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The transcriptional regulation of gene expression is orchestrated by complex networks of interacting genes. Increasing evidence 

indicates that these ‘transcriptional regulatory networks’ (TRNs) in bacteria have an inherently hierarchical architecture, although 

the design principles and the specific advantages offered by this type of organization have not yet been fully elucidated. In this 

study, we focussed on the hierarchical structure of the TRN of the gram-positive bacterium Bacillus subtilis and performed a 

comparative analysis with the TRN of the gram-negative bacterium Escherichia coli. Using a graph-theoretic approach, we 

organized the transcription factors (TFs) and σ-factors in the TRNs of B. subtilis and E. coli into three hierarchical levels (Top, 

Middle and Bottom) and studied several structural and functional properties across them. In addition to many similarities, we 

found also specific differences, explaining the majority of them with variations in the distribution of σ-factors across the 

hierarchical levels in the two organisms. We then investigated the control of target metabolic genes by transcriptional regulators to 

characterize the differential regulation of three distinct metabolic subsystems (catabolism, anabolism and central energy 

metabolism). These results suggest that the hierarchical architecture that we observed in B. subtilis represents an effective 

organization of its TRN to achieve flexibility in the response to diverse stimuli.  

 

Introduction 

Bacteria adapt to environmental changes by tuning their gene expression in response to external and internal stimuli. This process 

occurs primarily through transcriptional regulation, which involves context-specific binding of transcriptional regulators upstream 

of target gene sequence. Transcriptional control is exercised through regulators, including transcription factors (TFs) and σ-factors, 

which are themselves subject to transcriptional regulation. Thus, transcriptional regulation is achieved through a directed network 

of interacting genes – the transcriptional regulatory network (TRN)1-9 – where nodes represent genes (regulators or targets) and 

directed edges represent regulatory interactions signifying transcriptional control of target gene expression by regulators. A major 

goal of systems biology is to elucidate the design principles2, 3, 5, 10-13 governing the global organization of TRNs.  

 The description of transcriptional regulatory interactions in the language of directed networks has provided novel insights on 

the structural organization of TRNs using methods developed to analyze complex networks3, 5, 11, 13, 14. It has thus been realised that 

there is a broad distribution5, 11, 15 in the number of target genes directly regulated by a TF, and there are repeated occurrences of 

certain subgraphs, known as ‘network motifs’3, 16 in TRNs. Several studies on the large-scale structure of TRNs, including in 

particular Escherichia coli and Saccharomyces cerevisiae, have established the existence of an inherent hierarchical architecture 

with limited feedback loops8, 9, 14, 17-20. The hierarchical structure of the TRN of E. coli has also been shown to enable cellular 

homeostasis and flexibility of responses to environmental changes18. This architecture of TRNs allows the organization of 

transcriptional regulators and target genes into different levels8, 9, 14, 17-20. Investigations mainly in E. coli8, 9, 17, 18, 20 and S. 

cerevisiae9, 19, 20 have shown that genes in different hierarchical levels of TRNs have distinct structural, dynamical and 

evolutionary properties.  
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 In this work, we studied the hierarchical structure of TRN in the gram-positive bacterium Bacillus subtilis and investigated 

which aspects in the hierarchical structure of its TRN are more important to determine the responses to environmental stimuli. To 

this end, we compared the TRN of B. subtilis with that of the gram-negative bacterium E. coli, which has the best characterized 

TRN to date. B. subtilis and E. coli are bacteria with similar genome sizes that have diverged more than one billion years ago. B. 

subtilis is a free living bacterium commonly found in soil but that has the ability to grow in diverse environments, from the 

gastrointestinal tract to the root surface of plants, while E. coli is commonly found in the gut of warm-blooded higher organisms. 

Thus, B. subtilis, in contrast to E. coli, has a lifestyle that exposes it to many more uncertainties in the form of diverse, and 

sometimes extreme, environmental conditions. B. subtilis can adapt to such conditions, which include stress and nutrient 

limitation, through sporulation which is associated with distinct regulatory programs21, while E. coli is not known to sporulate.  

