See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/301942375

Comparative Proteomic Analyses of Avirulent, Virulent, and Clinical Strains of Mycobacterium tuberculosis Identify Strain-specific Patterns

Article *in* Journal of Biological Chemistry · May 2016 DOI: 10.1074/jbc.M115.666123

CITATIONS	5	READS	
48		300	
11 autho	ors, including:		
	Shilpa Jamwal		Haroon Kalam
	Translational Health Science and Technology Institute	AL AL	Broad Institute of MIT and Harvard
	15 PUBLICATIONS 663 CITATIONS		36 PUBLICATIONS 383 CITATIONS
	SEE PROFILE		SEE PROFILE
	Divya Arora		
	University of Cambridge		
	11 PUBLICATIONS 359 CITATIONS		
	SEE PROFILE		

Comparative proteomic analyses of avirulent, virulent and clinical strains of Mycobacterium tuberculosis identifies strain-specific patterns

Gagan Deep Jhingan^{\$1}, Sangeeta Kumari^{\$1}, Shilpa V. Jamwal³, Haroon Kalam², Divya Arora¹, Neharika Jain², Lakshmi Krishna Kumaar⁴, Areejit Samal⁴, Kanury V. S. Rao², Dhiraj Kumar² and Vinay Kumar Nandicoori^{*1}

¹ National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India ² Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067

³ Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, 121004.

⁴The Institute of Mathematical Sciences, Chennai, India

Running Title: Strain-specific protein expression profiles in Mtb

*Address correspondence to: <u>vinaykn@nii.ac.in</u>, Tel: +91-11-26703789, Fax: +91-11-26742125 *Contributed equally to this work*

Keywords: mycobacteria, *Mycobacterium tuberculosis*/proteomics/protein expression / virulence factor

Mycobacterium tuberculosis (Mtb) is an adaptable intracellular pathogen, existing in both dormant as well as active diseasecausing states. Here we report systematic proteomic analyses of four strains - H37Ra, H37Rv, and clinical isolates BND and JAL, to determine the differences in protein expression patterns that contribute to their virulence and drug resistance. Resolution of lysates of the four strains by liquid chromatography, coupled to mass spectrometry analysis identified a total of 2161 protein groups covering ~54% of the predicted Mtb proteome. Label-free quantification analysis of the data revealed 257 differentially expressed protein groups. The differentially expressed protein groups could be classified into seven K-means cluster bins, which broadly delineated strain-specific variations. Analysis of the data for possible mechanisms responsible for drug resistance phenotype of JAL suggested that it could be due to a combination of overexpression of proteins implicated in drug resistance and the other factors. Expression pattern analyses of transcription factors and their downstream targets demonstrated substantial differential modulation in JAL, suggesting a complex regulatory mechanism. Results

showed distinct variations in the protein expression patterns of *Esx* and *mce1* operon proteins in JAL and BND strains, respectively. Abrogating higher levels of ESAT6, an important Esx protein known to be critical for virulence, in JAL strain diminished its virulence, while it had marginal impact on the other strains. Taken together this study reveals that strainspecific variations in protein expression patterns have meaningful impact on the biology of the pathogen.

The ability of a pathogen to survive under harsh conditions within the host is connected to its ability to modulate host cellular processes to its advantage. Advent of multiple-drug resistant (MDR) and extensive drug resistant (XDR) *Mtb* strains are a major global heath concern, compromising the existing therapy (1-3). Despite the best efforts, the mechanisms underlying pathogenesis, virulence, and persistence of Mtb infection associated with the drugresistance strains is not verv well understood. The identification of virulence factors that are required for disease progression is critical to understanding the biology of infection.

The availability of whole genome sequences of different Mtb strains (4-6) has genome-wide comparisons enabled to identify the presence of deletions or gene mutations that correlate with virulence (7). In recent years systems biology approaches, which study complex interactions have been successfully applied to predict the networks and dynamic interactions between pathogen and host (8,9). Various genome-wide studies comparing drug-sensitive and drug-resistant mycobacterium strains have identified multiple SNPs related to DNA repair, replication and recombination genes, thereby providing insights into the genetic basis of drug resistance (10-13). Transcriptomics analysis of MDR strains in comparison with drug-sensitive strains have highlighted the role of altered gene expression of type II fatty efflux acid synthases, genes, central metabolic members, pathway ABC transporters and genes related to stress response (14-17).

Quantitative protein expression profiling has proven to be a useful method in understanding how mycobacterial species adapt to different stress conditions. Previous studies have utilized differential growth conditions in vitro to mimic stress conditions, and identified cellular markers for these stress conditions with the help of two dimensional gel electrophoresis (2-DE) based approaches (18-21). 2-DE based approaches have also been used to identify strain-specific differences among virulent and avirulent strains of *Mtb* (18,19,22,23). With advances in technology differential proteomic analysis has emerged as a valuable tool in generating large datasets to elucidate complex biological systems (24-26). Quantitative proteomics have highlighted studies differential expression of proteins among Mtb strain H37Rv and M.bovis BCG, particularly in relation to lipid biosynthesis pathways (18,27) as well as during different phases of growth, and nutrient starvation (28-30). In a related study, quantitative proteomic analysis with the help of dimethyl labeling was utilized to investigate the carbon assimilation process in M. smegmatis (31). Using a combination of discovery and approaches targeted Selected Reaction Monitoring (SRM) based

Mtb proteome library was recently generated to accurately quantitate the proteins of *Mtb* insert strain name and related clinical strains (32). Despite several reports regarding the *Mtb* proteome, very few proteomic studies have been performed on drug-resistant clinical strains (33).

