonaxisymmetry in the disk will only manifest
beyond the radius where the magnitude of the disk response
potential is a maximum, and its magnitude will increase
with radius as seen from the deÐnition of (° 3.1), and thisd

mradius is larger for a lower m. This indicates the increasing
relative dynamical importance of the halo over the disk at
large radii. Therefore, if the halo distortion is constant or
increasing with radius, then the disk lopsidedness (m\ 1)
would be seen only in the outer disk while the higher order
nonaxisymmetric features could be seen farther in the disk.
However, the radial variation for mº 2 in the inner/optical
region will be a†ected by spiral arms, and bars. Hence, the
radial variation in mº 2 components cannot be given
clearly, in contrast to the m\ 1 case where a clear
minimum radial distance was predicted for the detection of
m\ 1 global features (Jog 1999 ; also ° 3.2).

2. In addition to the disk response to the global pertur-
bation in the halo as studied in this paper, there could also
be m\ 2 or m\ 3 modes generated directly in the disk, say,
due to gravitational instabilities. These would typically
have a strong phase variation with radius and hence be
detected as the standard two-armed or three-armed spiral
features, respectively. Only future detailed simulations of
tidal interactions on lines of Weinberg (1995) will tell us
about the strength as well as the phase and the radial
dependence of the true halo nonaxisymmetry of the various
m components. Since there is no inner Lindblad resonance
for m\ 1 in a typical galactic disk (e.g., Block et al. 1994),
the m\ 1 component may dominate in the nonlinear
regime.

3. The negative disk response decreases the net asym-
metry of the potential in the galactic plane, and this would
a†ect the further evolution of the galaxy. This could be one
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reason why numerical simulations with a higher mass con-
centration in the form of a disk show a decrease in the halo
ellipticity (Dubinski 1994). Thus, the negative feedback due
to the self-gravity of the disk highlighted in this paper
should be included in future studies of galaxy evolution.
The present paper shows that the disk cannot be treated as
a collection of massless test particlesÈdoing so would over-
estimate the disk response.

5. CONCLUSIONS

We have calculated the self-consistent disk response for
an axisymmetric galactic disk perturbed by a non-
axisymmetric halo potential with elliptical and higher har-
monic perturbations (m\ 2 and 3) :

1. The self-gravitational potential of the self-consistent
density response of a galactic disk is calculated, and this is
shown to oppose the perturbation potential. Thus, the mag-
nitude of the net nonaxisymmetric potential in the galactic
disk plane is always reduced compared to that of the pertur-
bation potential. This reduction is denoted by a factor, d

m
,

which is found to be independent of the strength of the
perturbation potential.

2. The reduction factor, is obtained for a wide ranged2,of galaxy parameters, including for the Milky Way. It has a
minimum value of D0.75È0.9, which is insensitive to the
morphological type and size of the galaxy. The reduction is
most signiÐcant at 1.4 disk scale lengths and is less impor-

tant at higher radii. Beyond twice the Holmberg radius, the
reduction is negligible and the atomic hydrogen gas can be
used to trace the true ellipticity of the halo potential. In the
solar neighborhood of the Milky Way, the elliptical halo
potential is decreased by a factor of due to the diskd2\ 0.8
self-gravity. The reduction is negligible for the higher har-
monics (mº 3) of the halo potential. The asymmetric disk
response in mº 3 therefore represents the true halo
asymmetry.

3. On correcting for the negative disk response, the true
ellipticity of the halo potential for a typical spiral galaxy is
shown to be higher by D20% than the halo ellipticity of
D0.05È0.1 deduced in the literature from observations of
isophotal or kinematical asymmetry of disks.

4. The negative disk response due to the disk self-gravity
is shown to be always signiÐcant in decreasing the strength
of the nonaxisymmetric halo potential. Hence, the galactic
disk in a realistic galaxy cannot be treated as a collection of
massless test particles. Yet, the negative disk response in a
real galactic disk is found to be never large enough to com-
pletely obliterate the e†ect of the halo ellipticity.

