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Eigenvalues and Eigenvectors of the Staggered Dirac Operator at Finite Temperature
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We examine the eigenvalues and eigenvectors of the staggered Dirac operator on thermal ensembles
created in QCD with two flavours of staggered quarks. We see that across the phase transition a
gap opens in the spectrum. For finite volume lattices in the low-temperature phase the eigenvectors
are extended, but generic field configurations in the high temperature phase give rise to localized
eigenstates. We examine measures of the stability of such localization and find that at finite volumes
localization occurs through Mott’s mechanism of the formation of mobility edges. However, the band
gap between the localized and extended states seem to scale to zero in the limit of large volume.
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I. INTRODUCTION

Any fermionic operator can be written in the spectral form

Ô =
∑

λµ

Oµλ|λ〉〈µ|, (1)

where |λ〉 is an eigenvector of the Dirac operator with eigenvalue λ, evaluated separately on each configuration. Typical
operators of interest contain quark loops with various insertions, i. e., O = Tr (A1(D+m)−1A2(D+m)−1 · · ·An(D+
m)−1). As a result,

O =
∑

λ1···λn

〈λ1|A1|λ2〉〈λ2|A2|λ3〉 · · · 〈λn|A2|λ1〉
∏n

i=1
(m+ λi)

, (2)

where we use the symbol D to refer to the massless Dirac operator. If the Ai commute with D, then the matrix
elements in the numerator are diagonal, and all questions about the operator reduce to the simultaneous eigenvalues
of the Ai and the Dirac operator. This happens, for example, in the chiral sector of the theory, where one deals
with questions about n-point functions of pions. Since γ5Dγ5 = D†, most questions about the chiral sector can be
answered if the eigenvalues are known. As a result, the thrust of many previous studies of QCD to date has been on
the spectrum of eigenvalues, particularly on comparisons with random matrix theory (RMT) [1]. This focus is due to
the fact that RMT is known to be equivalent to chiral perturbation theory in some limits [2].

However, at finite temperature, especially above Tc, chiral perturbation theory is not the appropriate long-distance
effective theory. Furthermore, there are interesting questions at many different length scales and one may need to
build different effective theories to answer these questions. Several questions involve fermionic loops with insertions
of operators which do not commute with D. An example is the vector susceptibility,

χV =
∑

λ1,λ2

|〈λ1|γµ|λ2〉|2
(m+ λ1)(m+ λ2)

, (3)

which includes quark number susceptibilities. Deeper understanding of such quantities need the study of the eigen-
vectors [3].
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II. EIGENVALUES

We analyzed configurations generated in the study of QCD with two flavours of dynamical staggered quarks at a
lattice spacing a = 1/4T [4]. The scale fixing yielded Tc/mρ = 0.186 ± 0.006. As T varied between 0.75Tc and 2Tc,
the renormalized quark mass was kept constant. The physical box size, L = Nsa where Ns is the box size in units of
the lattice spacing. The aspect ratio was varied in the range 2 ≤ LT ≤ 6.

We investigated the eigenvalues, λ, and eigenvectors, |λ〉, of the massless Dirac operator, D, in typical thermal
ensembles picked from these simulations. We used five configurations separated by two autocorrelation times at all
temperatures and volumes except at 1.05Tc where we verified the results using twenty configurations. Eigenvalues
and eigenvectors were computed with the ARPACK subroutines [5]. For convergence, the tolerance is chosen so that

|r|2 < ǫ, where r = (D − λ)ψλ, (4)

where λ is an eigenvalue and ψλ is the corresponding eigenvector. We report results with ǫ = 2 × 10−13.
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FIG. 1: The lowest Dirac eigenvalues as a function of T for different spatial lattices. In all cases the lattice spacing a = 1/4T .
Also shown in the lowest Matsubara frequency expected at this cutoff, i. e., the expectation for free fermions.

The lowest staggered Dirac eigenvalue, λ0, evolves as shown in Figure 1. There is a clear crossover from low to
high temperature behaviour evidenced by an increase in the lowest eigenvalue by three order of magnitude in the
neighbourhood of Tc. This becomes sharper in the neighbourhood of Tc with increasing spatial size of the lattice.

It is also worth noting that at 2Tc there seems to be little remaining volume dependence. It is interesting that this
large volume behaviour sets in at a minimum L given by Lλ0 ≈ 0.8. Consistent with this observation, at 1.5Tc the
lattice sizes which satisfy this condition also give results which are almost volume independent.