While efforts have been focused on identifying secreted as well as intracellular mycobacterial proteins, less attention has been paid towards comparing the protein profiles of clinical isolates with commonly used laboratory-adapted strains such as H37Rv. The present report details the results of a systematic whole cell proteome analysis of laboratory avirulent strain H37Ra, laboratory virulent strain H37Rv, single-drug resistant clinical isolate BND-433 and multidrug resistant clinical isolate JAL-2287.

Material & Methods

Bacterial growth conditions

All the bacterial strains [H37Rv (Rv), H37Ra (Ra), BND-433 (BND) and JAL-2287 (JAL)] used in the study were grown in Middlebrook 7H9 media (Difco) supplemented with 0.2% (v/v) glycerol, 10%albumin dextrose-catalase (ADC) and 0.05% Tween 80 at 37°C. Cells were harvested at middle-late log phase ($A_{600} \sim 1$ to 1.5) and bacterial pellets were washed twice with TBST (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1% Tween 20) and once with TBS (20 mM Tris-HCl pH 7.5, 150 mM NaCl) and stored at -80°C.

In order to monitor the growth of mycobacteria in different growth media 10 x10⁶ bacteria/ml for each strain were washed with PBS (20 mM Phosphate buffer pH 7.4, 150 mM NaCl) and added to two different carbon source (0.05% Oleic acid or 0.05% Cholesterol) supplemented 7H9 growth media formulation. Alamar Blue (0.01%) (Life Technologies) was added to these cultures and the reduction of Alamar Blue was monitored from 0-30 h by measuring the absorbance according to manufacturer's instructions.

Sample preparation

Cell pellets were resuspended in lysis buffer (8 M urea in 25mM ammonium bicarbonate) supplemented with complete protease and phosphatase inhibitor cocktail (Roche). The cells were lysed within a bead beater with the help of 0.1 mm zirconium beads. The cells were disrupted in a Mini bead-beater for 10-12 cycles (45 sec. pulse with 60 sec incubation). Lysates were clarified by centrifugation and the concentrations were determined by Bradford assay (Biorad).

50 µg of the sample was first reduced with 5 mM TCEP and further alkylated with 50 mM iodoacetamide. The samples were diluted to 1 M final urea concentration with 25 mM ammonium bicarbonate buffer and digested with trypsin (1:50, trypsin:lysate ratio) for 16 h at 37°C. Digests were cleaned up using C18 silica cartridge (The Nest Group, Southborough, MA) according to the manufacturer's protocol and dried using speed vac. The dried pellet was resuspended in buffer A (5 % acetonitrile / 0.1% formic acid).

Mass Spectrometric analysis of peptide mixtures

All the experiments were performed using EASY-nLC system (Thermo Fisher Scientific) coupled to LTQ Orbitrap-velos mass spectrometer (Thermo Fisher Scientific) equipped with nanoelectrospray ion source. 1 µg of the peptide mixture was resolved using 10 cm PicoFrit Self-Pack microcapillary column (360 um OD, 75 um ID, 10 um tip) filled with 5 µm C18-resin (Magic). The peptides were loaded with buffer A and eluted with a 0-40% gradient of Buffer B (95% acetonitrile/0.1% formic acid) at a flow rate of 300 nl/min for 120 min. This was followed by a 10 min gradient of 40-80%, 20gradient of 80-90% and finally min equilibrated with buffer A for 30 minutes.

The Orbitrap-velos LTQ was operated using the Top10 HCD (High/High) data-dependent acquisition mode (34) with a full scan in the Orbitrap and a MS/MS scan in the HCD. The target values for the full scan MS spectra were set at 1 x 10⁶ charges with maximum injection time of 200 ms and a resolution of 30,000 at m/z 400. MS/MS scans were acquired at a resolution of 7500 at m/z 400 with an ion target value of 1 x 104 with a maximum injection time of 200ms. Lock mass option was enabled for polydimethylcyclosiloxane (PCM) ions (m/z = 445.120025) for internal recalibration during the run.

Data processing

Four biological replicates were processed for each strain and the 16 RAW files generated were analyzed with MaxQuant (version. 1.4.1.2) against the *Mtb* uniprot reference proteome database (www.uniprot.org). For Andromeda search, the precursor and fragment mass tolerances were set at 10 ppm and 0.5 Da, respectively. The protease used to generate peptides i.e. enzyme specificity was set for Trypsin/P along with maximum missed cleavages value of two. Carbamidomethyl (C) on cysteine as fixed modification and oxidation (O)of methionine and N-terminal acetylation were considered as variable modifications for database search. The settings also included reverse sequences of database and in built 247 contaminants in default settings of Maxquant. For peptide identification a peptide posterior error probability (PEP) threshold of 0.05 was specified. Both PSM and protein FDR was set to 0.01. Default settings were applied for all other parameters.

For quantitative comparison among the biological replicates of the four strains label free quantification with "match between runs" option was utilized within the Maxquant suite with standard settings for generating the peak lists from 16 raw files (Xcalibur, ThermoFisher Scientific) with retention time alignment window of 1 min. Protein groups were created by default settings of Maxquant in case the peptide sets were common among multiple proteins. For dynamic range estimation iBAQ analysis was also performed with default settings.