I would like to thank the anonymous referee for com-
ments that led to a clearer presentation of material in ° 2
and Appendix A.

APPENDIX A

PERTURBED ORBITS AND ISOPHOTAL SHAPES

We study the orbits in an axisymmetric disk perturbed by a halo potential of harmonic numbers m\ 2 and 3. We use the
cylindrical coordinate system (R, /), where / is the azimuthal angle in the galactic plane. Consider a perturbed orbit around
the initial circular orbit at a radius which is given by and Here where is theR0, R\R0 ] dR /\ /0] d/. /0\ )0 t, )0circular rotation speed at and is given by the following, where is the unperturbed potential :R0 t0

R0)02\ dt0
dR

o
R0

. (A1)

Consider the m\ 2 case Ðrst. The general perturbation potential is taken to be Following the proceduretpert(R0) cos 2/0.for the Ðrst-order epicyclic theory as in Jog (1997), the general coupled equations of motion for dR and d/ are given by
equations (4) and (5) from Jog (1997) to be

d2dR
dt2 \ [dR

A
3)02] d2t0

dR2 o
R0
B

[
C2tpert(R0)

R0
] dtpert

dR
o
R0
D

cos 2/0 , (A2)

R0
d2d/
dt2 ] 2)0

ddR
dt

\ 2tpert(R0) sin 2/0
R0

. (A3)

From the theory of a forced oscillator (e.g., Symon 1960), equation (A2) may be solved to yield the following solution for the
closed orbits :

dR\[M[2tpert(R0)/R0]] (dtpert/dR) o
R0

N
i2[ 4)02

cos 2/0 , (A4)

where i is the epicyclic frequency at R0.For the present problem, is the amplitude of the perturbation potential deÐned by equation (2), and thetpert \ V
c
2 v2 t2unperturbed disk potential is deÐned by equation (1). For these, equation (A4) givest0

dR\ R0 v2 cos 2/0 . (A5)

Thus, the net radius is given as

R\ R0] dR\ R0(1] v2 cos 2/0) . (A6)
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Hence, the perturbed velocity along the radial direction, is given asV
R
,

V
R

\ [2V
c
v2 sin 2/0 . (A7)

On substituting the solution for dR from equation (A5) in equation (A3) for the / component of the equation of motion and
integrating it, we obtain the solution for the perturbed azimuthal velocity component The net velocity along theR0 d(d/)/dt.
azimuthal direction is obtained to be

VÕ \ V
c
] R0 d(d/)/dt ] )0 dR\ V

c
(1[ 2v2 cos 2/0) . (A8)

Hence, the equations of motion for the perturbed, closed orbits in the m\ 2 perturbed potential are given by equations
(A6)È(A8).

A similar procedure for m\ 3 yields the following equations of motion for the perturbed, closed orbits :

R\ R0
A
1 ] 2

7
v3 cos 3/0

B
, V

R
\ [6

7
V
c
v3 sin 3/0 , VÕ\ V

c

A
1 [ 9

7
v3 cos 3/0

B
. (A9)

The results for the m\ 1 (lopsided) case from Jog (1997) are given below for comparison. The change in the azimuthal
velocity, was given in Jog (1997) to be equal to The correct, space-frame velocity (see Schoenmakers 1999)dVÕ, R0 d(d/)/dt.
would include an additional term equal to (see for example the left-hand side of eq. [A8]). On including this correction,)0 dR
the perturbation term in is now changed and has a factor 1 instead of 3 in it, while the expressions for R and remain theVÕ V

Rsame as in Jog (1997). The revised equations of motion for the m\ 1 case are given here for the sake of completeness and are

R\ R0(1[ 2v1 cos /0) , V
R

\ 2V
c
v1 sin /0 , VÕ\ V

c
(1] v1 cos /0) . (A10)