In Figure 1 we further show the lowest eigenvalue of the free Dirac operator on a lattice of the same coarseness.
In the limit of zero lattice spacing this would correspond to the Matsubara frequency, Ω = πT . The full QCD
configurations can be seen to lie very far from the free field theory (ideal gas) limit at all temperatures up to 2Tc.
This is consistent with another observation at the same lattice spacing that the pseudoscalar screening correlator
constructed with staggered Dirac quarks yields a screening mass far below that expected from the free theory [6]. It
would be interesting to see whether this correlation, related to the chiral behaviour, changes in the same way due to
various improvements in the gauge and fermion actions and in the continuum limit.

The Banks-Casher formula [7] relates the density of Dirac eigenvalues at zero with the chiral condensate. In order
to utilize this formula we expand the cumulative distribution of the eigenvalues in the form

I(x) =

∫ x

0

dλρ(λ) =
∑

n≥1

anx
n, from which ρ(x) =

∑

n≥1

nanx
n−1. (5)
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Lattice cutoff N points χ2/N a1 a2 a3

4 × 163 0.01 189 0.77 0.153(3)

0.06 1147 0.37 0.153(2)

0.20 0.152(2) 0.050(50)

0.17 0.152(2) 0.8(1.0)

0.15 0.153(2) -0.08(5) 1.9(1.0)

4 × 123 0.02 153 1.00 0.147(2)

0.06 469 0.69 0.148(2)

0.14 1176 5.17 0.153(2)

0.27 0.144(2) 0.116(26)

0.20 0.147(2) 0.79(23)

0.16 0.146(2) 0.046(26) 0.49(23)

4 × 83 0.06 128 0.17 0.135(11)

0.08 172 0.16 0.136(10)

0.10 222 0.23 0.138(10)

0.375 1150 6.80 0.175(7)

0.04 0.126(7) 0.196(26)

0.28 0.144(7) 0.43(8)

0.03 0.128(7) 0.175(25) 0.05(8)

TABLE I: Fits of the cumulative density for β = 5.26, i. e., T/Tc = 0.90 ± 0.01.

where the γ5-Hermiticity of the staggered Dirac operator as well as its anti-Hermitean nature have been used. Together
they imply that the eigenvalues are paired and imaginary, ±iλ. The integration above is over the positive λ values.
Note that the reflection symmetry in λ permits the existence of an a2 term (even n, in general) only if the ρ(λ) is
non-analytic at the origin.

The cumulative distribution was constructed numerically and fitted to the form in eq. (5) for configurations above
and below Tc. Indicative results are shown in Tables I and II. The tables are arranged in increasing order of N , the
number of eigenvalues included, and n of eq.(5). Note that below Tc one gets a good determination of a1 for cutoffs
of the order of 0.1 or so. In fact, the values of a1 do not depend on n or N . With increasing lattice size, L, the
estimate of a1 increases marginally. On the larger lattices a2 is compatible with zero, indicating that the distribution
is analytic.

Above Tc, a2 is clearly non-zero for all cut-offs while a1 drops with increasing L. This behaviour, shown in Table
II, implies that a non-analyticity develops in the spectral density. This non-analyticity is due to the formation of a
gap— the spectral density is exactly zero upto the gap, and then becomes non-zero. Another way to test this would
be to introduce a gap explicitly in the eq. (5),

ρ(x) =
∑

n≥1

nan(x− x0)
n−1. (6)

Indeed, when one does that, a non-zero value of the gap, x0, is observed for those temperatures where a2 is non-zero
by the other method.

III. EIGENVECTORS AND MEASURES OF LOCALIZATION

The eigenvectors of the Dirac equation, ψ, are often investigated through the localized moments

P γ
n (λ) = V n−1

∑

r

|pγ(r;λ)|n , where pγ(r;λ) = 〈λ|γ|λ〉, and P 1

1
= 1, (7)

γ is a matrix in Dirac space [10], the inner product in the definition of pγ(r;λ) involves a sum over spin-flavour and
colour indices, the explicit sum is over all V lattice sites r, and the normalization of the eigenvectors, P 1

1
involves the

density where the Dirac matrix is identity. For staggered quarks one has the identity P 1
n = P γ5

n . The second moment,
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Lattice cutoff N points χ2/N a1 a2 a3