Bioinformatics analysis

Bioinformatics analysis was performed using Perseus software. Uniprot annotation for Mtb reference proteome database was utilized for GO classification of all the identified proteins. Custom made perl scripts were utilized for correlating mycobacterium uniprot identifiers with (http://tuberculist.epfl.ch/) tuberculist database protein entries. Z-score

normalization was performed on the log2 transformed LFQ values obtained from label free quantification analysis. The 16 samples were divided into four strain groups and ANOVA test was performed with Benjamini hochberg correction. ANOVA significant proteins were utilized for Hierarchical clustering analysis. Principal Component Analysis (PCA) was performed using ggbiplot package in R (3.1.0) whereas Kmeans clustering was performed using the Past analysis tool. Different graphics were generated using a combination of R (3.1.0 version), Graphpad and Excel software. "The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (35) via the PRIDE partner repository with the dataset identifier PXD001188".

ESAT-6 antibody treatment

x10⁶ for 10 bacteria each mycobacterial strain were washed with PBS and either treated with ESAT-6 antibody (ab26246) or not treated for 45 minutes at RT. Untreated and ESAT-6 antibody treated cultures were processed for infection of PMA differentiated THP-1 cells at an MOI of 10. Infection was maintained at 37°C in CO₂ incubator for 4 h followed by 2 h amikacin treatment to remove any extracellular bacteria. Infected cells were washed with RPMI followed by lysis using 0.06% SDS and plated on 7H11 agar plates to determine the CFU's. 15 days post plating CFU's for each strain were counted and averaged between multiple sets.

Results

Proteome analysis of virulent and avirulent Mtb strains

BND433 and JAL2287 strains are CAS clade clinical strains that are resistant either to only streptomycin or streptomycin, isoniazid and rifampicin, respectively (36). Prior to proteomic analysis of the four strains, we monitored their growth profiles in 7H9 medium every 24 h over 8 days. The growth profiles for all four strains were found to be similar till Day 5 (Fig 1A). In order to perform comparative proteomics analysis, cells were harvested on Day 3 and four biological replicates for each strain were

processed using the proteomic workflow shown in Fig 1B. The raw files were searched against Uniprot *Mtb* reference proteome database and a total of 2161 protein groups were identified with high confidence using 1% protein and peptide FDR cutoff (Sup Table 1, 2 and 3). The identified proteins covered ~54% of the predicted *Mtb* proteome, with each run identifying between 1700-1900 protein groups (Fig 1C). Comparative analysis of the protein groups of Rv, Ra, BND and JAL strains revealed 13, 12, 13 and 22 strain-specific protein groups respectively (Fig 1D). Among them 3, 2, 3 and 18 protein groups were detected in at least two biological replicates of the particular strain respectively, and not in the others (Sup Table 4).

To categorize proteins according to their functional relevance we first organized the Mtb database proteins (a total of 4031 proteins) into functional categories as per the tuberculist classification (http://tuberculist.epfl.ch/; Fig 1E). The highest number of proteins were conserved hypotheticals, cell wall and cell processesrelated, and those involved in intermediary metabolism and respiration (Fig 1E). The 2161 proteins identified in the proteome as part of this study were distributed over all the functional categories, with the majority of the proteins belonging to the categories of intermediary metabolism and respiration (31%), conserved hypotheticals (22.2%) and cell wall and cell processes-related (17.2%), constituting ~66% of the total identified proteome (Fig 1F). To examine the coverage of the proteome obtained in each functional category, we compared the identified proteins with the proteins annotated in that particular tuberculist functional group. Highest coverage was observed in the larger tuberculist functional categories (Fig 1F).

Relative protein quantification

In order to estimate the abundance of identified proteins, intensity-based absolute guantification (iBAQ) was carried out using MaxQuant software package. This method takes into consideration the summation and normalization of MS signals based on peptide size, length, and number of theoretical peptides possible for all the proteins identified in a particular proteome run (26,37). The iBAQ intensity in the composite proteome spanned a dynamic range of 6 orders of magnitude between the most and least abundant proteins (Fig 2; Sup Table 5). The most abundant proteins thus identified were chaperones, elongation factors, ribosomal proteins, chromosomal architectural proteins and secretory proteins. Many of these protein families such as heat proteins shock (including chaperones), ribosomal proteins and ribosomal highly translational machinery, are expressed in several organisms including mycobacterial species (37,38). Plotting all the identified proteins on the iBAQ protein abundance scale indicated that the majority of strain-specific proteins (Sup Table 5) were present in the low abundance range. However, some JAL-specific proteins were found in the moderate abundance range.

Label-free quantification (LFO) methodology was used to compare the levels of identified proteins among the four strains (39). In order to cross-compare the reproducibility of results across the biological replicates a correlation matrix was generated (Sup Fig 1A). The Pearson correlation of 0.8-0.9 among the biological replicates suggested low variance and high reproducibility, and these multiple scatter plots also showed larger spread of LFQ values in the inter-strain comparison. Among the 2161 proteins identified in the composite proteome, we were able to quantify 1348 proteins after application of LFQ (Fig 3A; quantification values from 16 samples; minimum row filter ≥ 8). Further box plots Z-score after median generated normalization of these 1348 proteins also showed high reproducibility among the biological replicates (Sup Fig 1B).