Next, we study the resulting isophotal shapes for an exponential disk. This analysis is similar to the m\ 1 case studied by
Jog (1997). For an exponential galactic disk (eq. [3]), the fractional amplitude of the mth azimuthal Fourier com-A

m
/A0,ponent of the surface brightness is obtained to be

A
m
/A04 *k/SkT \

K
[ *R

R
R

Rexp

K
, (A11)

where SkT is the azimuthal average of the disk density. Here *R/R is the distortion in the isophote and is related to the(viso)m,
ellipticity of an isophote at R, as follows :

(viso)m 4 1 [ (Rmin/Rmax) \ 2(*R/R) , (A12)

where and are the minimum and maximum extents of an isophote, respectively.Rmin RmaxFrom equations (A11) and (A12), we get

A
m
/A0\ (viso)m

2
R

Rexp
. (A13)

We next obtain a relation between the perturbation parameter, and the resulting Since the orbital velocityv
m
, A

m
/A0.changes along the perturbed orbit, the associated surface density also changes as a function of the angle /. The changes for

particles on these orbits are governed by the equation of continuity which has the following form in cylindrical coordinates :

L
LR

[Rk(R, /)V
R
(/)]] L

L/
[k(R, /)VÕ(/)]\ 0 . (A14)

On solving together the equations of the perturbed motion as given by equations [A6]È[A8] for m\ 2, or equation [A9]
for m\ 3, or equation [A10] for m\ 1, and the continuity equation (A14) and the equation for the e†ective surface density
(eq. [4]), we obtain the relation between the ellipticity of an isophote, and the perturbation parameter for the(viso)m, v

m
,

potential, at a given radius R. On combining this with equation (A13), we get the relation between and thev
m

A
m
/A0,fractional amplitude of the azimuthal Fourier component, for the m\ 1, 2, and 3 cases, respectively :

v1\ A1/A0
(2R/Rexp)[ 1

, v2 \ A2/A0
(1] R/Rexp)

, v3\ A3/A0
1 ] (2R/7Rexp)

. (A15)

This is used to write the disk density response (eq. [5]) and hence the response potential (° 2.2) in terms of thev
m
,

perturbation parameter of the potential.

APPENDIX B

DISK RESPONSE POTENTIAL: om o\ 3 CASE

We obtain the disk response potential, deÐned in ° 2.2, starting from equation (6). Following the reasoning as in(tresponse)3
° 2.2, only the terms for m\ ^3 need to be kept, and using the expression for (eq. [A15]), we obtainA3/A0

(tresponse)3\ [ 2nGk0 v3 cos 3/
P
0

=
J3(kR)dk

P
0

=
J3(kR@)

C
1 ] 2

7
A R@
Rexp

BD
exp

A
[ R@

Rexp

B
R@ dR@ . (B1)
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Next, we use the recursion relations between and the lower order Bessel functions, and (e.g., Arfken 1970), toJ3 J0 J1simplify the integrals over R@ and solve the various terms by applications of the relations (6.623.1), (6.623.2), and (6.623.3) and
(6.611.1) from Gradshteyn & Ryzhik (1980). Next write x \ kR and deÐne the function and obtainf (x) 4x2(Rexp/R)2] 1

(tresponse)3\ [2nGk0Rexp v3 cos 3/(Rexp/R)2
P
0

=
J3(x)dx

]
A [x
[ f (x)]3@2] 8M[ f (x)]1@2 [ 1N

x3(Rexp/R)4 [ 4(R/Rexp)2
x[ f (x)]1@2

B

[2nGk0Rexp v3 cos 3/
2
7
P
0

=
J3(x)dx

]
A
[ 3x(Rexp/R)2

[ f (x)]5@2 ] 8(R/Rexp)2
x3

G
1 [ 1

[ f (x)]1@2
H

[ 4
x[ f (x)]3@2

B
. (B2)
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