4 × 243 0.0025 33 0.20 0.030(3)

0.01 140 0.22 0.032(3)

0.031 535 0.04 0.030(3) 0.41(5)

0.031 535 0.03 0.031(3) 0.25(10) 5(2)

4 × 163 0.01 22 0.38 0.0148(36)

0.06 323 5.35 0.0317(36)

1.89 0.81(9)

0.03 0.0125(37) 0.53(9)

0.12 1077 0.03 0.0136(33) 0.503(37)

1.27 0.029(3) 3.4(0.4)

0.01 0.0118(32) 0.57(4) -0.5(4)

4 × 123 0.02 20 0.57 0.0135(45)

0.06 130 4.06 0.0291

0.05 0.0060(46) 0.62(11)

0.20 1068 31.2 0.0767

0.13 0.0147(39) 0.45(3)

2.18 0.039(4) 1.77(16)

0.01 0.008(4) 0.581(26) -0.55(16)

4 × 83 0.01 9 0.09 0.047(25)

0.02 19 0.11 0.053(24)

0.06 68 0.16 0.064(18)

0.03 0.048(18) 0.414

0.20 373 0.01 0.052(11) 0.348(26)

0.415 1160 0.05 0.062(7) 0.29(2)

0.003 0.051(7) 0.38(2) -0.16(6)

TABLE II: Fits of the cumulative density for β = 5.30, i. e., T/Tc = 1.05 ± 0.01.

n = 2 is called the inverse participation ratio (IPR). The moments P 1
n have the interesting property that for constant

ψ = 1/
√
V , one finds P 1

n = 1, whereas for the localized ψ(r) = δr,r0
, one has P 1

n = V n−1.
Histograms of IPR against λ are shown in Figure 2. There is a very clear difference between the IPR observed

below and above Tc. Below Tc the IPRs are close to unity, without any clear dependence on the eigenvalues. In
contrast, the situation is dramatically different above Tc; several eigenvectors have very large values of IPR. There is
correlation between the eigenvalue and IPR, with larger eigenvalues coming with substantially smaller IPR.

Below Tc there is little sign of volume dependence of the IPR, consistent with the small values seen there. Above
Tc the smaller IPR values seen for large λ are also volume independent. However, as shown in Figure 2, larger values
of IPR are volume dependent. A test of scaling shows that the lattice size dependence is consistent with a power
behaviour, Lα, with 2.5 ≤ α ≤ 3.5. Again, this is not unexpected, since IPR is constructed to be proportional to the
volume for localized eigenvectors.

In [3] the transition from volume dependent to independent values of IPR is used to locate the “mobility edge”. By
this identification one would have a mobility edge at λ ≃ 1.25Tc for a temperature of 2Tc. However, the notion of a
mobility edge contains more physics and we shall examine it more critically in a later section.

The eigenvalues and eigenvectors of the Dirac operator are clearly dependent on the gauge field backgrounds.
However, thermodynamic quantities constructed from these have fluctuations which decrease rapidly with increasing
lattice size. The IPR is not such a variable: its fluctuations are comparable to the average, as can be seen in Figure 3.
The ratio of the variance and mean of P 1

2
, as a function of λ at 2Tc, is of order unity [11]. The localization properties

of Dirac eigenfunctions can therefore serve to classify the ensemble of gauge configurations which give important
contributions to the thermal path integral. This is an obvious statement for overlap quarks, where localized chiral
eigenvectors of the overlap Dirac operator are closely connected to localized gauge field configurations which are taken
to be the lattice analogue of instantons. It is interesting that localization using staggered quarks, where the connection
to topology is obscure, can also be used as a tool for analysis of gauge configurations.

The notion of localization has been closely examined in [8]. Since p1(r) is non-negative and normalized to unity
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FIG. 2: The IPR, P 1

2 , above and below Tc as a function of the staggered Dirac eigenvalue λ.

one can construct a measure of localization in the following way. Take a value pf and find the fraction of the lattice
sites, f(pf ), containing values p1(r) > pf . Clearly f(pf ) lies between 0 and 1, and is a decreasing function of pf . The
integral of p1(r) over these sites, C(pf ), lies between 0 and 1, and is another decreasing function of pf . Eliminating
pf between these two, one obtains Horvath’s localization function f(C). Clearly f(C = 0) = 0, f(C = 1) = 1 and the
function is non-decreasing.