 Despite having similar genome sizes, one feature in which the TRNs of B. subtilis and E. coli differ significantly is the number 

of σ-factors, which are proteins that help regulate transcription initiation of specific genes by enabling the recruitment of the 

transcriptional machinery. Thus, σ-factors impose an additional layer of regulation in gene expression because of their selectivity 

in binding to different gene promoters22. B. subtilis has twice as many σ-factors as E. coli, which may reflect the necessity of B. 

subtilis to have a broad range of regulatory mechanisms to cope with greater uncertainties in its environment. To understand the 

significance of σ-factors in shaping the organization of TRNs, we thus compared the structural and functional properties of B. 

subtilis and E. coli TRNs with and without the inclusion of σ-factors.  

 We considered the most recent reconstructions of the TRNs of B. subtilis23 and E. coli24. By analysing a series of recently 

proposed graph-theoretic measures25 we quantified the extent of hierarchical organization in the TRNs of the two organisms 

studied here. Using well-established graph-theoretic algorithms9, 19, 20, we next classified transcriptional regulators into different 

hierarchical levels and studied the enrichment of various structural and functional properties in different levels of hierarchy in the 

two organisms. Our study reveals many unifying features, as well as some distinct ones, in the enrichment of structural and 

functional properties in different hierarchical levels of the TRNs of B. subtilis and E. coli. Our results thus complement those of a 

recent study26 in which the role of gene duplication and divergence in shaping the hierarchical structure of TRNs in B. subtilis, E. 

coli and yeast was investigated. 

Results and Discussion 

B. subtilis and E. coli transcriptional regulatory networks with and without σ-factors 
We compared the TRN of B. subtilis, which comprises 1594 (protein coding) genes and 2976 interactions obtained from 

reconstruction by Freyre-Gonzalez et al23 with the TRN of E. coli, which contains 3073 (protein coding) genes and 7977 

interactions extracted from RegulonDB24 database (see Methods and Table S1). Since the TRN of E. coli is very well 

characterized, it is not surprising that the number of known interactions and target genes in the TRN of B. subtilis is approximately 

half of that in the TRN of E. coli (Table S1). Although the level of characterization of the TRN of B. subtilis is lower than that of 

the TRN of E. coli, the density of edges in the TRNs of the two organisms is similar (Table S1). We can thus expect that the 

statistics of density of edges may not change very much even as number of known interactions and target genes in the TRN of B. 

subtilis will increase through future studies. 

 One important aspect of transcriptional regulation in which B. subtilis and E. coli differ significantly is in the number of σ-

factors. B. subtilis has twice the σ-factors compared to E. coli (14 in B. subtilis to 7 in E. coli). This difference is consistent with 

the idea that B. subtilis needs a broad range of regulatory mechanisms to cope with uncertainties in its environment.  

 We investigated the role played by σ-factors in organization of TRNs by comparing the structural and functional properties of 

the TRNs of B. subtilis and E. coli with and without σ-factors (see Methods). We found that the exclusion of σ-factors from the 

TRNs of B. subtilis and E. coli results in a significant decrease in the number of regulatory interactions and in the clustering 

coefficient of the TRNs (Table S1).  

 



 

Feedback processes in transcriptional regulatory networks 
As feedback processes in TRNs indicate departure from a strict hierarchical structure, we quantified the amount of feedback in the 

TRNs of B. subtilis and E. coli (with and without σ-factors) by measuring the size of the largest strongly connected component 

(LSCC). A strongly connected component (SCC) within a directed graph is a maximal set of nodes such that for any pair of nodes 

i and j in the set there is a directed path from i to j and from j to i. Thus, any SCC is a cycle in the directed graph.  

 The size of LSCC in the TRN of B. subtilis is smaller than that in the TRN of E. coli (Table S1). Crucially, the size of the 

LSCC in the TRNs of each organism increases by more than three times when σ-factors are included in the TRNs (Table S1). 

