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Abstract. The problem of superconductivity in a metal-semiconductor systetn
has been studied, using the dielectric formulation of superconductivity. The charge
redistribution due to the quantum penetration of the metallic electrons to the semi-
conductor side is approximated by a simple exponential function. The interface
exciton modes are obtained within the framework of classical electrostatics, and

L their effect in modifying the effective electron-electron interaction near the inter-

face is investigated. It is found that the strength of the excitonic term is small, and
by itself, insufficient to lead to superconductivity. Nevertheless, it can alter the
superconducting transition temperature of a metal, if it is already supcrconducting
due to some other mechanism. This has been studied as a function of the varicus
parameters entering in the problem.
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1. Introduction

It has been speculated (Ginzburg 1970; Ginzburg and Kirzhnits 1972) in recent
years that high temperature superconductivity can be obtained if the attraciive
phonon exchange mechanism in conventional superconduclors is replaced by
exchange of some electronic excitation, which has a much higher characterisiic
energy, and in particular, by the exchange of exciions in a semiconducior. A
composite system of a metal and a semiconductor is expected to be most ideal
for the occurrence of the exciton mechanism of superconductivity, This is pri-
marily so because of the high density of conduction electrons in meials and the
weak damping of excitons in semiconductors. Still, there has been a divergence
of opinions as to the strength of the exciron-mediated term in such a system. A
recent model calculation by Allender, Bray and Bardeen (ABB) (1973) predicts
appreciably high values of the superconducting transition temperature (7,) in a
thin layer of a metal (thickness L ~ 10 A) deposited over a semiconductor. ABB
use the exciton-mediated interaction valid for the bulk semiconductor to calcu-
late the effective interaction between electrons tunnelled from the metal side to
the semiconductor side. A more careful treatment of semiconductor should,
of course take into account the charge redistribution and the considerable modi=
fication of the interaction in the neighbourhood of the imterface. The estimates
on T, in ABB treatment may not, therefore, be reliable. In fact, Inkson and
Anderson (1973) have already pointed out that there is a considerable double
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counting of the excitonic effects in the ABB calculation and if those are corrected
properly the predicted enhancement in 7', disappears. However, see the reply of
Allender eral (1973 b).

There have been a few other treatments (Inkson 1974; Rangarajan 1974;
Uspenskii and Zharkov 1974) of the metal semiconductor system with regard
to superconductivity. Inkson (1974) has included the effect of surface plasmons
and concludes that there will be no increase in 7%. Rangarajan (1974) has calcu-
lated the exciton coupling constant completely neglecting the quantum-mechanical
tunnelling and has thereby estimated the amount by which the 7, of a metal is
already superconducting will be enhanced. It must be noted that recent experi-
ments (Tsuel and Johnson 1974; Miller er al 1973) related to this problem seem
to be rather inconclusive.

in order to obtain a more reliable ¢stimate of the extent to which the exciton
mediated interaction can alter the existing values of T7,, it becomes essential to
juvestigate the nature of the modified interaction between the electrons in the
neighbourhood of the interface. The exchange of the interface excitons rather
than purely bulk excitons and their contribution to the effective interaction
between the metal electrons near the Fermi surface have to be carefully included®?
Our object in this paper is to treat the problem semi-classically and include- the
tunnelling effects neglected in the previous treatment (Rangarajan 1974). We
approximate the tunnelling charge density by a simple model expression and study
the modification of the interaction in the interface region; the regions far away
from the interface being described by phenomenological expressions for the
dielectric function. The interface exciton modes are properly included in our
treatment. Once the interaction between two electrons in the metallic film of
the sandwich is obtained it is approximated by a suitable effective local dielectric
function, and 7, is solved for. ‘

It must be mentioned that our treatment is still within an assumed model for the
bulk dielectric function for the metal and for the semiconductor. In parti-
cular, we have neglected the dispersion of the bulk exciton mode in the semicon-
ductor. In case this dispersion is large, our conclusions may get greatly altered.
Tupnelling effects are included only to the extent of the model charge density
redistribution. It would be a reasonably good approximation only if the virtual
excited states involved lie close to the ground stawe in energy. Still, our treat-
ment should provide some understanding of the nawre of, and the role played by
the interface exciton modes in aliering the superconducting iransition tempera-
ture of the metal. . :

In section 2 of this paper we consider a model expression for the tunnelling charge
density, and suitably modify the electrostatic equations to include the effects
of the charge redistribution. We then obtain the interface exciton modes, and
study them for a few model systems. In section 3 we investigate the effective
electron-electron interaction in the metal side of the metal-semiconductor system,
and derive the Coulomb, exciton and phonon parts of the kernel of the in tegral
equation for the determination of T,. For this purpose the dielectric function
formalism for superconducting transition temperature has been developed in
the Appendix. In particular, we also obtain in this section the exciton coupling
constant and compare it with the repulsive Coulomb coupling coustant. Section 4
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discusses the calculation of T, and presents the variation of the relative enhance-
ment in 7T, with respect to various parameters. In section 5 we summarise our
main conclusions.