If p1(r) is highly peaked, then C(pf ) increases rapidly as pf decreases, whereas f(pf) increases slowly. As a result,
f(C) is small over most of the range of C as increases very rapidly to unity near the end of the range. If, on the
other hand, p1(r) is fairly uniform, then both C(pf ) and f(pf ) increase fairly abruptly over a small range of pf . The
function f(C) then increases very rapidly towards unity at small C. In Figure 4 we show the behaviour of several
models of p1(r)—
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FIG. 3: The relative fluctuations in the IPR, i. e., the ratio of the variance and the mean, at 2Tc as a function of the staggered
Dirac eigenvalue, λ.
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FIG. 4: Examples of the localization function, f(C), for different models of localization, compared with two examples from
QCD.

1. Some periodic functions, cos2(k · r), normalized to unity on two lattices; these have P 1

2 = 1.5.

2. Random uncorrelated function values on sites, drawn from the uniform distribution in [0, 1], normalized to unity;
these have P 1

2 = 1.66.

3. Two Dirac eigenvectors obtained from the same gauge configuration at 2Tc, one with P 1

2
< 2 and the other with

P 1

2 > 100.

The localization function f(C) clearly contains more information than the single number P 1

2 , i. e., the IPR. However,
the IPR is statistically compatible with statements obtained from the more detailed measurement of f(C). We
demonstrate this by the following correspondence. Choose any arbitrary value, C∗, the function value f(C∗) is strongly
correlated with the IPR, as we show in Figure 5. For a wide range of C∗ we find f(C∗) ∝ 1/P 1

2
.

We give an example of a question which can be easily answered through the use of the localization function. If the
eigenvector is localized, then how does it fall off away from the peak? Exponential fall, ψ(r) ≃ exp(−αR), where R



7

0.1

1

10

100

1000

10000

0.0001 0.001 0.01 0.1 1
P

21

f(C)

Filled symbol: site percolation

C=0.6282
C=1/4

: 1/x
: 1/8x

FIG. 5: The strong correlation between IPR, P 1

2 , and the value of the localization function for two values of C shows that the
latter contains all the information available in the former.

0.0001

0.001

0.01

0.1

1

10

1e-05 0.0001 0.001 0.01 0.1 1

-L
og

(1
-C

)

f

QCD: IPR>40
QCD: IPR<2
10*x
10*sqrt(x)

FIG. 6: Scaling of the localization function in the vicinity of f = C = 1 shows that staggered Dirac eigenvectors with IPR
larger than 40 fall exponentially far from the peak, whereas those with IPR less than 2 have drastically different behaviour.

is the distance from the peak, would imply C ≃ 1 − g(R) exp(−R2) and f ≃ Rd, in d dimensions. Thus, exponential
falloff of a localized eigenvector would give rise to the relation − log(1 − C) ∝

√
f , for both C and f close to unity.

In Figure 6, we show that this is true of staggered Dirac eigenvectors with P 1

2
> 40 but those with P 1

2
< 2 have

completely different behaviour.
A model for eigenvectors with small IPR is that of a function p1(r) with random uncorrelated values. We call this

the site percolation model for the following reason. As we trace out the level curves of this function by choosing pf ,
we pick sites independently with a probability given exactly by f . Each site belongs to an unique cluster, defined as
the collection of all neighbouring sites on the lattice which are picked [12]. When f is small, we find small localized
clusters, but above some critical value, we have percolating clusters. Each realization of the random function is a
realization of the percolation problem for all possible probabilities.

As we fill a larger and larger fraction of the lattice, the number of clusters, Nc, grows until the percolation threshold
is reached, after which the number of clusters begins to decrease. The clusters are ramified, and, near the critical
percolation probability, have a fractal dimension related to the critical indices of the percolation problem. Above the
critical porbability, the clusters have canonical dimension, as a result of which the holes are filled in rapidly, and Nc

decreases.
In Figure 7 we compare the average cluster size as a function of f for the site percolation problem and those

eigenvectors in QCD at 2Tc which have IPR greater than 2. The fact that QCD has more clusters at larger f than
site percolation implies that the percolating cluster constructed from P 1

2
have larger holes inside them where isolated

clusters can exist.
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IV. STABILITY OF LOCALIZATION
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FIG. 8: The stability of localization of staggered Dirac eigenvectors with 2 flavours of dynamical quarks in QCD at 2Tc. The
first panel shows that stability decreases with increasing spatial size. The second shows that the data supports scaling as 1/L2.