Thus, the inclusion of σ-factors increases not just the connectivity but also the amount of feedback in TRNs of both organisms 

(Table S1). However, by comparing the size of the LSCCs in B. subtilis and E. coli against networks that were randomized in a 

manner that preserved the in-degree and out-degree at each gene, we found that the size of the LSCC in each organism is much 

smaller than expected by chance (Table S1). These results indicate that the TRNs of B. subtilis and E. coli exhibit limited feedback 

compared to the corresponding randomized networks. 

 We also studied the Perron-Frobenius eigenvalue associated with the LSCC, which provides a measure of the multiplicity of 

pathways within the cycle. We found that the Perron-Frobenius eigenvalue of the TRN of B. subtilis is smaller than that of the 

TRN of E. coli, and that its value increases with the inclusion of σ-factors (Table S1). 

 In the case of E. coli, the number of known regulatory interactions in RegulonDB24, 27 has grown by more than tenfold in the 

last 15 years, leading to an increase in the density of edges and in the size of the LSCC. However, the size of the LSCC has 

consistently remained smaller than expected for a randomized network. Based on these trends in E. coli we may expect that, 

although future expansion in the TRN of B. subtilis could lead to an increase in the size of its LSCC, the amount of feedback 

should remain smaller than expected in the corresponding randomized networks. 

Hierarchical organization of transcriptional regulatory networks 
The results discussed above are consistent with those of recent studies, which established that the global structure of TRNs in 

microorganisms can be characterized by a largely hierarchical structure8, 9, 14, 17-20 with limited feedback in transcriptional 

regulation. We next quantified the extent of hierarchical organization in the TRNs of B. subtilis and E. coli and classified their 

genes into different levels of hierarchy.  

 Recently Corominas-Murtra et al25 proposed three measures, Treeness (T), Feedforwardness (F) and Orderability (O), to  

quantify the extent of hierarchical organization in complex directed networks. In a given network, the treeness quantifies the extent 

of pyramidal structure and unambiguity in the chain of command, the feedforwardness measures the impact of feedback processes 

in the casual flow of information, and the orderability gives the fraction of nodes that does not belong to any cycle. We computed 

these three measures for the TRNs of B. subtilis and E. coli.  Based on the T, F and O values that we obtained, we concluded that 

the TRNs of two organisms have a largely hierarchical structure (Table S1). The values for the TRN of B. subtilis were similar to 

those obtained for the TRNs of other organisms by Corominas-Murtra et al25. 

 An important factor governing the timely response of TRNs to environmental changes is represented by the number of levels in 

their hierarchical organization. Using a vertex-sort algorithm19 we determined the number of levels in the Top-down and Bottom-

up hierarchical decomposition of the TRNs of B. subtilis and E. coli (see Methods). The number of levels was found to be smaller 

than that observed in randomized networks (Table S1). Hence, the TRNs of B. subtilis and E. coli display limited depth in their 

hierarchical structure suggesting a possible dynamical optimization in the regulation of targets17, 18. These results are consistent 

with those by Sellerio et al26 who used a different hierarchical decomposition method and earlier versions of the TRNs of B. 

subtilis and E. coli. 

 After establishing that the TRNs of B. subtilis and E. coli, have a largely hierarchical organization, we classified the 

transcriptional regulators in the two organisms into a three-level hierarchy: Top, Middle and Bottom (see Methods and Table S2). 

Based on this classification, we found that the TRNs of B. subtilis and E. coli with σ-factors have a pyramidal structure (Table S2 

 



 

and Figure 1). This organization may reflect an optimization for effecting large downstream changes by controlling few regulators 

upstream in the hierarchical structure of TRNs (Figure 1).  

Enrichment of structural and functional properties in different levels of hierarchy in transcriptional regulatory networks 

Hubs 

The out-degree of a transcriptional regulator in a given TRN gives the number of genes directly regulated by it. Earlier studies 

have established that the out-degree distribution for transcriptional regulators in the TRNs of B. subtilis23 and E. coli3, 16 follows a 

power law28 where most regulators have low out-degree while few regulators (referred to as ‘hubs’) have very high out-degree. 