The proteome of the JAL strain is significantly different from Ra, Rv and BND

To investigate differential expression among the four strains, we applied Benjamini-Hochberg correction for multiple hypotheses testing using one-way analysis of variance (ANOVA) test with a cut off value 0.05 (Fig 3A). Among the 257 differentially modulated proteins (Sup Table 6) a majority of the proteins belonged to categories of intermediary metabolism and respiration (33%), lipid metabolism (17.1%), cell wall and cell processes-related (14%)and conserved hypotheticals (14%), with ~10% belonging to the category of information processing pathways (Fig 3B). Sup Table 7A and B show the summary of statistical variations among the biological replicates in the 257 ANOVA significant protein groups. These 257 protein groups were further subjected to unsupervised hierarchical clustering, and the resulting clustergram is shown in Fig 3C (left panel). Scrutiny of the clustergram indicated that the large numbers of proteins are either up or down regulated in JAL strain when compared with the remaining three strains. The two major clusters of proteins displaying prominent up and down-regulation in the JAL strain were further arranged as profile plots (Fig 3C; right panel).

To validate the results obtained using the above workflow we selected CFP-10, ESAT-6, L-ADH and GroEL1 as test proteins in Western blot analyses of whole cell lysates. While L-Alanine dehydrogenase (L-ADH; belonging to the category of intermediary metabolism and respiration) is down regulated in JAL, the secretory protein CFP-10 and ESAT6 were up-regulated in JAL (Fig 4A). The Mtb housekeeping protein GroEL-1, a primary chaperonin, which showed minimal variations across the strains, was selected as controls. We found that while the GroEL1 expression pattern was similar across all the four strains, L-ADH expression was lower in JAL compared with the other strains and CFP-10 and ESAT6 expressions were considerably higher (Fig 4B). Thus, the expression profiles detected by western blots were found to be reasonably consistent with the results obtained with LFO quantification, validating our experimental approach.

In general, the JAL strain displayed substantial differential regulation of proteins as compared to the other strains (Figs. 3C, 4A and 4B). Principal component analysis (PCA) was performed on the differentially regulated proteome data sets across the strains and replicates (Fig 4C). In keeping with the finding that there are a significantly higher number of differentially regulated proteins in JAL strain, on a principal component 2 (PC2) versus PC1 plot all the JAL replicates clustered diametrically opposite to the other three strains (Fig 4C). The first two principal components were most significant as together they captured more than ~62% of the variations in the data (Fig 4D). While each of the Ra and Rv replicates clustered in the same quadrant, BND replicates clustered in the adjacent quadrant (Fig 4C).

We classified the proteins into strain specific ellipses, encircling molecules with significant projections on respective principle components. Molecules showing significant projections in JAL clustered together in the PC2 vs PC1 plot alongside its loading vectors (Fig 4C). Similarly, molecules showing significant importance in Ra clustered corresponding to its loading vectors. However molecular vectors for Rv and BND were relatively less clustered, spreading to the quadrants enriched with JAL specific molecular vectors (Fig 4C). This was an interesting observation because the three strains other than Ra are virulent, and it that in keeping with appears this commonality they share features despite inherent variations. Interestingly, a set of proteins from the BND cluster was placed outside the BND ellipse. These belonged to the *mce1* operon, consisting of genes regulation of involved in the lipid metabolism in Mtb (40). This feature distinguished BND from the other three strains.

K-means cluster analysis

We next performed k-means cluster analysis on the set of ANOVA-significant 257 proteins. K-cluster typically brings proteins having similar expression pattern together and allows functional enrichment analysis to understand the consequences of the observed expression pattern. We decided to use 7 bins for the k-cluster analysis, partly based on empirical observation of distinct clusters in the clustergram shown in Fig 3C. The k-bin specific expression patterns of constituent proteins are shown in Fig 5 and Sup Table 8. Analysis of cluster-specific profiles revealed interesting patterns. For example, all the 45 proteins (Sup Table 8A) present in cluster 1 were up regulated in JAL and down regulated in the other three strains (Fig 5). Proteins in cluster 2 and 5 showed prominent down regulation in H37Ra. While we observed a significant up-regulation of proteins in JAL in cluster 2, in cluster 5 a comparable expression of proteins was observed in JAL, BND and Rv. Cluster 3 contained 17 proteins, which specifically showed lower expression in BND compared to the other three strains (Fig 5). Both Cluster 4 and 6 showed down-regulation of proteins in JAL strain. Proteins present in cluster 4 showed highest expression in Ra and moderate expression in Rv strain, with low expression in BND and lowest in JAL strain (Fig 5).

Next we addressed the question of whether strain-specific clusters were also enriched in proteins of specific functional categories. Figure 6A shows classification of proteins present in each of the 7 clusters into different functional classes. The percentage distribution of these functional categories is shown in Figure 6A. This analysis yielded a few puzzling revelations. For example, cluster 5, whose proteins showed significant down regulation in JAL compared to other strains, had maximum number of genes belonging to lipid metabolism, intermediary metabolism and hypoxia which are considered to be critical for improved survival of pathogen in host (41). In contrast cell wall-related proteins in clusters 1 and 2 were up regulated in JAL. Notably, we observed that seven members of the Esx family were also part of clusters 1 & 2 (Fig 5 and Sup Table 8A). Surprisingly we observed only 10 protein groups among the 257 that have shown similar expression patterns between JAL and BND strains (Sup Table 8B). We also observed the down regulation of the *mce1* operon proteins in cluster 3, in the single drug resistant BND strain in comparison with other strains, suggesting a possible compromise in lipid homeostasis. Thus K-cluster analysis provided a glimpse the strain specific protein profile of variations, which can be used to address the differential behavior of these strains in terms of virulence, survival and drug resistance.