2. Interface exciton modes

We consider a composite system of a metal and a semiconductor and take x = 0
as the surface of separation. The bulk semiconductor (x < 0) is described by the
one-oscillator model dielectric function with the real part

w2 (50 — 1)

2 w2
Wy w

e (W) =1+ 2.1)
where ¢, is the static dielectric constant and Aw, is an energy of the order of the
energy gap of the semiconductor. We take for the bulk metal (x > 0) the dielectric
function

anlg)=1+% (2.2)
q
where g2 = 6mne?|Er is the square of Fermi-Thomas screening wave number. This
correctly describes the static screening in the metal, the inclusion of which is
essential for the calculation of the repulsive Coulomb coupling constant.

The neglect of spatial dispersion in eq. (2.1) for the bulk semiconductor dielectric
function is a crucial approximation. It could have a vital bearing on our con-
clusions if for frequencies close to the surface exciton modes, the spatial disper-
sion is large. To investigate this qualitatively, let us consider two classical media
described by dielectric constants e, and e, separated by an interface at x = 0.

Because of the image term, the total classical interaction energy between two
electrons at points ¥ and r' in the first medium on the right is given by

e? (e — e) 1

aleg + &) |r—1 +2x" |

The image term (second term) is attractive whenever ¢, < e, and repulsive other-
wise. For the case when the media are described by ¢ and «-dependent dielectric
functions, one may, to a certain crude approximation, compare ey (g, w) for the
metal with ¢ (¢, @) for the semiconductor for each g and w, in order to see the
range of ¢ vectors over which the image term in the metal side would be attractive.
With the inclusion of rapid spatial dispersion in e, it may so happen that for | q |
close to the Fermi momentum kr of the metal, the interaction remains repulsive,
ie. ek, w)< ey(kp, ») for w equal to the interface mode frequency. In such
a case, it cannot, of course, aid the onset of superconductivity.

In a composite system of the type considered here, there will appear new
collective modes localised in the interface region, in contrast to the bulk exciton
mode included in eq. (2.1). These interface exciton modes are expected to play
a crucial role in determining the superconductivity of the system, as is evident
from the expression for the kernel of the integral equation for T, (see appendix;
eq. A. 19) which requires a kunowledge of the dispersion relation of these modes.

e2
alr—r|

+

VCLASSICAL (r’ r,) =
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When the metal and the semiconductor are brought in intimate contact, there
is a quantum penetration of the metal electrons to the semiconductor side. If
one uses the effective-mass approximation for the Bloch states in the semiconductor,
the modification of the charge density can be calculated by demanding continuity
of the single particle wave function and its derivative at the interface x= 0. We
can of course describe the conduction electrons in the metal in the free-electron
approximation. The Fermi energy of the metal is taken to lie agamst the middle
of the forbidden gap of the semiconductor. Under these assumptions, the density
of electrons which penetrate into the semicondutor forbidden gap is given by
(Pellegrini, 1974)

2
m =% [ [ 0~ EB0E-E
0 0
y ki ® mp? N L
s | 2my 2
m(m — my) k;* —’P'—%f“m — my (m — m3) k*

X exp {Zx \/ " < _ ’2@) LI 2'"%_%} dieskdle; (2-3)

where b = ¢, v is the band index, mj is the isotropic effective mass for the band
b, mis the free electron mass and Ey, is the energy of the bottom of the 4’ band
as measured from the bottom of the metal conduction band.

Approximately, we can express the above density of metal electrons tunnelling
to the semiconductor side by means of a sufficiently accurate sum of two exponen=
tials (Pellegrini 1974), viz.