Hubs have been shown to be critical for the maintenance of the large-scale structure of complex networks11, 29. We studied the 

average out-degree and distribution of hubs in different levels of hierarchy in the TRNs of B. subtilis and E. coli (with and without 

σ-factors), finding that the Top and Middle levels have higher average out-degree and are enriched in hubs (Figure 2A,B). The 

average out-degree is highest for Middle level transcriptional regulators in all cases except for the TRN of B. subtilis with σ-

factors. (Figure 2A). Hence, Middle level regulators control many downstream target genes in the TRN and are highly influential. 

Our results are consistent with those obtained for E. coli and yeast by Yu et al9 and Jothi et al19.  

 The exception in the case of the TRN of B. subtilis with σ-factors can be explained via comparison with the TRN of E. coli 

with σ-factors. In B. subtilis σ-factors are scattered across all three levels of hierarchy whereas in E. coli almost all σ-factors are in 

the Middle level (Figure 3). Of the σ-factors in B. subtilis and E. coli, RpoD has maximum number of targets in both organisms. In 

B. subtilis, RpoD accounts for almost half of the edges and in E. coli almost a third of the edges in the network. However, RpoD is 

located in the Top level in B. subtilis while being in Middle level in E. coli (Figure 3). A future growth in the number of known 

interactions in the TRN of B. subtilis may result in the possible addition of edges associated with RpoD and other σ-factors, which 

in turn may lead to a universal conclusion at that juncture.   

Bottlenecks 

An efficient transmission of information in the TRNs is critical for achieving timely and appropriate responses to external and 

internal stimuli. Bottlenecks in TRNs correspond to genes through which many shortest paths pass and are important for efficient 

flow of information. The betweenness centrality30, 31 is a graph-theoretic measure that quantifies the number of shortest paths 

passing through a node in the network. Thus, bottlenecks are defined as nodes with high betweenness centrality. We studied the 

average betweenness centrality and distribution of bottlenecks in different levels of hierarchy in the TRNs of B. subtilis and E. coli 

(with and without σ-factors), and found that the Middle level has the highest betweenness centrality and are enriched in bottleneck 

regulators in both organisms (Figure 2C,D). These results are consistent with that obtained for E. coli and yeast by Yu et al9. 

Hence, the information flow from Top level regulators to target genes predominantly passes through Middle level regulators in the 

TRNs of B. subtilis and E. coli. 

Coregulation of genes by transcriptional regulators 

Bhardwaj et al20 proposed two measures to quantify coregulatory partnerships between transcription regulators, the degree of 

collaboration and the degree of pair collaboration. The degree of collaboration of a transcriptional regulator measures the faction 

of target genes that are coregulated by at least one other regulator. We studied the average degree of collaboration for regulators in 

different levels of hierarchy in the TRNs of B. subtilis and E. coli (with and without σ-factors), and found that the Middle level 

regulators are more collaborative than regulators in other levels (Figure 2E). The degree of pair collaboration for a pair of 

transcriptional regulators measures the number of genes coregulated by the pair divided by the number of genes regulated by at 

least one of the regulators in the pair. We used this measure to quantify the extent of intra- and inter-level pair coregulatory 

partnerships of and between different levels of hierarchy in the TRNs of B. subtilis and E. coli (with and without σ-factors). We 

found that the average degree of pair collaboration is highest for pair of regulators from the Middle level (that is, the Middle-

 



 

Middle) followed by pair of regulators where one regulator belongs to the Top level and other belongs to the Middle level (that is, 

the Top-Middle) in all cases except for the TRN of E. coli with σ-factors (Figure 4). Our results, especially for the TRN of B. 

subtilis, match those obtained by Bhardwaj et al20 and Jothi et al19 for other organisms where the Middle-Middle had the highest 

propensity for pair collaboration (Figure 4).  

Evolutionary conservation of transcriptional regulators 

The evolutionary conservation of transcriptional regulators in distant organisms can be studied through orthologous genes. We 

thus extracted the list of orthologous genes in B. subtilis and E. coli from the KEGG32, 33 database (see Methods), and then studied 

the evolutionary conservation of regulators in different levels of hierarchy in their TRNs. We found that the Top level 

transcriptional regulators are more conserved between the two bacteria compared to the Middle and Bottom level regulators 

(Figure 2F). These results may indicate that general transcription factors are more conserved between these two distant bacteria, 

consistent with what was reported by Jothi et al19 in the case of yeast. 

Feed Forward Loops 

Feed forward loops (FFLs) are network motifs that commonly occur in TRNs3. FFL is a 3-node subgraph (circuit) composed of 

regulator X, regulator Y and target gene Z.  In FFL, X regulates Y and Z, while Y regulates Z. FFL motifs have been shown to 

perform important dynamical functions34 in TRN. We studied the composition of FFLs based on genes from different levels of 

hierarchy in the TRNs of B. subtilis and E. coli (with and without σ-factors). Top level regulators along with Bottom level 

regulators appear more often in FFLs in the TRN of B. subtilis while Middle level regulators appear more often in FFLs in the 

TRN of E. coli (Figure 5 and Table S3). Dissimilarity in FFL composition in the TRNs of B. subtilis and E. coli (Figure 5) can be 

explained by differences in number of inter- and intra-level edges between levels of the TRNs in the two organisms (Table S2). In 

the TRN of B. subtilis most edges are between Top level regulators and Target genes while in the TRN of E. coli most edges are 

between Middle level regulators and Target genes. 

Two-component Regulatory Systems 

Two-component regulatory systems are basic stimulus-response systems in prokaryotes for sensing environmental changes, which 

are typically composed of a sensory kinase and a response regulator35. We studied the distribution of two-component system genes 

in the different levels of the hierarchy in the TRNs of B. subtilis and E. coli with and without σ-factors, and found that the Top and 

Middle levels of hierarchy are enriched in two-component system regulators (Figure 6). Preponderance of two-component system 

regulators in the Top and Middle levels indicate that regulators responding to environmental changes lie upstream in the hierarchy 

of the TRNs of B. subtilis and E. coli. 

Regulation of distinct metabolic subsystems by B. subtilis and E. coli transcriptional regulatory networks 
Up to this point we mainly focussed on structural and functional properties of transcriptional regulators in different levels of 

hierarchy in the TRNs of B. subtilis and E. coli.  We next investigated the regulation of target genes coding for enzymes in distinct 

metabolic subsystems by the TRNs of B. subtilis and E. coli. For this analysis, we used pathway information in Metacyc36 database 

to classify target genes coding for enzymes in the TRNs of B. subtilis and E. coli into three broad biochemical categories: 

Catabolism, Anabolism and Central Energy Metabolism (see Methods and Table S4). Catabolic enzymes are responsible for the 

uptake of nutrient molecules from the environment and their breakdown into simpler metabolites that feed into central metabolism. 

Anabolic enzymes are responsible for synthesis of biomass components from precursor metabolites required for growth. Central 

energy metabolism enzymes are situated between catabolism and anabolism, and are responsible for generating energy and 

precursor metabolites.  

 We determined the number of transcriptional regulators (TFs and σ-factors, separately) controlling target genes coding for 

enzymes in the three distinct metabolic subsystems in B. subtilis and E. coli (Figure 7 and Table S5).  We did not find differences 

 



 

in the average number of σ-factors controlling target genes coding for enzymes in the three distinct metabolic subsystems in the 

two organisms (Figure 7 and Table S5). Hence, the three distinct metabolic subsystems (catabolism, anabolism and central energy 

metabolism) do not appear to be differentially regulated by σ-factors in the two organisms. However, we did find difference in the 

average number of TFs controlling target genes coding for enzymes in the three distinct metabolic subsystems in both organisms 

(Figure 7 and Table S5). The average number of TFs controlling target genes coding for anabolic enzymes is very low in both B. 

subtilis and E. coli (Figure 7 and Table S5). Thus, anabolism is least tightly regulated in both organisms. In B. subtilis, the average 

number of TFs controlling catabolic enzymes is higher than that for central energy metabolism enzymes, while in E. coli, the 

average number of TFs controlling catabolic enzymes is lower than that for central energy metabolism enzymes (Figure 7 and 

Table S5). Thus, in both organisms, catabolic and central energy metabolism enzymes are more tightly regulated than anabolic 

enzymes.  