One of the paradigms in the analysis of Dirac eigenvectors is that of Mott localization and the existence of a
mobility edge. In a metallic crystal with random impurities, localization of electron wavefunctions can be observed.
Mott argued that if there exist a localized and an extended state arbitrarily close in energy, then they will mix under
any small perturbation of the Hamiltonian (induced, for example, by the movement of one of the impurities) hence
destroying localization. He argued that, as a result, localization is robust only when localized and extended states
are separated in energy. It is well-known that this argument could fail if the extended states have support in regions
with holes, since the lack of overlap can then be arranged in space rather than in energy.

The mobility edges are the band edges of localized states. On a finite lattice where the eigenvalue spectrum is
discrete, the identification of a mobility edge is not straightforward. As a result, it is hard to test Mott’s picture of
localization directly. It is interesting to build another measure of stability. We do this next.

Assume that the Dirac operator is perturbed by a change in the gauge fields, D(U + δU) = D(U)+ δD. Then, first
order perturbation theory tells us that the change in an eigenvector is

δ|λ〉 =
∑

λ′

Cλλ′ |λ′〉, where Cλλ′ =
〈λ′|δD|λ〉
λ′ − λ

. (8)
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FIG. 9: Correlation between the measures of stability of the localization of staggered Dirac eigenvectors, with 2 flavours of
dynamical quarks in QCD at 2Tc. Note the common scaling of the stability measure Sλ with the eigenvalue difference Gλ.

Under a random change of the gauge fields, the phase information in the matrix element above is randomized. Hence,
for a study of average properties of the perturbations over ensembles of random changes of gauge field, it would suffice
to study CδU instead, where

Cλµ =

∑

r

√

p1(r;λ)p1(r;µ)

|λ− µ| . (9)

This matrix can be extracted purely from the knowledge of the eigenvalues and eigenvectors of the staggered Dirac
operator. Note also that the mixing involves both a spatial part, which is the numerator, and a part in energy, which
is the denominator. A small mixing can be a result of either.

A perturbing field of δU ≃ 1/Cλµ would change |λ〉 by adding to it a significant part of |µ〉. As a result, the state
|λ〉 is only as stable as the largest value of Cλµ. The least stable eigenvector is that for which this measure of stability
is minimized. The stability of the localization of Dirac eigenvectors in a given gauge field configuration depends on
the least stable localized eigenvector. Hence the stability can be defined to be the quantity

S = minλ∈locSλ, where Sλ = maxµ∈extCλµ, (10)

such that the minimum is over states |λ〉 which are localized and the maximum is over states |µ〉 which are extended.
The inverse, 1/Sλ, for a localized state |λ〉, is a measure of the minimum field strength which causes significant mixing
with an extended state. This measure is eminently suited to a lattice where the spectrum is discrete. If indeed there
is stable localization, then examination of the particular element of the mixing matrix which gives S can help us to
identify whether localization is achieved through Mott’s mechanism and the formation of mobility edges, or through
spatial segregation of the support of localized and extended states.

A numerical implementation of eq. (10) requires specification of which eigenvectors are localized. We use a definition
in terms of the IPR, taking all eigenvectors with P 1

2
> P ∗

2
are localized and those with P 1

2
< P ∗

2
are deemed to be

extended. When changing this definition in the range 2 ≤ P ∗
2 ≤ 10 we found no significant change in the quantities

reported below. The data shown in the figures are obtained with P ∗
2

= 8.
In Figure 8, we show stability of the most localized states at 2Tc as a function of P 1

2 . The quantity plotted is a
dimensionless measure of the minimum change in the gauge field required to mix a given localized state with any
extended state— 1/4TSλ. As shown in the first panel, there is a tendency for 1/4TSλ at a given P 1

2 to decrease as the
lattice size increases. Scaling the data by a power of the lattice size one finds an optimum scaling as the point where
the Fisher’s linear discriminant is least able to separate the data for different lattice sizes. In the second panel of the
figure we exhibit the resultant scaling with the lattice size, 1/4TSλ ∝ (LT )−2 at fixed P 1

2
. If this scaling persists at

larger lattice sizes, then it would imply that in the thermodynamic limit an arbitrarily small change in the gauge field
can destabilize the localized eigenvalues.

The scatter in the data does not allow us to measure the scaling exponent more precisely. One could argue that
since we are examining localized states, the factor of p1 in eq. (9) does not scale with volume. In that case one is
forced to the conclusion that the observed volume dependence come from the energy differences in the denominator
of eq. (9) scale as L2. Such a scaling is open to clear tests, and we perform this next.
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Since a lattice allows only discrete eigenvalues of the Dirac operator, the origin of localization on the lattice is not a
mystery. Nevertheless, one could try to probe the origin in more detail. In order to do this we construct two matrices

Fλµ =
∑

r

√

p1(r;λ)p1(r;µ), and Gλµ =
1

|λ− µ| , (11)

one of which, F , looks only at the spatial overlap, and the other, G, only at the overlap in energy. Using these we
can define the notions of stability, Fλ = maxµ∈extFλµ and Gλ = maxµ∈extGλµ.

We found that Sλ is strongly correlated to both Fλ and Gλ. As expected from the earlier argument, Fλ shows no
scaling with L. As a result, it requires no scaling when plotted against the scaled quantity L2/Sλ. On the other hand,
whereas Gλ scales with the same exponent as Sλ. As a result, when plotted against the scaled quantity L2/Sλ, one
requires the scaling L2/Gλ in order for the measurements to be universal. These correlations are shown in Figure 9.
From the figures it is clear that the stability of the localization phenomenon seen at finite lattice spacing is controlled
by the energy level differences. The situation seems to produce a curious version of Mott’s argument. In this case
we have localized states whose spatial overlap with extended states is finite. Thus there is no segregation of the
spatial support of localized and extended states. Localization is seen at any finite volume, and is realized through the
formation of a mobility edge. However the gap between the localized and extended eigenvalues seems to disappear as
a power of the lattice volume. As a result there could be no localization in the thermodynamic limit.

One can cross check this conclusion also by computing the minimum of the mobility gap; i. e., the difference between
the maximum energy level among the localized states and the minimum energy level between the extended states.
This mobility gap scales to zero as 1/(LT )3, and the scaling is not sensitive to the choice of P ∗

2 used to separate
localized and extended states in the range 2 ≤ P ∗

2
≤ 10.

V. CONCLUSIONS

In this paper we have examined the eigenvalues and eigenvectors of the staggered Dirac operator evaluated on
thermalized configurations obtained in simulations of QCD with two flavours of dynamical staggered quarks at tem-
peratures between 0.75Tc and 2Tc with lattice spacing of a = 1/4T . The spectrum develops a gap as one crosses Tc,
although in the high temperature phase the gap remains substantially smaller than that in free field theory. It would
be interesting to study the gap formation in the transition region to check whether this way one can obtain additional
insight on the crucial question of the order of the phase transition.

The smallest eigenvalues have eigenvectors which are localized. We investigated different quantities, the inverse
participation ratio (IPR) and the localization function, which measure the degree of localization, and found good
agreement between them.

We investigated the stability of localization properties of the staggered Dirac eigenvectors with respect to changes
in the gauge field background. We showed that localization properties are not stable as one takes the thermodynamic
limit. In fact, the scaling of the data shows that in that limit localization of staggered Dirac eigenvectors is not
expected to be of thermodynamic importance.

We developed measures of stability which distinguish between stability due to spatial and energy separation of the
eigenfunctions. QCD wth staggered quarks seems to contain a curious reversal of Mott’s argument. The support
of localized wavefunctions is not spatially separated from that of extended wavefunctions, and this persists into the
thermodynamic limit. As a result, if localization were to be obtained, it would be through the formation of a mobility
edge. Indeed, at each volume, one does seem to observe the formation of a mobility edge.

However, localization is spoilt by the fact that the energy denominators can become arbitrarily small, scaling as
a power of the spatial volume in the thermodynamic limit where L → ∞. It would be interesting to extend this
work to the overlap Dirac operator, whose exact zero modes are related to localized topological features of gauge field
configurations [3].

This work was funded by the Indo-French Centre for the Promotion of Advanced Research under its project number
3104-3. Part of the computations were carried out on the Cray X1 of the Indian Lattice Gauge Theory Initiative
(ILGTI).
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M. Göckeler et al., Phys. Rev., D 59 (1999) 094503;
F. Farchioni et al., Nucl. Phys., B 549 (1999) 364;



11

P. H. Damgaard et al., Nucl. Phys., B 583 (2000) 347, and Phys. Lett., B 495 (2000) 263;
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