Strain-specific protein expression profiles in Mtb

Metabolic network analysis

From the list of enriched functional categories across the 257 differentially expressed protein groups reported in Fig. 2B, it was evident that a significant fraction of differentially expressed proteins are metabolic enzymes. Thus, we decided to overlay the set of differentially expressed proteins on to the most recent genome-scale metabolic network reconstruction iOSDD890 for Mtb (42). We found that 90 out of the 257 differentially expressed proteins were enzymes catalyzing reactions the in metabolic model iOSDD890, and these 90 differentially expressed enzymes participate in reactions that belong to 29 different subsystems or metabolic pathways (Sup Table 9). From the classification of the 90 differentially expressed enzymes into different subsystems of the metabolic network (Sup Table 9), we find that 5 out of 7 differentially expressed proteins in the subsystem 'Membrane metabolism' and 4 out of 5 differentially expressed proteins in the subsystem 'Redox metabolism' are upregulated in the JAL strain (Sup Table 9).

Moving on to the lipid metabolism, there are 12 differentially expressed proteins across the four Mtb strains in the subsystem 'Beta oxidation of fatty acids' (Sup Table 9 and Fig 6B), of which only 1 protein is downregulated in Rv strain while 6 proteins were downregulated in JAL strain. At first glance, from the comparative analysis of the total number of down regulated proteins in the β -oxidation pathway across strains, it may seem that this pathway for utilization of fatty acids is down regulated in JAL compared to Rv (they all belong to cluster 6 in Fig 5). But the β -oxidation pathway is highly redundant with several genes in the Mtb genome encoding each of the four enzymes catalyzing the four reactions in the subsystem (Fig 6B), and any conclusions on differential activity of this pathway must be drawn in the light of the underlying redundancy in the system. On closer examination, we found that although 6 differentially expressed proteins in the βoxidation pathway were down regulated in JAL strain, there was at least one protein associated with each of the four reactions in the pathway that was up regulated in the JAL strain (Fig 6B). Thus, by properly accounting for the redundancy in the β -oxidation pathway, we find that this pathway is not down regulated and compromised in JAL strain.

Differential modulation of transcription factors and their targets may contribute to the virulence of JAL.

As the data presented in Figures 4 and 6A revealed that in general protein expression was most differentially regulated in JAL among the strains being studied here. We considered the possibility of this occurring the enhanced/reduced via expression of specific transcription factors, which would result in an increased/decreased activation of the specific target genes. Thus we sought to investigate the expression patterns of transcription factors and their downstream the ANOVA-significant targets among proteins. Towards this we superimposed the expression data of the 257 differentially expressed proteins on two recently reported gene regulatory networks of Mtb (43,44). Analysis revealed a total of 12 of these to be transcription factors, with 7 being present in both the networks. Among the 12, with seven transcription factors being up-regulated and five down-regulated specifically in the JAL strain (Fig 8A). With the exception of transcription factors Rv3139c, Rv2989 and Rv3597c, we have either not found any or found only one or two targets for the remaining transcription factors among the 257 protein groups. Among the down regulated transcription factors the downstream targets of only one (Rv3139c/DosR) were found to be present in the galagan network (43), and these were also down regulated in JAL (Fig 7D). Among the up regulated transcription factors the downstream targets of only two, Rv2989 and Rv3597c (Lsr2), were a part of the group of 257 proteins. Among the eight downstream targets of Rv2989, seven were found to be significantly up-regulated in JAL while one showed relatively higher expression compared to Rv. Interestingly in the case of Lsr2 we observed a mixed pattern. At least 38 of the 601 targets of Lsr2 were either upor down-regulated in JAL. Lsr2 is known to

be a transcriptional repressor and this mixed expression pattern observed signifies the interplay of complex regulatory mechanisms. The overall expression patterns of these transcription factors and their corresponding targets are consistent with previous reports (45-48).

Distinct variations in expression of Esx contributes to the survival fitness of JAL.

Analysis of the data presented in Figures 4 & 5 suggested lower expression of the entire *mce1* operon consisting of genes in the regulation of lipid involved metabolism in Mtb in the BND strain (Fig 8A). This feature distinguished BND from the other three strains. Analysis of the 257 ANOVA-significant proteins showed that 10 proteins corresponding to the Esx family are up regulated in JAL compared with the other three strains (Fig 5 Cluster 1 and Fig 8B). Esx proteins are known to be critical for virulence, and their higher expression could be linked to the higher virulence of the JAL Since the analysis was performed strain. with the whole cell lysates, we sought to determine the levels of CFP10, ESAT6 and ADH in the culture filtrate fractions. As was the case with whole cell lysates (Fig 4A and B), ADH levels were observed to be lower in the culture filtrate fraction of JAL compared with the other strains (Fig 8C). In agreement with the analysis, the levels of CFP10 in the culture filtrate fraction of JAL were found to be significantly higher (Fig 8B and C). However, in the case of ESAT6 an additional band migrating above the ESAT6 band was observed in the JAL lane (Fig 8C), which could be due to some form of posttranslational modification. To confirm the identity of the additional band in a separate experiment, we aligned the membrane with the western blot and both the bands were excised separately from the membrane. Mass spectrometry analysis of the tryptic peptides obtained from the membrane identified ESAT6 as the major protein in both the bands (60% coverage; five peptides were identified in each case), thus confirming the identity (data not shown). Consistent with the analysis (Fig 8B), combined intensities of the both the bands of ESAT6 in JAL sample was higher compared with the other strains. Next

we sought to analyze if the elevated levels of Esx proteins in JAL provide any survival advantage. Towards this we performed ex vivo infections (THP1 cells) with all the strains and examined their survival post infection. As expected Ra strain showed compromised survival. Although BND showed marginally compromised survival at 24 h time point, overall trend of survival in the differentiated profile was very similar to Rv. In contrast JAL strain seems to have considerable advantage in the host at every time point (Fig 8D). Consistent with these results we observed higher bacillary count, even at 6 h post infection, in comparison with the other three strains in THP-1 cells infected with JAL strain 8E). If the higher bacillary count observed in JAL were to be due to higher levels of secretory proteins such as ESAT-6, then decreasing ESAT-6 levels could be expected to compromise the bacillary count. While pre-incubation of the bacteria with ESAT-6 antibody did not significantly alter the bacillary load in other strains, we observed an ~ 2.5 fold decrease in the bacillary load in the JAL strain (Fig 8E).