 Our analysis of regulation of distinct metabolic subsystems in B. subtilis and E. coli was inspired by similar investigation by 

Seshasayee et al37 in E. coli. Seshasayee et al37 use the TRN of E. coli from an earlier version of RegulonDB38 for their study 

while we used the latest version of RegulonDB24. However, consistently with Seshasayee et al37 we found that in E. coli, anabolic 

enzymes are least regulated by TFs, followed by catabolic enzymes and then by central energy metabolism enzymes (Figure 7 and 

Table S5).  

 We found that the regulation of three distinct metabolic subsystems in B. subtilis and E. coli do not match in the order for 

catabolic and central energy metabolism enzymes (Figure 7 and Table S5). In B. subtilis, the average number of TFs controlling 

catabolic enzymes is slightly higher than that for central energy metabolism enzymes. However, in E. coli, the average number of 

TFs controlling catabolic enzymes is much less than that for central energy metabolism enzymes. Since the TRN of B. subtilis and 

its metabolism are much less characterized than those of E. coli, it is possible that future expansion in the TRN of B. subtilis may 

lead to a different conclusion. Based on this analysis, we can also advise future curators of the TRN of B. subtilis to strategically 

focus on filling knowledge gaps in regulation of central energy metabolism genes. 

Conclusions 

We have compared the hierarchical structure of the transcriptional regulatory networks (TRNs) of two evolutionarily distant 

bacteria, B. subtilis and E. coli, which have similar genome sizes but different life styles. We have first determined the extent of 

the hierarchical organization of the TRNs using a range of recently proposed measures, including Treeness, Feedforwardness and 

Orderability25. We have then combined decomposition approaches19, 20 to classify the transcriptional regulators in the TRNs of B. 

subtilis and E. coli into three distinct hierarchical levels (Top, Middle and Bottom), and studied in detail the enrichment of several 

structural and functional properties across them.  

 A novel aspect of this study is represented by the use of σ-factors to dissect their role in determining the architecture of the 

TRNs of B. subtilis and E. coli. One could expect that a network without σ-factors would be mostly context-independent with loss 

of selectivity and specificity brought via σ-factors in the complete network. Yet, we have found that even without σ-factors the 

TRNs of the two organisms that we considered largely retain several of the structural and functional features studied here. We 

have also found, however, that the dissimilarities in the enrichment of specific properties can be explained by differences in the 

distributions of σ-factors across the hierarchical levels in the two organisms. 

 Our study of two evolutionary distant bacteria therefore underscores the universality in the design principles of bacterial 

regulatory networks by identifying some aspects of the large-scale organization of TRNs into inherent hierarchical structures 

where transcriptional regulators across different hierarchical levels have distinct structural and functional properties. Taken 

together these results suggest that the observed hierarchical architecture of TRN may represent a very effective organization for 

transcription regulation even when bacteria need to respond to only limited stimuli.    

 



 

Methods 

Datasets  

Transcription Regulatory Network 

The TRN of B. subtilis was obtained from the recent reconstruction by Freyre-Gonzalez et al23 which is a curated database of 

regulatory interactions with strong evidence from DBTBS version 201039. In this work, we excluded the ncRNA (e.g., sRNA, 

tRNA, rRNA, misc_RNA) and their regulatory interactions from TRNs. After excluding ncRNA and their interactions from the 

Freyre-Gonzalez et al23 reconstruction, we obtained a TRN of B. subtilis with 140 transcriptional regulators (126 TFs, 14 σ-

factors), 1594 (protein coding) genes and 2976 interactions (Tables S1). The TRN of E. coli was extracted from RegulonDB24 

database. After excluding ncRNA and their interactions in RegulonDB24, we obtained a TRN of E. coli with 202 transcriptional 

regulators (195 TFs, 7 σ-factors), 3073 (protein coding) genes and 7977 interactions (Table S1). We converted the common names 

of protein coding genes in the TRNs of B. subtilis and E. coli to their unique numeric identifiers, BSU- and b- numbers, 

respectively. 

 An important aspect of this study is to investigate the role played by σ-factors in organization of TRNs in B. subtilis and E. 

coli. Hence, we studied the TRNs of B. subtilis and E. coli with and without σ-factors. The TRN of B. subtilis without σ-factors 

contains 126 TFs, 1054 genes and 1478 interactions and the TRN of E. coli without σ-factors has 195 TFs, 1643 genes and 4155 

interactions (Table S1). Regulatory interactions in the TRNs of B. subtilis and E. coli with and without σ-factors are available in 

Tables S6-S9.   

Orthologous genes 

Orthologous genes in different species are genes that have descended from a common ancestral sequence and are a signature of 

evolutionary conservation. We extracted the list of orthologous genes in B. subtilis and E. coli genome from KEGG32, 33 database. 

Two-component regulatory systems 

Two-component regulatory systems are mostly composed of a sensory kinase and a response regulator35. We compiled the set of 

known two-component regulatory systems in B. subtilis and E. coli from primary literature and several publicly accessible 

databases including P2CS40, KEGG32, 33, and Subtiwiki41. Our list of known two-component regulatory systems accounted for 75 

and 63 genes in B. subtilis and E. coli, respectively. 

Classification of target genes into different metabolic subsystems 

Metacyc36 database has classified genes in different organisms including those in B. subtilis and E. coli into different pathways. 

Metacyc36 has grouped different metabolic pathways into three broad categories, namely, “Degradation/Utilization/Assimilation”, 

“Biosynthesis” and “Generation of Precursor Metabolites and Energy”. We used metabolic pathways in Bsubcyc36 and Ecocyc36 

within Metacyc to classify enzyme coding target genes in the TRNs of B. subtilis and E. coli into the three broad categories that 

correspond to Catabolism, Anabolism, and Central Energy Metabolism. We excluded enzyme coding genes that appear in multiple 

categories (Table S4).  

Hierarchical decomposition of transcriptional regulatory networks  
We obtained the hierarchical decomposition of the TRNs of B. subtilis and E. coli into different levels as follows. At first, we 

determined genes with no outgoing edges in the directed graph associated with the TRN and assign them as target (TG) genes. 

Target genes predominantly code for metabolic enzymes. We then excluded target genes along with their edges from the TRN to 

obtain the key smaller network containing only interactions among transcriptional regulators9, 19, 20. We then identified strongly 

connected components (SCCs) in the directed graph associated with the smaller network containing only interactions among 

 



 

transcriptional regulators and collapse each SCC into a super node. The edges to (from) the genes in each SCC in the network are 

replaced by edges to (from) the corresponding super node to obtain a directed acyclic graph (DAG). Following Bhardwaj et al20, 

we then classified the transcriptional regulators in the DAG into three levels based on connectivity: Nodes with no incoming edges 

(except self-regulation) in the DAG were assigned to the Top (T) level, nodes with no outgoing edges (except self-regulation) in 

the DAG were assigned to the Bottom (B) level, and the remaining nodes with both incoming and outgoing edges in the DAG 

were assigned to the Middle (M) level. Hence, the hierarchical decomposition of TRN classifies genes into four different levels: 

Top (T), Middle (M), Bottom (B) and Targets (TG) with first three levels corresponding to transcriptional regulators (Table S2). 

Note that our method of hierarchical decomposition of TRN into the four different levels differs from that followed by Bhardwaj et 

al20 in following respect. Bhardwaj et al20 do not construct DAG before assigning nodes to the Top, Middle and Bottom levels. 

However, we followed Jothi et al19 to construct DAG before assigning nodes to the Top, Middle and Bottom levels. Hence, we 

allowed the possibility of genes in SCC to be assigned to the Top, Middle and Bottom levels in contrast to Bhardwaj et al20.  

 We also applied the vertex-sort algorithm19, 42 to determine the number of actual levels in the TRNs of B. subtilis and E. coli. 

Leaf-removal procedure within the vertex-sort algorithm19, 42 can be used to decompose nodes into different levels in two different 

ways: Top-down and Bottom-up hierarchy. We determined the number of actual levels in both the Top-down and Bottom-up 

hierarchal decompositions of the TRNs of B. subtilis and E. coli (Table S1).  

Statistical significance 
To reveal the enrichment of specific properties (e.g. hubs, bottlenecks, degree of collaboration) of transcriptional regulators at 

different levels of hierarchy in B. subtilis and E. coli, we compared the value for the TRNs that we studied against randomized 

counterparts which preserve in- and out-degree at each gene in the network. The expected value of given properties of 

transcriptional regulators at different levels of hierarchy for randomized networks is shown as a dashed black line in our figures 

(Figure 2). For some properties (e.g. composition of FFLs), we reported also the Z-score to quantify the level of significance based 

on the comparison between values in the TRNs against the mean values and standard deviations in their randomized counterparts. 
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Figure 1: Hierarchical decomposition of transcriptional regulators into Top, Middle and Bottom levels in the TRN of B. subtilis with 
σ-factors. The network of transcriptional regulators has a pyramidal structure, where the largest strongly connected component (LSCC) of 6 
nodes (encircled with red dashed oval) lies at the Top level of the hierarchy. Transcriptional regulators in the Top, Middle and Bottom levels 
of hierarchy are shown in Red, Green and Blue, respectively; transcription factors (TFs) are depicted as circles and σ−factors as squares. The 
network visualization was obtained by using Cytoscape43. 

  

 



 

 
 

 

Figure 2: Enrichment of structural and functional properties in the different levels of hierarchy in the TRNs of B. subtilis and E. coli. 
(A) Number of targets (out-degree); (B) Distribution of hubs; (C) Betweenness centrality; (D) Distribution of bottlenecks; (E) Degree of 
collaboration; (F) Evolutionary conservation of transcriptional regulators between B. subtilis and E. coli. The expected values of the given 
properties of transcriptional regulators at different levels of hierarchy for randomized networks are shown as dashed black lines. 

  

 



 

 

 
 
Figure 3: Out-degree of σ-factors in the TRNs of B. subtilis and E. coli. Vertical bars for σ-factors in the Top, Middle and Bottom levels 
of the hierarchy are shown in Red, Green and Blue, respectively. Insets zoom on to σ-factors with small out-degree. σ-factors in B. subtilis 
are scattered across all three levels of the hierarchy, whereas in E. coli almost all the σ-factors are in the Middle level. The σ-factor RpoD 
(BSU25200 in B.subtilis and b3067 in E. coli) has the maximum number of targets (out-degree) in both organisms, but occurs in the Top 
level in B.subtilis and in the Middle level in E. coli.  

  

 



 

 
 
Figure 4: Extent of intra- and inter-level pair coregulatory partnerships of and between different levels of hierarchy in the TRNs of 
B. subtilis and E. coli. (A) TRNs with σ-factors; (B) TRNs without σ-factors. The average degree of pair collaboration is highest at the 
Middle-Middle followed by the Top-Middle in all cases, except for the TRN of E. coli with σ-factors.  

  

 



 

 

Figure 5: Composition of feed forward loops (FFLs) for genes from different levels of hierarchy in the TRNs of B. subtilis and E. coli. 
Top level and Bottom level regulators appear more often in FFLs in the TRN of B. subtilis while Middle level regulators appear more often 
in FFLs in the TRN of E. coli. 

   

 



 

 

Figure 6: Distribution of two-component regulatory system genes in different levels of hierarchy in the TRNs of B. subtilis and E. 
coli. (A) TRNs with σ-factors and (B) TRNs without σ-factors. The Middle level is enriched in two-component system transcriptional 
regulators in both the TRNs of B. subtilis and E. coli. 

  

 



 

 
 
Figure 7: Regulation of enzymes in distinct metabolic subsystems by transcriptional regulators. (A) B. subtilis and (B) E. coli. The 
regulation of enzymes in distinct metabolic subsystems is shown separately for transcriptional regulators (TRs), transcription factors (TFs) 
and σ-factors. Anabolic genes are the least regulated ones in both organisms. 
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