105) = g €8 =+ 1 €1 . 2.4)

Moreover, for the typical systems we are interested in, #,, < n,, so that we are
justified in retaining only the first term in eq. (2.4). Further, for the depth of

. . %2 k.2
penetration to be appreciable, the transverse energy Er = th has to be small,

and so, we introduce a cut-off Er, taken to be

E, = \_/2_ | my | ( my E, ) ' (23)

m \|m* |+ m:

where E, = E,, — E,, is the band gap. We obtain for n, and g, appearing
in eq. (2.4), the expressions (Pellegrini 1974):

§/2mom¥2Er  mE,
My = /3 '\/EF Im* I +’7’l*

v m—l—lm,,l v
"= W'\/m, + | mj | v Ve, (2-6)
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The numerical values of (#,,, g,) for GaAs—Ga, PbTe-Pb and Ge-Al systems turn
out to be (2.29 x 102 cm~2, 0.358 A-1), (1.60 x 1020 cm3, 0.246A-1) and
(2.895 x 1020 cm™3, 0.456 A1), respectively. It should be noted that in reality
the use of the effective mass approximation for this calculation in most of these
materials is inappropriate, as it is not valid for the high values of the transverse
momentum of the matching wave functions. For example, for Ge it may be
meaningless to use the value of m} for the L-band minimum and of my for the
I'-point maximum in our expression. However, the numerical values obtained
in the effective mass approximation at least give us some rough idea of the magni-
tude of the tunneling charge density. In any case in actual calculation we will
vary the tunnelling parameters n,, and g, in a wide range, to investigate their effects
on the enhancement of T,

The charge redistribution on the metal side is confined only to the immediate
vicinity of the interface, and is as shown in figure 1 (¢). We have checked for one
particular value of the parameters that the small amount of charge redistribution
on the metal side, with continuously varying density across the interface [figure
1 (b)], is indeed unimportant for the calculation of T'.. Therefore, we take the
electronic charge density in the metal to be uniform [figure I (¢)], readjusting its
value so that the total charge is conserved, Thus, we have

n(x)= nye% 0 (—x) +nfd(x)8 L —x) 2.7
where
Hyo
o= NO_(Q,,L) _ (2.8)

N, being the conduction electron deusity in the bulk metal and L being the exten-

sion of the metal region perpendicular to the interface.
Since now the metal electron density is afunction of x, we define a local value

for the screening wave number ¢s through

0) = g gt 7 09 2.9

The interfacial collective excitations are obtained by the nontrivial solution of
the electrostatic equations:

32
(3;2 "‘P2) Vi(g, x) =0, for x>0 (2.10)
and
22 1
[e(w) 2= e(w) 02 ~ g, e““v“] Vo(qu, X) = 0, for x< 0 (2.11)
where
p* =g+ a, (2.12)
12mme?

G50 = 72 (3m2)t no's (2.13)
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Figure 1. (a) A sketch showing the variation of the electron density # as a function
X. N, is the density in the metal side if tunnelling is neglected. (b)) Approximate
semiconductor dielectric function ¢ (w, x) and approximate metal electron density
n(x). (¢) & (w, x) and » (x) used in our model.

12mme® |
quD = m n?/oa _ (2 14)

go=+vg T ¢ and e (w) is given by eq. (2.1). Eqs (2.10) and (2.11) are
to be solved subject to the matching conditions

Vi(gs, x=0%) = Vy(q, x= 0") (2.15)
and

N2

W,
(0 X = 0) = () ﬁf(q:, x=0"). (2.16)
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The solution shows that the interface exciton modes and their dispersion can be
obtained as the solution of the transcendental equation (Rangarajan 1975)

Jn+1 () _ 64: _ pgy

where
6
= ;]-qi (2.18)
and
36 g2 :
o) .19

The real solution exists only in the range of frequencies w, < 2 < 4/eq wy; 2
being the frequency of the interface mode. We have shown in figure 2 the dis-
persion relations of the first few of the interface modes for Ge-Al system. The
behaviour of these modes is similar in GaAs-Ga and PbTe-Pb systems, the other
two systems which were studied. The lowest mode lies quite close to, and just
below the interface mode obtained with the neglect of tunnelling, i.e., n,/n, = 0,
shown dotted in figure 2. In fact, it may be obtained from the latter by a pertur-
bative calculation,with #ny/n, as the perturbation parameter. All the other
modes appear only when tunnellingis included. Whereas the lowest mode has
the behaviour £22(g, — 00) = (e, + 1) wy?/2, all other modes are such that
22 (g, — 00) = €,w,% le., they tend to the value corresponding to the bulk
semiconductor mode. The appearance of the several modes is due to the smearin g
of the metal electron density in the interface region, rather than being sharply cut
off at x= 0. This is reminiscent of the bulk normal modes of an inhomogeneous
plasma, It is to be noted, however, that all these new modes -coﬁtribute, to be
shown later, very little to the exciton coupling constant compared to the contri-
bution from the lowest mode. It is also expected that these additional modes
give only small dips in the optical reflectivity function relative to the large dip due
to the lowest mode. L

3. | Effective electron-electron interaction in the metal

The expression for the kernel of the integral equation for the determination of T
has been derived in Appendix Ain terms of the imaginary part of the effective local
inverse dielectric function. Within our model [eq. (2.2)] for the dielectric function
of the bulk metal, the Coulomb part of the kernel K (¢, £, given by eq. (A. 18),

can be written as

2Kr

g2 qdq _ |
K6 =353 | 7t 3.1)
1 &)



e

g
LTRSS Fathiy

B,

f -
168 S Rangarajan and Sudhanshu S Jha ‘
| %;i
10 i
zs
»Qrz‘ €W, %
g = ———— e s e ﬁ
8+ )
Ge-Al System
7 Interface Exciton modes
6
Na
> WITH
~ 5 TUNNELING
£
N
G
Se 4
3
WITHOUT
TUNNELING
2t
| 2 2
= w .
————————————————— — S wAv dhe @de gy s =y
i ] [ I ] 1 1 |
0 0-2 04 06 0-8 -0 2 -4 16
a, / ke

Figure 2. Dispersion relations of the first few interface exciton modes for Ge-Al-
system with kL = 1:6528. Dashed line shows the * image mode’, for comparison.

where vz is the Fermi velocity, An estimate on the strength of the Coulomb repul-
sion is provided by the Coulomb coupling constant, viz.,

q2 4K 2
p=K(0,0) = '8%2 ln(l + qszo" ) (3.2)

For obtaining the K, (¢, &) part of the kernel, we have to study the interaction
between two electrons in the metal in the presence of the model metal electron
density given by eq. (2.7). The transverse Fourier transform of the interaction
potential when an external charge — e, is placed at r' in the metél, satisfies the

equation
d dv '
(@D L)1 @V V- @@ V=t (x—x) (3.
where

e(w, x) = ¢ (@) 0(—x) +0(x) (3.9
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and V= V(q:, x, x'). Once the Coulomb part K, (¢, £) is separated out, the
kernel in eq. (A. 17) involves only the singular part of the interaction potential
arising from the exchange of excitons. It is, therefore, sufficient to solve for
only the singular part of V from eq. (3.3).

For this purpose we consider a more general problem given by

[£(8) — ] & (x, x';8) =8 (x — x) - (3.9
where £ (8) is the operator on the left hand side of eq. (3.3) viz.,
£(5) =L, — 5L, (3.6)
with |
g =2 g 3.7
1 dxz q: ds ( . )
2 2 d dﬁ
g=o0d(e—D[a (=0 +8 @D = —0(—2) (3.8)
and
1
d = ot (3.9)

0

We have the expansion (Morse and Feshbach 1953)

S, (x, x'; 8) —Z‘Mx : 9) (x °) (3.10)
where |

L) S (x5 8) = va Py (x; 9). (3.11)
A comparison of egs (3.3) and (3.5) yields the result

Re V(x, x'; 8) = dme 8,0 (x, X'; 3). (3.12)

As we are interested only in the exciton part, Im e, in order to obtain the

K., (¢, &) part of the kernel, we can construct the imaginary part of V(x, x', 8)
due to exciton exchange by Kramers-Kronig relation. This yields

Im ¥ (x, x'; 8)_—Pf \ 4 (5 8) 6 (x5 B) (3.13)

w — o vn(s)

1

7
0)02-—0.)2

8 =

Inspection of eq. (3.13) shows that the zeros of v, in the w’? plane will determine
the ‘exciton exchange contribution to the integral in the right hand side. Let
us fix one value of » and study v, as a function of 8. Let & = &, be such that

3 (8) = 0 (3.14)
Then, from eq. (3.11)
LE)P(x)=0 (3.15
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. l where , . _
o g (x) = Lim $, (x;9). (3.16)
! ‘ 5= & | .
l The residues at the poles w,, where w, are given by
o 1
i _ ¢an’ be found by a firse order perturbation theory, with (8; — 8) as the perturbation
4 parameter. This leads to the result (Rangarajan 1975)
P : , U (x) du(x)
i B Im V(x, x'; w) = 4me z—‘(—‘z‘—l&“) X 5%‘ X (@ — w2
3o ‘
| X [8(w—w) =8 (w + w))] (3.18)
i where
% i +oo ’
. d2
2 - ay = (0,8 — ?) fdx ¥ (x){%g — g — q.z(x)} e (x) (3.19)
i -00 N
1§ _4‘5, Thus, numerically solving the eigen value problem in eq. (3.15), and constructing ?
S I the matrix element a; according to eq. (3.19), we obtain Im V(x, ¥, w) vig v
: ' eq. (3.18). .
| We can, therefore, write the singular part of the interaction between. two electrons
NI due to the exchange of interface excitons as
SR o
[ - 3 : ) e~ple-*'l
. - Ve (r, 1, @) = — € f dg g: o (qir:)
i ;
’ | r X [2(¢: (xl) zlq (x) grle- w) X E!L (w02 - ‘“{2)2
Lo : . Rt
i *
B X {3(0 = 0) = 8 (0 + 0} (3.20
i : , : To get an effective local interaction, the x and x’ dependent part within the square
N brackets in eq. (3.20) is replaced by an average over the length of the metal region.
4 Defining ' '
Bilg) =W () (g e~y (3.21)
we obtain |
- ! b [00! — 0l ()]
Im e, (g, w) = — Y 0 " \q
| &0 ZM0 T a @
| X {3 [@ — wi ()] =5 [ +w; (g)]} (3.22
where p has been replaced by p= +vgGi+g2;q*=244%. Tt should be

T emphasized that our final results and conclusions are insensitive to the exact

. : °y,
L method of averaging the nonlocal interaction. o
i Whan the quantum m?chanical tunnelling is neglected (Ve., yo/n, = 0), we ° g
o obtain only eigenvalue given by , ]
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i 9ot ed)
w 2 0 T 0%
| . (@ +qy) (3.23)
and

= Gy w2 (g — 1) ﬁ‘___raﬁ./s‘ (3.24)
in this case we obtain '

I 7 PG we®(ep — 1) e?LI3
eu (9) w ? +4)*
X (0 —w)—8 (0 +w)) (3.25)
Equation (3.25) could have been, of course, directly obtained within the image

approximation’ (Rangarajan 1974).

In general, substitution of eq. (3.22) iv eq. (A. 19) leads to the exciton part of
the kernel as

Im fi-nlmga (qa w) = —

/ ' 8
K (€ &) = —N(é)fd(cos() 2: 7
Bi(q)p 02—
(@ (g 20 T L
1
X 1 (3.26)
[wt) +30e1+12 D] '
The exciton coupling constant A, can be written as _
A= — Kz (0,0) =2y (3.27)
where
e, B@)
52 f qaiq‘].f X“t (;) 14124) [0 — e (@) (3.28)

AT &
0

We find that »; decreases rapidly as i increases, as shown in figure 3, ensuring
convergence of eq. (3.27). Thus, retaining only the firstfew values of i/ guarantees
a sufficiently accurate value for A,. In figure 4 is shown the dependence of A,
on ¢,|ks for different values of g,,L. The Coulomb coupling constant x is also
plotted for comparijson. It is seen that for reasonable values of L, the attractive
A is found to be much smaller than p and so this mechanism, by itself, cannot
bring about superconductivity in the system. For nontrivial solution of the
integral equation for T, the net coupling constant must be attractive.

In order to study the extent to which this additional attractive term can alter
the bulk value of the superconducting transition temperature of the metal, we
include a phonon term in the kernel. For this purpose, we assume a model

expressions for Im ex (g, w) given by

- _—C D
Im € (g, w) = eu (9) X (w0 — wyg)? + Dt

(3.29)

where C is a suitable normalisation constant, wy, is the central frequency of the
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Figure 3. The relative contribution from successive eigenvalues to the exciton
coupling constant.

phonon spectrum and D is the full width of the spectrum at half maximum. This
choice is equivalent to assuming a Lorentzian for the phonon density of states
and treating the electron-phonon interaction function to be a constant, Substi-
tuting eq. (3.29) in eq. (A. 19), we obtain

K (6 6)= —2C [ 4o D
= {0 ~my 400} fo s g1 412 )

(3.30)

where po is the Coulomb coupling constant. The constant C is to be evaluated
such that

K (0,0)= — Ay | ©(3.3])
A, Deing the experimentally phonon coupling constant, We choose w,, to bg
kg 00/ 2%, where 8y is the Debye temperature, and D to be 0° 1 Wy,
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Figure 4, Dependence of the attractive exciton coupling constant on gge/2ks for
various values cf q;,, L. The repulsive Coulomb coupling constant p is shown for

comparison.

4... Calculation of superconducting transition temperature

We have derived in Appendix A an expression for T,in terms of a function 7(x),
which satisfies an inhomogeneous integral equation (A. 22) with a real, smooth
kernel. Once the Coulomb, phonon and exciton parts of the kernel are evaluated
from eqgs (3.1), (3.30) and (3.26), respectively, the calculation of T, is straight-
forward. We convert eq. (A 22) into a set of linear algebraic equations, by
expanding % (£) and K (¢, 0) in terms of Legendre polynomials, We find that
six polynomials in the expansion give a reasonable stability in the value of T, so
obtained. The necessary integrals were performed by a multiple use of the

1
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16-point Gauss-Legendre quadrature formula, demanding a relative accuracy of
10-5, v
The superconducting transition temperature for the bulk metal was first obtained
by substituting

K(§8)=K,(§ &) +Ku(§ §) 4.1)

Then, we solve for T, with the inclusion of the excitonic part of the kernel, i.e.,
by considering

K &) =K, (£ &) +En(§ &)+ Ku(é §) 4.2)

so that we obtain the relative enhancement in the transition temperature over
the bulk value.

The strongest dependence of the relative enhancement AT,/ T,is on the length
of the metal region, as represented by the parameter kgL. Figure 5 shows the
variation with respect to kgL for the three model systems, Ge~Al, GaAs-Ga and
PbTe-Pb. In all the three cases the dependence is nearly exponential, with the
slope increasing slightly as kgL decreases. The dependence on the other metal
parameter, viz., g,/kg, which is related to the Fermi energy through

8met 1
F= a7 m (4.3)
is not so strong. We have depicted in figure 6 the dependence of AT¢/T¢ on
the Fermi energy Er of the metal. The rather weak dependence on this para-
meter justifies our use of the model dielectric function (2.2) for the metal, which
is valid only in the long wavelengih limit (¢ < g,,)., Whereas the integral in eq.
(3.28) extends up to g= 2kg. It would have been necessary to generalise the
expression as :

(g, 0) = 1 +q7 (5x) @.4)

where (3) is a suitable average factor. (8y)= 1for ¢ < q, and (dy) ~ % for
g ~ kg. Since we now find that A To/T, has only a weak dependence on g,,/ks
the neglect of the (3 ) factor in eq. (4.4) is indeed unimportant,

Within the one-oscillator model for the semiconductor dielectric function, the
effect of the semiconductor enters only through ¢, and w,, where ¢, is the static
dielectric constant and hw, is the energy gap. For fixed values of (e, — 1)
we? = w? the dependence of AT,/T, on ¢, is shown in figure 6. There is an
increase in AT,/T, by about a factor 2 when ¢, increases from 5 to 15. As wp?
is increased, there is a decrease in the value of AT,./T,. This explains why the
excitonic effect is more pronounced in Ge-Al system than in GaAs-Ga system
(see figure 5), the value of %% wy? being 8.47 (eV)? and 25°75 (eV)?, respectively.
For the same value of «,, as %iw, decreases, the relative enhancement in 7, becomes
larger. When, on the other hand, %w, is kept fixed, there is a slight increase in
AT,/T, as e, is increased. These conclusions are in qualitative agreement with
recent experiments (Miller et a/ 1973 ; Meunier et al/ 1968) on the same metal being
deposited over different semiconductors,
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I (a) AL-Ge
(a) (b) Ga-GaAs
I (<) Pb-PbTe
|
0™
o 62
q i
-
63k L -dependence of ATy /Te.
I (Tunneling Included)
I | | l ! | 1
0 ! 2 3 4 5 6 7

Figure 5. The relative enhancement in T, ploftedﬁas a function of 4L for three
different systems (i) Ge-Al, (ii) GaAs-Ga and (iii) PbTe-Pb.

Within our model, the metal charge density in the semiconductor side is approxi-
mated by a single exponential function and hence the dependence on the tunnelling
charge density can be swudied through the variation of the parameters Nyl N, and
d»» On both of these parameter, the relative enhancement in 7, depends very
weakly. As the exponential decay parameter ¢, decreases, i.e., when the depth
of penetration into the semiconductor increases, there is a slight increase of
AT/T,. For the same value of g,, if n, /N, increases, there is found an increase
in AT,/T, by a small amount. '

In figure 7 is shown the dependence of AT,|T, on the ratio n,e/n, Where n,
is determined from eq. (2.8). We have studied the dependence right up to the
value nyofno=1. The choice of n,/n, as the independent variable is suggested
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Figure 6. (i) AT,/T, as a function of the Fermi energy E, of the metal. (ii) Depend-
ence of AT,/T, on ¢, for fixed values of (e — 1) we®.  Curve (a) is for (6, — 1)
wed =10 (V) and curve (b) is for (e, — 1) wg? =20 (eV)%

by tl.le fact that at the value n,e/n, = 1, the charge density n(x) happens to be
continuous at x = 0. This value of n,fn, corresponds to n(x) as shown in
figure 1(b), but with the profile displaced slightly to the left. Asis seen from
figure 7, the relative enhancement does not vary markedly with nyo/n,. The
absez:lce of an appreciable dependence on this parameter now provid;s the justi-
fication for the validity of the use of the model charge density shown in figure

1 (c).

5. Conclusions

In this paper we have studied the modification of the interaction in the neighbour-
hood of the metal-semiconductor interface and its bearing on the superconducti-
vity of the metal. The interface exciton modes were obtained, and their effect
was included in the calculation of the exciton part of the kernel o the integral

s
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Figure 7. Dependence of AT,/T, on the ratio Nyo[ng, for gy =0-3,

equation determining 7,. We found that the stren gth of the exciton mediated
term is small and is, by itself, insufficient to overcome the Coulomb repulsion and
produce superconductivity. We, therefore, found it necessary to include a
phonon term as well to study the enhancement in T, due to the exciton mediated
term.

We find that the excitonic effects can be increased significantly only by a decrease
in the value of kzL, i.e., by reducing the size of the metal perpendicular to the
interface. Apart from this strong and almost exponential dependence on kgL,
the relative enhancement in T, depends rather weakly on Er, the metal Fermi
energy, e, the static dielectric constant of the semiconductor, %w,, the energy
gap in the semiconductor and on the parameters describing the tunnelling charge
density. Of the three model systems, GaAs-Ga, Ge-Al and PbTe-Pb, we find-
that Ge-Al exhibits the largest enhancement in T, for any given value of L. This
is principally because of the large value of the Fermi energy Ex and the relatively
small value of the parameter (e, — 1) w,?.

We conclude that a very thin film of a metal, with a large density of conduction
electrons, deposited over a narrow gap semiconductor would provide the most
favourable system for the occurrence of the exciton mechanism. Also, despite
the L-dependence of T, arising from many other factors, the one due to the €XCi«
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tonic effect may be clearly distinguishable from others on account of its expo-
nential character. In quite a few experiments (Fontaine and Meunier 1972;
Dmitrenko and Skchetkin 1973), such a dependence has been observed, although
the data from such experiments are still insufficient, rendering it impossible at
this time for a quantitative comparison with our predictions. In any case, it is
also possible that if the effect predicted by us exists in reality, it may only lead to
a skin-effect type surface superconductivity, the rest of the bulk metal remaining
normal.

Before concluding this article, it should be emphasized that our predictions of
enhancement of the superconducting transition temperature due to virtual exchange
of interface exciton modes is based on the approximation that the bulk exciton
mode in the semiconductor has very little dispersion. A " strong spatial disper-
sion in the bulk semiconductor dielectric function may lead to the opposite effect,
i.e., depression of T, rather than an ephancement. In that sense one must choose
semiconductors which have negligible spatial dispersion in their dyramic dielectric
function, leading to almost flat bulk exciton mode.
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Appendix A

In this appendix, we derive the integral equation for the determination of T,
in terms of the inverse of the effective local dielectric function, ¢ (g, w), of the
system. We start from the anomalous Green’s function & (k, n) defined by

g
Flhyr) =Tk o) = [ devst F(k1); o, = Qﬁ-ﬁ%l A1

where
F(k,t) = — (T (Ckt () Ck} (0))), B=1/k,T (A.2)

and the symbols have their usual meaning as relevant to the finite-temperature
Green’s function formalism.

As & is expected to be zero in the normal state, the equation of motion of &
can be linearized at T'= T, Under the self-consistent Hartree Fock approxi-
mation, it satisfies the equation

-1 1 |
Tl =gorrgry ), Valk—Kn=ngw,m @AY
S

1 : : . :
where 8, = T, ¢ is the renormalised single particle energy measured from

the Fermi surface and

4me? .
Veff (q: w) ES gf ) E—] (q: Lu). (A' 4)
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We can spectral represent ! and & as

. 400
‘ ! 1 ' '
E—‘l(qs ian)z l +7—1T f “ In:l)fz f;a;)dw y Oy = %n/; (AS)
and
+ 00
. dxf (k
i) = — [ 26 (4.6)

Substitution of (A.5) and (A.6) in eq. (A.3) leads to the following integral equation
for the spectral weight function f (k, x);

+ oo
1 d’k'  4meé? ,
fx ==y [ Gt TE NS

[ 2L Len) g, (B)

2x
400
+ }r 8 (1 |4; [ ] fdw' Ime™ (k — k', ")

{( o+ ) (tauh %@ +coth B—%‘i)
* (" + )2 — w?

, Bhy . B
(w' — ) (tanh 5 coth > )
(0" —y)? — o

+

e {Im e — K, 5] =)

X (tanh B"zhy +coth%—;-z(lx [ =)

+ Im e_l(k _ k’, Ix | +y) (tanhﬁ—gz}—) — coth éa-h} (lx I +Jv’)}]
(A.7)

wheré w, = &\

We define (Kirzhvits ef a/ 1973) a new function @ (k), which is 2 generalisation
of the BCS gap function, as
+00

0= || [ Seuxsflhx) d (A.8)
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This satisfies the equation

oW =—3 [ e |2ff(k' y) dy ani (B 17)

2 deme’l(k K, w')
142 femtr ] v R (8.9

0

where

& K’ dmet
R0 = - [ayTicep [orw.n [ do met @ —#,0)
0 1]

% [ (tanh (ﬁ—;@) —coth (ﬁozwl)) ( o —y+| w:l Sgn( w’ —y)

o eTal) ] %10

We note that the extra term R (k) -0 as T, —0. Only when T, is very large,
(i.e., kzTo~ Er) this term would be important in the solution of eq. (A.9). As
we concern ourselves with T, <€ Eglky, we will drop this term for analytical
convenience.

From eq. (A.7) it is seen that f (k, x) is singular forx = = w, so that on the
right hand side of eq. (A.9) we may substitute

fW,y)= 51— @I(kl)IS(y | wye |) - higher order terms. (A.11)

This leads to the required integral equation

1 (K 4me? B | o' |
*R="3 (277)3|k—-k'|2ta‘nh( 2

2 [ do Ime (k — K, o) ,
[r+i) SEm ] o ® (412

For an isotropic system, angular- averaging at the Fermi surface reduces the
integral equation to

0@ =~ [ o anl ke ) 0) .13

where &= £, is the energy variable and the Kernel

+1
K £)=N @) [ d(cos 0)‘1;-?[1 +2 f d“"lme @ ) ](A.14)
A o +2 (€ 141D

~—
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with
=k —k'|2=k?4-k'® —2kk'cosh (A.15)

The first term in eq. (A.14) is the bare Coulomb part of the kernel and the
second term represents all other effects, including screening of the Coulomb
interaction. However, it is convenient to separate out from the second term

the part arising due to screening in the bulk metal For this purpose, we can
split up Ime? as

Im ¢ (g, w) =Im ¢ (q, w) +Im ¢, (g, w) (A.16)

where ¢, (g, w) is the inverse of the bulk metal dielectric function and e, (g, w)

is the effective inverse dielectric function representing all other effects. Thus,
we have

K &) =K (&) +K,¢$§) (A.17)

where
et o [ deImeti(g @)
N o , 6 — 1
K, &) =N(§) [d@osd) qz[ +;fw'+1(|f|+|f'l)]
° 7i
(A.18)

and

K6 ©)=N @) [ (@oos) 222 j dr e’ G @) a9
o FEAEIHED

For the integral equation (A.13) to have non-trivial solutions, i.e., for super-
conductivity to exist, it is necessary that the screened Coulomb repulsion be
adequately compensated by attractive interactions, arising due to exchange of
phonons, excitons, etc., which enter into the K, (¢, §') part of the kermel. In
particular, it would be required that K, (0, 0) be sufficiently negative to overcome
the Coulomb repulsion represented by the Coulomb coupling constant » = K, (0, 0).

For the numerical calculation of T, it is convenient to set up an inhomogeneous
integral equation deducible from eq. (A.13). For this purpose, we restrict the
region of integration in eq. (A.13) between (— Er) and (4 Ez). This is quite
justifiable because of the rapid decrease in the value of the kernel beyond these

limits. Further, as kgl, is expected to be much smaller than Ej, the tanh%—g

factor is important only in the very small region close to &' = 0. Using the
result

+Egp o
fE hﬁ"j%—ln(-g-?%@f)—i-.... (A.20)
—LF

where y is the exponential of the Euler constant, and defining a new function
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— 1 D () (A.21)
78 = (29»3; EF) & (0)
we find that » (£) satisfies the inhomogeneous integral equation
+EF ,
7 (&) = K& 0 — J FEIKE £)7&) — K& 0)n (O (A.22)
—Er

We have replaced the tanh E 55 factor in the second term of eq. (A.22) by

Sgn £, as the square-bracketed quantity vanishes for & = 0, and is expected to be

small for & ~ 0, if K (& &) is reasonably smooth. Omnce 7($) is solved from
eq. (A.22), using eq. (A.21), 7, is obtained as

29 E 1
T, — ;’j,c-f exp (;7_(_0-5) (A.23)
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