Possible mechanisms for drug resistance.

Drug resistance in *Mtb* can arise either due to modifications in the permeability barrier, up-regulation in the expression of efflux pump proteins or due to genetic alterations of the target site in the target proteins (49). BND strain is resistant to streptomycin and JAL strain is resistant to streptomycin, isoniazid and rifampicin (36). To determine the relevance of known efflux pump proteins in the drug resistance, we looked at the 257 ANOVA significant protein groups for their presence. With the exception of Rv1410c (50), a known drug efflux pump protein and Rv2564, a hypothetical protein with ABC like cassette, we did not find any other proteins with a transporter function. Both these proteins are down regulated in JAL2287 whereas mostly unaffected in the other three strains thus omitting the possibility of their involvement.

To gain further insights into the possible mechanisms for drug resistance phenotypes, we mined the literature for candidates that have been up or down regulated in drug resistant strains. We limited our analysis to proteins that are associated with streptomycin, isoniazid and rifampicin resistance among the 257 ANOVA significant protein groups. Unfortunately, the protein expression patterns for the streptomycin resistance phenotype of BND strain did not comply with the existing literature (Table 1). Thus we speculate that in case of BND strain, the resistance could be due to the genetic alterations or modifications in the permeability barrier. The data (Table 1) could be broadly divided into two groups. In the first group the previous observations in terms of regulation of a candidate protein were contrary to the protein levels observed in multi drug resistant JAL strain. These include the ABC transporter/efflux pump proteins, Rv3028 and Rv2933 (23,50,51). Rv2933 was identified to be up-regulated in a proteomic analysis of wild type and rifampicin resistant Beijing clinical strains (52). While we noticed upregulation of Rv2933 in JAL and BND compared with Rv strain, its levels were much higher in rifampicin sensitive Ra strain (Table 1). In the second group, the data from the literature was in agreement with the protein levels observed in JAL strain (Table 1). The quantitative proteomic analysis streptomycin resistant isolates of Mtb have shown decreased expression of Rv0824 and Rv3133 (DevR) (53). Down-regulation of DevR has also been implicated in the hypervirulence of *Mtb* resulting in early death of SCID mice (54). Interestingly, we observed significant down-regulation of Rv0824 and DevR in JAL strain, which may explain streptomycin resistance as well as phenotypes. hypervirulence Proteomic analysis of streptomycin or isoniazid resistant strains has revealed up-regulation of a number of proteins (23,51). Few among these proteins such as Rv2145c, Rv1240, Rv2971, Rv0560c and Rv1446c were significantly up-regulated in JAL strain (Table 1). Isoniazid was shown to induce the expression of propionyl-CoA carboxylase beta chain 6 (Rv2247) (15). Similarly, overexpression of isoniazid-induced protein (Rv0341-IniB) led to prolonged survival of an otherwise sensitive strain of Mtb even at inhibitory concentration of isoniazid (55). Both of these proteins were found to be upregulated in JAL compared with the other strains. Taken together, the isoniazid and streptomycin resistance phenotype of JAL strain could be due to the overexpression of multiple candidate proteins (Table 1). However, we have not found any such correlation rifampicin resistance for phenotype of JAL, which could either be due to altered permeability or genetic alterations. Thus we speculate that the multidrug resistance phenotype of JAL could be due to a combination of overexpression of proteins implicated in drug resistance (Table 1), genetic alterations and/or altered permeability.

Discussion

Here we report a comprehensive analysis of the proteomes of four different strains of mycobacterium that are avirulent laboratory strain, virulent laboratory strain, single-drug resistant clinical isolate and multi-drug resistant clinical isolate respectively. The depth of coverage of $\sim 54\%$ was achieved with a fairly simple proteomic workflow in a single run that did not involve labeling or pre-fractionation of peptides. Correlation analysis of the four biological replicates of each strain showed R-values greater than 0.82, confirming their suitability for further statistical analysis. Utilization of label-free quantification methodology to discover strain-specific proteomic differences revealed that 257 were differentially expressed among the four strains.

K-means cluster analysis of the 257 proteins suggested seven distinct expression patterns. Cluster 1 contained proteins such as regX1 (Rv0491), a constituent of the twocomponent regulatory system, as well as Rv2971 (probable oxidoreductase) that are highly expressed in isoniazid-resistant Mtb strains (23). Other interesting candidates were HtrA, serine protease (Rv1223; previously reported to be a major virulence factor of Streptococcus pneumoniae in an in *vivo* pneumonia model (56-58)), KasB subclinical (Rv2246; causes latent tuberculosis in immunocompetent mice (59-61)), Many of the proteins in the clusters 2 and 5 are related to ribosome biogenesis and energy generation. Rv1446 (OpcA) and Rv2145c (Wag31; plays a role in peptidoglycan synthesis and regulating cell shape and oxidative response) that are expressed in higher levels in isoniazidresistant strains are part of cluster 2 (23,62,63). The higher expression of these proteins in JAL compared with the other strains is consistent with its multi-drug resistance and implicates a role for these proteins in mediating cell survival under stress.

Interestingly, virulence-related proteins such Rv2780 (L-alanine as Rv0126 (treS), Rv2299c dehydrogenase), (htpG), two component system proteins like Rv0042c, Rv903c (prrA) and Rv3133c (devR), were present at lower levels in JAL. Lalanine dehydrogenase was the first antigen reported to be absent in the M. bovis BCG (vaccine strain) (18,64). Two component systems are studied well in multiple organisms and are known to coordinate gene expression under different environmental conditions (65,66). Most of the target genes of DosR were part of clusters 4 and 6. Down regulation of two-component signaling in JAL might suggest a role for two-component signaling in drug-resistance (45). While the identified sub-clusters only partially represent the global regulatory perturbations specific to any strain, a significantly higher flux through the regulatory network in case of JAL as compared to other three strains is certainly suggested by the higher magnitude of protein regulation in this strain.

Rv3597c (lsr2) is considered to be a global transcriptional regulator that represses a large number of virulence-related genes (46-48). A recent report has demonstrated the crucial role of lsr2 in hypoxia adaptation as well as persistent infection inside the host (67). In the present study most of the lsr2 targets were present in clusters 1 and 2, and a few of them in cluster 7. Our results show the up regulation of Lsr2 and Rv2989 and down regulation of DosR in JAL as compared to the other strains. A corresponding modulation of expression of a number of their targets was also observed. While it is tempting to directly correlate the expression of the target proteins those of the transcription factors that regulate them, one cannot rule out additional tiers of regulation.

Cluster 3 contained 17 proteins,

which showed low expression in BND and high expression in all the other three strains. Interestingly, proteins expressed by the *mce1* operon were found to be downregulated in the BND strain. The *Mtb* genome contains four mce operons, thought be important for replication in mice (68,69). The deletion of the mce1 operon from Mtb has earlier been shown to impact the lipid profiles and uptake of palmitic acid, and accumulation of more mycolic acids in comparison with the wild type (40). Cholesterol import and metabolism is dependent on the proteins encoded by the *mce4* operon (70). We performed experiments to determine if this difference would be reflected in the growth of the strains in different carbon source. While we observed slower growth of BND compared with the other strains in the early stages of growth, the differences in the growth were nullified when followed the growth for longer duration (data not shown). One possible explanation for this phenotype is that, although mce1 operon may be playing a role in adaption in the early stages of growth in the BND strain, alternate pathways (other *mce* operons) may be compensating for the down regulation of *mce1* operon in the later stages.

The difference in the virulence between H37Ra and H37Rv has been largely attributed to a point mutation in the twocomponent system protein PhoP, which is a transcription factor known to regulate a variety of genes including the genes in the esx1 locus (71,72). Comparison of secreted proteome from H37Ra and H37Rv using 2-D gel followed by mass spectrometry, showed several proteins with putative ESAT-6 like function to be present at higher levels in H37Rv compared with H37Ra (73). However, Frigui et al., showed complete loss of ESAT-6 secretion in the attenuated strain H37Ra (72). In yet another study, Malen et al., performed membrane proteomics of H37Ra and H37Rv and did not find lower expression of ESAT-6 in the membrane fraction (74). They did observed decreased expression of several of the PhoP target genes in their analysis. Interestingly, we did not observe significant difference in the cellular or secreted level of ESAT-6 in H37Ra compared with H37Rv. We followed Malen et al., strategy and looked at

the protein expression levels of PhoP direct targets. We could find 16 of those genes in our data set, most of which did not show any significant regulation in either H37Ra or H37Rv except for two of them (Rv2145c and Rv3881c (espB)), which showed significant down-regulation in case or H37Ra. EspB, a substrate of ESX-1, is known to be required for virulence and growth in macrophages (75).

The protein members of the ESX-1 family are potent T-cell antigens that play a critical biological role in interactions with host cells, and are thought to be important for virulence and pathogenesis (76-78). Since the ESX-1 machinery is up regulated in JAL compared with the other three strains, one would expect higher levels of ESAT6 and CFP10 proteins in the culture filtrate fraction. Consistent with the hypothesis that JAL may have higher ESX-1 activity, we observed higher levels of ESAT6 and CFP10 in the culture filtrate fraction (Fig 8B and C). In agreement with their proposed role in virulence and pathogenesis, JAL strain survival in PMA differentiated THP1 cells was higher than the other strains (Fig8D).

JAL strain seems to have advantage at every time point tested, indicating that the higher ESX-1 activity may be providing survival advantage to JAL compared with the other strains. Further, the survival advantage observed seems be dependent on ESAT-6 levels as pre-incubation with the ESAT-6 antibody significantly compromised the intracellular bacterial load (Fig 8E). Metabolic network analysis (Fig 6B, 6C and Sup Fig 9) revealed even though number of proteins associated with lipid metabolism are down regulated in JAL, there was at least one protein associated β -oxidation with each of the four reactions in the pathway that was up regulated in (Fig 6C). The fact that JAL has alternate pathways for lipid metabolism and has efficient ESX-1 secretion system would explain the survival advantage compared with other strains. Taken together, the data presented here illustrate the potency of proteomic approach to select candidates that are differentially expressed in clinical strains, the relevance of which can be characterized further using cell and molecular biology tools.

Acknowledgements

This work was supported by the funding provided by Department of Biotechnology, Government of India (BT/PR3260/BRB/10/967/2011) to VKN. GDJ is Wellcome DBT Early Career Fellow. We thank the Central Mass Spec facility of at NII and Mrs. Shanta Sen for her support in managing the facility. We thank Basanti Malakar for help in processing ESAT6 top and lower bands for mass spec.

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Author contributions:

GDJ, SK & VKN conceived and coordinated the study. GDJ and SK performed experiments, acquired, analyzed the data. DA performed growth curve and western blot analysis. SVJ and NJ performed and analyzed the experiment shown in Figure 8. KVSR analyzed the experiments in Figure 8 and helped in overall analysis. HK and DK analyzed the large-scale proteomic data. DK performed and coordinated the K-cluster and PCA analyses. AS and LK performed metabolic network analysis. GDJ, SK, AS, DK and VKN wrote the paper. All authors reviewed the results and approved the final version of the manuscript.

References:

- 1. Shah, N. S., Pratt, R., Armstrong, L., Robison, V., Castro, K. G., and Cegielski, J. P. (2008) Extensively drug-resistant tuberculosis in the United States, 1993-2007. *JAMA* **300**, 2153-2160
- 2. Keshavjee, S., Gelmanova, I. Y., Farmer, P. E., Mishustin, S. P., Strelis, A. K., Andreev, Y. G., Pasechnikov, A. D., Atwood, S., Mukherjee, J. S., Rich, M. L., Furin, J. J., Nardell, E. A., Kim, J. Y.,

and Shin, S. S. (2008) Treatment of extensively drug-resistant tuberculosis in Tomsk, Russia: a retrospective cohort study. *Lancet* **372**, 1403-1409

- 3. Prasad, R. (2010) Multidrug and extensively drug-resistant TB (M/XDR-TB): problems and solutions. *Indian J Tuberc* **57**, 180-191
- Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., 3rd, Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M. A., Rajandream, M. A., Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J. E., Taylor, K., Whitehead, S., and Barrell, B. G. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. *Nature* **393**, 537-544
- Cubillos-Ruiz, A., Morales, J., and Zambrano, M. M. (2008) Analysis of the genetic variation in Mycobacterium tuberculosis strains by multiple genome alignments. *BMC research notes* 1, 110
- Betts, J. C., Dodson, P., Quan, S., Lewis, A. P., Thomas, P. J., Duncan, K., and McAdam, R. A. (2000) Comparison of the proteome of Mycobacterium tuberculosis strain H37Rv with clinical isolate CDC 1551. *Microbiology* 146 Pt 12, 3205-3216
- 7. ten Bokum, A. M., Movahedzadeh, F., Frita, R., Bancroft, G. J., and Stoker, N. G. (2008) The case for hypervirulence through gene deletion in Mycobacterium tuberculosis. *Trends in microbiology* **16**, 436-441
- 8. Likic, V. A., McConville, M. J., Lithgow, T., and Bacic, A. (2010) Systems biology: the next frontier for bioinformatics. *Adv Bioinformatics*, 268925
- Dutta, N. K., Bandyopadhyay, N., Veeramani, B., Lamichhane, G., Karakousis, P. C., and Bader, J.
 S. (2014) Systems biology-based identification of Mycobacterium tuberculosis persistence genes in mouse lungs. *mBio* 5
- Galagan, J. E., Sisk, P., Stolte, C., Weiner, B., Koehrsen, M., Wymore, F., Reddy, T. B., Zucker, J. D., Engels, R., Gellesch, M., Hubble, J., Jin, H., Larson, L., Mao, M., Nitzberg, M., White, J., Zachariah, Z. K., Sherlock, G., Ball, C. A., and Schoolnik, G. K. (2010) TB database 2010: overview and update. *Tuberculosis* **90**, 225-235
- Ilina, E. N., Shitikov, E. A., Ikryannikova, L. N., Alekseev, D. G., Kamashev, D. E., Malakhova, M. V., Parfenova, T. V., Afanas'ev, M. V., Ischenko, D. S., Bazaleev, N. A., Smirnova, T. G., Larionova, E. E., Chernousova, L. N., Beletsky, A. V., Mardanov, A. V., Ravin, N. V., Skryabin, K. G., and Govorun, V. M. (2013) Comparative genomic analysis of Mycobacterium tuberculosis drug resistant strains from Russia. *PloS one* 8, e56577
- Zhang, Y., Chen, C., Liu, J., Deng, H., Pan, A., Zhang, L., Zhao, X., Huang, M., Lu, B., Dong, H., Du, P., Chen, W., and Wan, K. (2011) Complete genome sequences of Mycobacterium tuberculosis strains CCDC5079 and CCDC5080, which belong to the Beijing family. *Journal of bacteriology* 193, 5591-5592
- 13. Warner, D. F., and Mizrahi, V. (2013) Complex genetics of drug resistance in Mycobacterium tuberculosis. *Nature genetics* **45**, 1107-1108
- 14. Waddell, S. J., and Butcher, P. D. (2010) Use of DNA arrays to study transcriptional responses to antimycobacterial compounds. *Methods in molecular biology* **642**, 75-91
- 15. Wilson, M., DeRisi, J., Kristensen, H. H., Imboden, P., Rane, S., Brown, P. O., and Schoolnik, G. K. (1999) Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. *Proceedings of the National Academy of Sciences of the United States of America* **96**, 12833-12838
- 16. Fu, L. M., and Tai, S. C. (2009) The Differential Gene Expression Pattern of Mycobacterium tuberculosis in Response to Capreomycin and PA-824 versus First-Line TB Drugs Reveals Stressand PE/PPE-Related Drug Targets. *Int J Microbiol* **2009**, 879621
- 17. