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A two-oscillator electromagnetic model is used to find the effect of a solid or a metal substrate of
dielectric function e(co) on several nonlinear optical processes in a molecule adsorbed on the surface.
In particular, the case of the second-order optical mixing, the stimulated Raman scattering, the
third-order polarizability for the four-wave mixing, and the case of two-photon absorption in the
molecule have been considered explicitly in the approximation in which the ionic oscillator frequency
is assumed to be small compared with both the electronic oscillator frequency and the optical fre-

quencies involved. The two-oscillator model considered here, with a trilinear coupling potential
function, is the same as the one recently used by us to investigate the spontaneous Raman process.
From our analysis it is quite clear that the enhancement, if any, in each of the processes involves (1)

~in ~(0)
the enhancement of each of the incident optical fields E to E at the molecular site, (2) the renor-

malization of the effective nonlinear polarizabilities at short molecular distances from the surface,
and (3) the change of the outgoing radiation propagator (Green's function) from the free-space Go to
Q, due to the presence of the surface. For a metal surface of a given shape, each of these factors
may contain possible surface-plasmon —polariton resonances at various frequencies involved.

I. INTRODUCTION

In a recent paper' (hereafter referred to as paper I) we
have presented a two-oscillator model for calculating the
electromagnetic part of the enhancement in the surface-
enhanced Raman scattering (SERS) process. This model
enables one to obtain rather easily the electromagnetic part
of the enhancement of the Raman cross section of mole-
cules in the presence of an arbitrary medium of dielectric
function e(co) =a~(co)+iez(co) with any given surface pro-
file. This simple model has the further advantage of relat-
ing the Raman enhancement factor to experimentally ob-
served linear and Raman polarizabilities of the corre-
sponding isolated molecule. In fact, such a model,
described in paper I, is capable of describing not only the
Raman process, but also a wide variety of nonlinear opti-
cal phenomena in molecules in the presence of a metal or
any other solid surface. In this paper we consider several
such applications of the model.

In Sec. II we briefly review the essential features of the
two-oscillator model and obtain general expressions for
the second- and the third-order nonlinear molecular polar-
izabilities in the presence of a medium of dielectric func-
tion e(co). Expressions for some special cases of these po-
larizabilities (susceptibilities) are derived in Secs. III and
IV so that these could be used to discuss explicitly the
second-order nonlinear-optical mixing process, the stimu-
lated Raman process, the third-order polarizability for the
four-wave mixing process, and the two-photon absorption
process. In each case we have assumed that the ionic mass
M is much greater than the electronic mass m, and the

ionic oscillator frequency ~o is much less than the electric
oscillator frequency co, . The simplified expressions show
exactly how the various enhancement factors involving the
incident-field enhancement, the nonlinear polarizability re-
normalization, and the change in the outgoing radiation
propagator appear in each of the nonlinear processes. %'e
sum up our results in Sec. V and for completeness include
a discussion of the linear absorption process in adsorbed
molecules in the Appendix.

II. NONLINEAR PGLARIZABILITIES g' '

AND g' ' FOR SURFACE-ENHANCED OPTICAL
PHENOMENA IN THE TWG-OSCILLATOR MODEL

m (x j +Q)ed' xj + re xj ) eEf (f)
Bx

(2.2)

in the presence of an incident electromagnetic field E'"'(t)
and the solid of dielectric function e(co). Here i,j =1,2, 3
denote Cartesian coordinates, coo and y are the experimen-
tally observed "physical" resonance free(uency and the
damping constant for the ionic mode, co,d;J and I;j are

In the two-oscillator model discussed in detail in paper
I, to the lowest order in coupling, the ionic motion
described by the normal-mode amplitude Q and the elec-
tronic motion denoted by the amplitude x, associated with
a molecule located at ro, satisfy the equations of motion

a v'"
M(g, +~,'g, +)g, ) =zE, (t)—
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I'"'(x,g) = ~ljkQiQJQk+~ljkQiQjxk

+~jikxixj Qk +Dijkxixjxk
1

3 OkpAkfpfv (2.3)

the corresponding quantities in the nondiagonalized tensor
forms for electronic motion (g,.d;;=3), and E (t) is the
"local" electromagnetic field at the molecular site which
must be related to E'"'. The nonlinear coupling force
terms in the above equation are obtained from the trilinear
potential function

A(n)lt(n) =F' '(n)+f (n),
where various quantities are given by

a v"'
fk'(t) = — = ~k~A'i «)4 (t»

(2.11)

(2.12)

eE'"(n)
(0)

zE"'(n)
(2.13)

equations of motion can be written in the form [P(n)
denotes the Fourier transform of P(t)]

where repeated indices mean summation (unless explicitly
stated), and where as a convention we use greek indices
taking values 1—6 in the six-dimensiona1 amplitude space

xi Qi
X

(2.4)

X3 Q3

In the absence of the molecule, the external field
E' '(rp, n) at the inolecular site (r =ro) is obtained by
solving Maxwell's equations

E'i '(ro, n)
E"'(n)= E',"(r„n)

E', '(r, n)

jl. ~(n) ~ ~(n)
~i2~(n) ~~(n)

A,J (Q) = m ( —n 5,z +co,d,z. i nl—;J )

2@2
G"'(n)lJ

(2.14)

(2.15)

0—V'+ V V —e(r, n), E"'(r,n) =0,
c

(2.5) ZeQ
w ~(n) w~ (n) G '(n, )

C
(2.16)

inside as weil as outside the solid (metal), in the presence
of the incident field E '"'(n). Inside the solid the dielectric
function e(r, n) =e(n), and outside it is equal to 1. This
defines the Fresnel-type factors I.,J at the molecular site

E I(ro, n)=L;J(rp, n)EJ"(rp, n), (2.6)

'+ ~o—&~y)~ — 6"'(J

and where we have defined

(2.17)

relating the incident field to the external field present at
the molecular site due to the presence of the metal (solid)
surface. We must note that the local electromagnetic field
E' ' acting on the molecule, which occurs in Eqs. (2.1)
and (2.2), is not the external field E' ' since the former
must also take into account the molecular dipole. In
terms of the full Green's function 6 and the free-space
Green's function 60, which satisfy the equations

2—V + V V —e(r, n) G(r, ro, n)=4m5(r —ro)I,
C

G~~j"(n) —=G,"i"(ro, r p, n) (2.18)

at the molecular site. Note that the Green's dyadic
6'"=6—60 depends explicitly on the shape of the solid
(metallic) medium and vanishes in the absence of the
medium.

From (2.12) it is clear that the nonlinear force term cou-
ples various frequency components, i.e.,

fk (n) = 8k„„J—itq(n —n')l(i (Q')dn' . (2.19)

Thus, given the number of the impressed frequencies on
the system, the nonlinear response can be calculated by us-
ing the standard perturbation methods. Let us write the
incident field in the form

2—V'2+. V V — Gp(r, ro, n) =4ir5(r —rp)I, (2.7b)
c

E can be obtained from the knowledge of E' ' by'

QEM(r, Q)=E' '(r, n)+ G'*'(r, rp, n).P(n), (2.8)
e

E'"(r, t) =gE'"(r, ioi)e
I

so that the external field at the molecular site is

E"'(r,, t) =+Eioi(r„~, )e
'""

it

(2.20)

where

G"'(r, ro, n)—:G(r, rp, n) —Go(r, ro, n),
and where the induced molecular dipole moment is

p(n)=ex(n)+zg(n) .

(2.9)

(2.10)

=QL(ro tot) E(ro toi)e'
I

(2.21)

since the medium has a linear dielectric function e(co). In
other words, (2.13) tells us that the external force term has
the structure

As explicitly worked out in paper I, it is now straight-
forward to show that the coupled electronic and ionic

F' '(t)=QF' '(co )e
1

(2.22)
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$11)(r) ye '~leg(1){~ )
l

(2.23)

From (2.11), the linear response can then be obtained in
the form

where

1tp"(COi+~m }=—[A '(CO)+~m)]peak„.

X1(„"'(co )1('"( ), (2.27)

f„'"(col)=[A '(col)]„+,' '{co,} .

Assumtng )li «1)i «p, etc. , we can then us
ab&»«esult in (2.11) to obtain the second-order and
third-order amplitudes as

(2.24) Pp (~1+~m +~n ) 2[A (col+corn +con )]pk

e the XOk„f„"'(co„)g',"(col+co ) .

(2.28)

q(2)(r) ye ' I+ m q(2)( + )
1, m

itl'"(r)= ge ' " g" ()col+co +co„),

Substitution of (2.24) in (2.27) and {2.28) and writing

(2.25) F' ' in terms of L and E'" [using {2.13) and (2.21)] im-
mediately allow us to obtain the induced nonlinear dipole
moments in terms of E'" and the corresponding suscepti-
bilities (polarizabilities), defined by

A (col+corn ) =ex (col+corn )+ZQi (col+corn ) =&c~jk(col corn )Fj (col)Ek (corn)

j) '(col+co +co„)=ex ' '(col+co +co„)+ZQ '(col+co +co„)

=g,'.gi(col, co,co„)E' '(coI)Ek '(m )EI' '(cu„),

if we remember the relations

(2.29)

(2.30)

41 X1 P2 +2 03 X3 04 Ql 45 Q2 P6 Q3 (2.31)

Note that the nonlinear polarizabilities are defined above in terms of the external fields E' ' acting at the molecular site
in the presence of the surface instead of the incident fields E'"' for convenience in isolating the field enhancement factor
via Eq. (2.6).

For the second-order polarizability, the explicit expression is then obtained in the form

X,'k(col, co ) = —Sym(j, l,cok, co )( [e[A '(col+co )];p+Z[A '(col+co )];~3 pj

xOp~„[e'[A '(col)]»[A —'(co )] k+e—Z[A '(col)]»[A '(co )]„k+3
+Ze[A '(col)]i, ,j+3[A (co }1 k+Z [A (col)]p,j+3[A '(co )]., k+3j)

(2.32)

Sym(AB) = , (AB +83), — (2.33)

etc. %"e should remind ourselves that roman indices take
values 1, 2, or 3 whereas greek indices take values 1—6.
The nonlinear polarization (2.29) will produce radiation at
new free Jencies col +m . Note the appearance of
Fresnel-tyPe factors Lzj(col)L~k(co } when one connects
E' ' to the incident fields E'" in (2.29), which may contain
surface-plasmon —polariton (SPP) resonances at col and
co, as in the case of SERS from molecules at a metal sur-
face (discussed in paper I). Since the nonlinear dipole at
coI+cu radiates in the presence of the metal, with full

where Sym implies symmetrization with respect to the
simultaneous interchange of j~~k and ~~~~~, with the
convention

6=G o+6" there can be additional SPP resonance at
col+~, via 6" in the outgoing wave. Apart from this,
the resonant character of the susceptibility 7' ' also arises
from the A ' matrices. These lead to a resonance when-
ever one of the natural frequencies of the molecular vibra-
tions, modified by the renormalization effects arising from
the presence of the metal, coincides with either incident
frequencies ml and m or the final frequency ~I+co~.
The expression (2.32) for the second-order susceptibility
can be used in a variety of mixing problems, including the
second-harmonic generation, sum or difference frequency
generation, etc.

The expression for the third-order nonlinear molecular
Polarizability (suscePtibility) X,jki(col, corn, co„) in the Pres-
ence of the metal can be obtained in a similar way. We
find the result

~ijkl(~l~~m~~n } Sym(j~~l~~~~miI~~n ){ [2e[A (~l+~m +~n )]ik+2Z[A (~l+~m +~n )]i+3,kj

&ek„[A '( i+ }] 6) psIe[A '(col)]pj+Z[A '(col)]p, ,+3j

X[e[A '(corn)]sk+Z[A '(corn)]s, k+3j

X[e[A '(co, )]„i+Z[A '(co )]s,i+3j), (2.34)
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where, as before, Sym is the symmetrization operator to
make J' ' symmetric with respect to permutations
(j,cubi,'k, co },etc., and A ' is obtained from (2.14)—(2.17).
Within our two-oscillator model, the above expression is
the most general form for the third-order polarizability.
It should be emphasized once again that the characteris-
tics of the metal are contained in the Fresnel factors L
which connect E' ' with E'", and in A ' (through the re-
normalization effect via G"). The resonances at various
frequencies [coi I, [coi+co J, and coi+ar +co„can occur
due to possible resonances in L or in A ', or due to the
SPP resonance in outgoing propagator 6 at the frequency
coI+co +co„. If the renormalization effects are not im-
portant, e.g., for molecular distances from the metallic
surface much greater than 10—20 A, A ' may be replaced
by (Ar' )

' for an isolated molecule by taking the limit
G"~0in (2.15)—(2.17).

In Secs. III and IV we will try to simplify our general
expressions for g' ' and g' ' for applications to particular
nonlinear processes when we assume that the ionic mass
M is much greater than the electronic mass m, and the
corresponding ionic frequency coo is small compared to the
electronic and optical frequencies. It has to be noted,
however, that until now our expressions are general
enough to be used, for example, to obtain more general ex-
pressions for the nonlinear electronic polarizabilities at op-
tical frequencies by considering both the oscillators in the
model to be electronic (with M =m, Z =e).

a '(Q) =—( —Q I ~co,d —i QI ),
e

(3.3)

(3.4)

In terms of the renormalized (due to the presence of the
surface) linear polarizability tensor,

a «(n) =x-'(n).a(n), (3.5)

where the renormalization denominator is defined by

QX(Q)= I a(Q)—G'"(Q)
C

(3.6)

A ' can be rewritten as

[A '(Q)];J = [a' (Q)]"1

e

=—[N '(Q} a(Q)];, .1

e
(3.7)

Setting Z =0 (i.e., ignoring the ionic contributions) in
the general expression (2.32) for X' ', the second-order
electronic polarizability is thus found to be

where I is the unit matrix; A ' matrices needed in (2.32)
for calculating 7' ' are now given by

1

e Q
[A '(Q)]; = e a '(Q) — G' '(Q)

C

III.. SECOND-ORDER ELECTRONIC POLARIZ-
ABILITY AND THE THIRD-ORDER POLARIZ-

ABILITY FOR STIMULATED RAMAN SCATTERING,
WITH LARGE IONIC MASS

(2)e 3
ij'k i» m }=—Sym(J~~! ~k~~m ) Dstu3

&&ass"(~i+~m }as'(~i }a~uk(~m (3.8)

When the ionic mass M is assumed to be large com-
pared to the electronic mass m, with coo~&cu„ the general
expressions for various physical processes of interest sim-
plify considerably. In paper I we have already considered
the case of spontaneous Raman scattering. In this section
we will consider the case of the second-order electronic
polarizability and the stimulated Raman process. The Ra-
man susceptibility for four-wave mixing and the two-
photon absorption process, under the same approximation,
will be considered in Sec. IV.

A. Second-order electronic polarizability

For ionic frequencies small compared to the electronic
and optical frequencies, to calculate the second-order opti-
cal polarizability it is enough to consider the response of
the electronic oscillators. In our model one can thus re-
tain only the last term in the coupling potential function
(2.3), so that for this process,

The radiation signal at co~+co in the outgoing direction n

due to the second-order dipole moment

(~i+~~) =&i~j'k(~i ~

is now proportional to

(COi +CO )
~E(~, +~ ) ~'=

(3.9)

X
(
G(r oo, n;ro ~i+~ )'p (~i+~ )

I
(3 10)

where G is the full Green's function of (2.7a) in the pres-
ence of the surface.

The net enhancement factor in the signal at coI+m can
be obtained from (3.8)—(3.10) by dividing (3.10) by the

Ocorresponding expression with 6'"=0, E' '~E'", and
g' —+a. This expression again simplifies considerably in
the coordinate system in which a and G" may happen to
be diagonal. In such a case, in our model the second-order
polarizability for an isolated molecule (free) is given by4

0~»——0, any of A,,p, v&3,

9;jk ——3D,"k, ~',j,k =1,2, 3 .

(3.la)

(3.1b)
(2)free 3

+ijk (~1~ m ) = ijk ii( i+ m )3

In terms of the linear electronic polarizability of the iso-
lated molecule,

+jj (~l )kk(~m ) (3.11)

2

a(Q) = ( Q I+co,d i QI )——
m

and its inverse (in matrix form),

where there are no summations present, and the second-
order susceptibility in the presence of the surface is related
to it by
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(2)free
7tijk (collcom )

N„(col +co }Njj(col )Nkk(co )

(3.12a)

where there are no summations present and where the re-
normalization denominator is

Q
Npp(Q) =1— ap~(Q)G~p'(Q) . (3.12b)

=5;3—(3—&, 3) g(co, a),Elll( )
j a +d (3.13a)

where a is the radius of the sphere and

The total enhancement factor obtained from (3.10) thus
contains the factors due to the renormalization of g' '
from g' '' via (3.12), change of E'"(col) and E'"(co ) to
fields E' '(col) and E' '(co ), respectively, via Eq. (2.6),
and the change of the outgoing propagator from Go to
G =Go+ 6", each of which may contain SPP resonances
discussed in paper I.

For the case of a small sphere, as disussed by several au-
thors (see paper I and other references therein), the renor-
malization factors have been shown to be insignificant for
molecular distances d ~20 A from the surface of the
sphere. In such a case, the enhancement of (3.10) comes
mainly from enhancement factors in G and E' '. Each of
these factors has the structure

3

ro ——(a+d)z, the position vector of the molecule. The
center of the sphere is assumed to be at the origin. In the
visible frequency region, for Ag the SPP enhancement fac-
tor is of the order of 50. The net enhancement for the
harmonic generation will depend on how many of the fre-
quencies col, co, and col+co~ are resonant with the SPP
of the metallic substrate. One may have a situation where
both col and co are resonant but col+co is nonresonant,
leading to net enhancement factor of the order of 50 for
the case of silver substrate. It may also happen that both
col and co are nonresonant, but col+co is resonant, lead-
ing to an enhancement factor —10 . It is already known
that such enhancement factors are expected to be smaller
for the case of a grating by at least 1 or 2 orders of magni-
tude.

V =Cjkx;xjgk .(3) (3.14)

Also the Raman polarization at co, =col —~ is obtained in
such a way that the ionic amplitudes at optical frequencies
col and co, and the electronic amplitudes at the vibration
frequency cu are neglected. At the incident frequency col,
one obtains

B. Stimulated Raman scattering

To consider Raman scattering from ionic vibrations in
the molecule, as was already done in Sec. III of Ref. 1, one
keeps only the third term in the coupling potential func-
tion (2.3), so that

g (co,a) = e(co) —1 e(co) —1

E(co)+2+ '5 (co /c )a ie2(~)

x "'(col)= N '(col)—.a(col) E '0'(col),
e

Q ' "(coi )=0,
(3.15)

(3.13b)

at the SPP resonance, in the case in which the incident
wave is assumed to be polarized in the direction

I

where the renormalization matrix N(Q) is already defined
in (3.6). The reduced form of the relation (2.27) then leads
to the Raman dipole moment

pR, ,„(col co=co, )=—ex ' '(col co)= ——;N '—(co,} a(co, ) CN '(col).a(col) E' '(col)Q*(co)
e

—=R(co„col):E' '(coi)Q*(co), (3.16}

A" (co)Q (co)= —Cki;xl, (coi)xi (co, ),QQ (&) (&)+

where A~j is given by (2.17). This, with the use of (3.15)
for both x' "(col ) and x "'(co, ), immediately leads to

(3.17)

where R (co„col ) is the third-rank Raman tensor.
In the case of spontaneous Raman scattering considered

in paper I, Q(co) was the random variable having its corre-
lation functions determined from the analysis of thermal
fluctuations at co (with the use of fluctuation-dissipation
theorem). For the stimulated case, Q(co) is the ionic am-
plitude which is produced due to the nonlinear force term
in the ionic motion, proportional to —C,jkx~

"
X(col)xk"'(co, ), i.e., due to the interaction between the
fields E' '(col) and E' '*(co, ). For this we must solve the
reduced form of the ionic equation of motion (in the ab-
sence of the homogeneous electric field at co), to the
second order in the fields

Q; (co)= ——APj~( —co)Ckijklj

X [N '(col) a(col).E' '(col)]k

X[N '(co, ) a(co, ) E' '(co, )]l . (3.18)

Substitution of (3.18) into (3.16) then gives the Raman di-
pole moment for the stimulated process and the corre-
sponding third-order nonlinear polarizability in the form

Pi (COs ) +ijki (~l l COI lCOs }Ej (COI k (~l }El (COs )

(3.19)

The full expression for g' ' can be simplified consider-
ing the case in which a and 6"' are diagonal. In such a
case one finds



28 SURFACE-ENHANCED NONLINEAR-OPTICAL PROCESSES IN. . . 483

;jki =g Rj (co,col )Rkl»&(cos, co—i ) M ( c&s —+c&io+ Ectly) —
2

G ( c—o)
C

(3.20)

where the Raman tensor R is related to the corresponding tensor for the free molecule,

[1—(co, /c )a;;(co, )G;"(co,)][1—(coi/c )ajj(coi)Gj~j"(coi)]
(3.21)

where there are no summations present. Thus, in this
case, the Raman polarizability P' ' has been expressed
completely in terms of the known Raman tensors R~"', re-
normalization denominators N;; (co, ) and Nij(coi ), and the
line-shape functions

[M( co —+coo icky—) (Z —csi /c )G" ( —co)] .

The result in the absence of the metal is relatively simple:
g g ~ e~, E 0 E'" and G[s]~0

The Raman gain for the stimulated process can now be
obtained by using the optical theorem. The gain is defined
as the rate at which the energy of the field E(co, ) increases
divided by the incident flux at co, . The optical theorem '

then leads to the expression

4~c Im[E'""(co, ) a(ns)]
(3.22)

i

E'"(co, )
i

for the gain. Here n, is the direction of propagation of the
incident field at co, and a gives the scattering amplitude.
The scattering amplitude is related to the field at m, as

where

icos r

G(r ~ oo, n, ; ro, m, ) —= 9'(n„ro, ~s) (3.24)

On combining (3.24) and (3.19), we find that the net
enhancement factor for the stimulated Raman scattering
is similar in magnitude to that for the spontaneous Raman
scattering, already considered by several authors. '

IV. RAMAN SUSCEPTIBILITY FOR FOUR-WAVE
MIXINa AND y"' FOR TWO-PHOTON

ABSORPTION

A. Raman susceptibility for four-wave mixing

In this section we will first discuss the case of the
third-order Raman susceptibility for the four-wave mixing
case when the ionic mass M is much greater than the elec-
tronic mass m and the ionic frequency ~o is much less
than the electronic frequency m, . Later on, we wi11 also
obtain the purely electronic third-order nonlinear-optical
susceptibility to describe the two-photon absorption case.

2

E(co, )= G(r~ oo, n, ;ro,cos).p "(cos)
C

2 iu r
cps

2
9'(n„ro, co, ) p "(o),)

C T

a(n, ), (3.23)

We now calculate the simplified form of the third-order
susceptibility X' '(c»i, coi, —co, ) to describe the four-wave
mixing case in which col —m, =co is close to the ionic fre-
quency equal to coo, and which is responsible for produc-
ing a signal at 2coI —co, . The derivation follows similar
steps as given in Sec. III for the stimulated Raman pro-
cess. As in (3.16), the induced dipole moment at 2coi —co,
is given by

2 + 0 +

p(2oii —c0, )= — N '(2oi, os, ) a(2—os, os,—) C:N —'(osi) .a(oi, )
—E' (os, )Q(~) o~=o~, —o~,

e

R(2coi —co—s&coi):E' '(c&ii)Q(co) . (4.1)

Again Q(co) is given by (3.18), i.e.,

M( co +coo icky)1 — 6'—"(co),i
'—Ckij[N '(coi) a(coi) E' '(a&i)]k[N '(co, ) a(co, ) E' '(co, )]i .

C

The four-wave mixing process can then be rewritten as

jii (2col c&~s ) ~ijkI (col & col & cos )Ej (csil )+k (c&~l ) (c&is ) &

(4.2)

(4.3)

which defines the corresponding susceptibility.
The dipole moment (4.3) would radiate a signal at 2coi —co, . It may be noted that in the usual treatment of a four-wave

mixing signal in nonlinear optics one deals with the so-called phase-matched signal. In the present case, because of the
presence of the metal surface, it may not be possible to obtain phase matching.

In case a and G" are diagonal, the expression for J'3' obtained from (4.1)—(4.3) can be simplified considerably. One
finds
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Z2 2X"" (~/, ~/ ~, )=&&;j (2~/ ~„~/)&k/ ( ~„~/) M( ~'+~a —/~r)—
m C

(4.4)

where the Raman tensor R is related to the corresponding
tensor R/"' for an isolated molecule by (3.21). The emit-
ted radiation at 2coI —co, is proportional to the square of
the full Green's function 6 at 2~I —~, and the dipole mo-
ment (4.3). The enhancement in this case can be much
larger than SERS, since now there are three field factors
at col, coI, and —cos apart from the outgoing propagator at
2coI —co, . Each of these can have SPP resonance provided
that ~I, cog —co=co„and coI+co are close to the SPP fre-
quency of the substrate.

B. T~o-photon absorption

To obtain the two-photon absorption coefficients we
must calculate the third-order nonlinear susceptibility
X ( —co/, ct//, co2) or X ( —co2, A@2,co/), where co/ and co2 are(3) (3)

the incident-wave frequencies (which may be same as a
special case). If all these frequencies are optical, it is
enough to calculate only the electronic part of the non-
linear response by setting Z =0 in our expression (2.34).
However, for obtaining P ', it may be necessary to con-

sider more than one electronic oscillator varying with dif-
ferent frequencies, and to also take into account the addi-
tional potential function V' ', quadrilinear in these ampli-
tudes. However, for simplicity we will take only one oscil-
lator in our model, hoping that our final result when con-
verted in terms of the physical electronic linear polariza-
bility a is approximately correct even in the more general
case.

As in (3.1) and (3.7), we now have

and

0~&„——0, any of A, ,p, v&3

0&jk 3Dj'p & J k 1 2 3

(4.5a)

(4.5b)

[A '(Q)];1= [a' (Q)]"=—[N '(Q) a(Q)];1 .1 1

(4 6)

From (2.36), with Z =0, the required third-order electron-
ic polarizability reduces to

18
Xijkl ( ct/1 cO1 ct/2) = Sym( j— cok/cd //2c) 0DstttDs't'tt'SQ S Q

X [a'„. ( —ct//+ct/1+co2)ags (co/+ct/2)atj ( —ct/1)ag~k(c01)a,'l(c02)], (4.7)

with the corresponding dipole moment

p/ "(co2)=XIjk/( co/, co/, co2)—E/
' (co/)Ek (co/%/ (c02) (4.8)

Again, in the simplified case in which the free polarizability a(Q) and G "(Q) are diagonal and N(0) is a scalar, X' '
may be written approximately in terms of 7' ' "'. For two-photon absorption at co~+m2, one finds

(3)free
(3)e Xljkl ( ~1 ~I ~2)

Xtjk/( —col c01 co2) = (4.9)
[Ncc(co2)NJJ ( —ct//)Nkk (ct//)N//(ct/2) ]N (ct//+ et/2)

where

Q
Npp(Q) = 1 — asap(Q)Gpp'(Q)2

(4.10)

N(c01+c02) gap(c01+co2)I3 .
P

(4.11)

The two-photon cross section, as in the case of linear ab-
sorption ' discussed in the Appendix, can be obtained in
the form

4&CO2
a2,h(~2) =

c
i

E'"(co2)
i

Xlm[E'"(c02) 3 (n2 r0 &2) p "] . (4.12)

%hen this is compared with the corresponding case of an
isolated molecule, one immediately obtains the surface-
enhancement factor for the two-photon absorption case.

f

Again one finds possible SPP resonances in the fields E' '

at frequencies co& or co2, the enhancement arising from the
renormalization of X' ' "' via (4.9), and the SPP resonance
in the outgoing propagator 9'. Except for the nature of
the frequencies involved, the enhancement is similar to the
case of the Raman process.

For the case of a small sphere (radius a is less than the
wavelength of light), the enhancement discussed above will
be of the order of ~g(co/)

~
~g(c02)

~

. At an exact SPP
resonance at either co& or co2, this leads to a factor
—10 —10 for the case of molecules on a silver substrate.
The somewhat smaller enhancement factor estimated by
Glass et al." in a recent experiment may be arising basi-
cally due to a broad distribution of shapes on metal ellip-
soids, and hence of the SPP resonances in their experi-
ment.

CONCLUSIONS

In the preceding sections we have considered several
nonlinear-optical processes in molecules adsorbed on a
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metal (or any other solid) surface of dielectric function
e(cp), within the framework of a simple two-oscillator
model with the trilinear potential coupling. Similar to the
case of the spontaneous Raman scattering considered in
paper I, we found that in each of the nonlinear processes
one has three distinct types of changes.

(i) In each case, the fields acting at the molecular site rp
become modified from the incident E '"(Q) to
E' '(Q)=L(rp, Q).E'"(rp, Q), due to the presence of the
solid surface. If one is dealing with a rough metallic sur-
face or metal spheres, etc., the Fresnel-type factors I., and
hence E'P'(Q), contain SPP resonances. This is the so-
called local-field enhancement. This involves more than
one field and frequency in nonlinear processes.

(ii) The outgoing Green's function (propagator) for the
radiation of frequency 0' being detected is modified from
the free Green's function Gp(r~ oo, n ';rp, Q') to the full
Green's function

G(r~ao, n ', rp,'Q')—:Gp+6 "(rico,n ', rp'Q ),
in the presence of the surface. The additional Green's
function G"(r,rp, Q') contains SPP resonances. '

(iii) The intrinsic nonlinear polarizability for each of the
processes becomes renormalized, which may be important
to take into account at molecular distances up to approxi-
mately 20 A from the surface. The renormalization is
similar to the renormalization of the linear polarizability
a

a';; (Q)= a;;(Q}
1 —(Q2/c2)a;;(Q)G (rp, rp, Q)

ecule at the molecular site ro. Since these depend on ro in
our case, the corresponding expressions for the usual bulk
susceptibilities can be obtained by first multiplying these
polarizabilities by the local differential densities of these
molecules and then integrating over the spatial positions
of the molecules. The dimensions of the bulk susceptibili-
ties differ from the dimensions of the corresponding po-
larizabilities (obtained in this paper) by a factor of number
density (L ).
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APPENDIX: COMMENTS ON THE (LINEAR)
ABSORPTION BY ADSORBED MOLECULES

ON METAL SURFACES

In Secs. III and IV we have analyzed the problem of
nonlinear absorption or gain. We could also analyze the
much simpler problem of the linear absorption by ad-
sorbed molecules. ' We comment briefly on this in this
appendix. The linear optical absorption can be expressed
in terms of the linear electronic polarizability. We will ig-
nore the ionic contribution. The absorption (extinction)
cross section at the incident frequency ~I can be defined in
analogy to (3.22) as

= [N '(Q)];;a;;(Q), (5.1)
477COI

Oabs= +
c

i

E'"(coI)
i

except that several denominators Xzz(Q) occur for non-
linear susceptibilities, depending on the order and the na-
ture of the nonlinearity.

Given the nature of the surface shape and the medium,
the enhancement factor in each of the processes can be ob-
tained immediately by first finding once and for all the
Fresnel-type factors L,J ( rp, Q) and Green's functions
G'"(r~ao, n;rp, Q) and 6"(rp, rp, Q). For specific
geometries, these are known from the papers in Refs. 1

and 7. A detailed numerical investigation of the renor-
malization effects arising in spherical geometries has been
carried out recently in Ref. 8. It may be added that at
present there are no direct experiments available for com-
parison of our theoretical results in the case of most of the
nonlinear optical processes taking place in molecules ad-
sorbed on a solid surface, which we have discussed in this
paper. A detailed numerical calculation for these process-
es depends on the particle sizes and shapes of the substrate
and on the distribution of molecular distances from the
substrate, which will characterize future experiments on
these nonlinear processes.

Before concluding this paper a line regarding the use of
the words "polarizability" and "susceptibility" in this pa-
per is on order. Although we have sometimes used the
word susceptibility (a concept useful for a bulk medium)
and used the symbols 7' ', 7' ', etc., all our expressions
and calculations are for the polarizabilities of a given mol-

Xlm[E'"( col) $(nl —rp ~'i)'p('~1)] (Al)

Hence the ratio of the extinction cross section in the pres-
ence of the metal to that in the absence of the metal be-
comes

Im[ E'"*(co~) S(n~, rp;col) a'rf LE'"(co~)]I',b, (CO( ) =
Im[E'"*(co ) a E'"(co }]

(A2)

where a is the free-electronic polarizability and a' is the
polarizability in the presence of the metal

' —1

COa' (co)= I a(co) G'"(co)—
C

(A3)

For the case of a small metallic sphere (radius a «c/co)
and the field polarized along X axis and the molecule lo-
cated along Z axis, (A2) becomes'

ImI [1—(e~ —I /v~+2)(a /rp) ] X~~(ct)~ }ax~]F,b, (~I ) =
Im(~»)

(A4)
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where all the quantities are to be taken at the frequency
co~. Note that in the region of the excitation of SPP,
@I+2-0,F,b, {~~) is negative, whereas for far away fre-
quencies, e.g. , near the frequency co, (resonance of ctx~),
et+2 is largely real and hence E,b, (cot) is positive. It
should be remembered that the contribution (Al) is solely
due to the presence of the molecule. There is also a con-
tribution (usual one occurring in Mie theory) due to the
presence of the sphere, which is always positive. Since

molecular polarizabilities are generally fairly small, it is
clear that for cot —cosp (where SP represents surface
plasmon) (SPP frequency), the net absorption will be re-
duced whereas for coI-co„ the net absorption will be
more. This result is in agreement with the work of %'ang
and Kerker who treated the dye molecules as another
coating of a dielectric layer (spherical) on top of a silver
sphere.
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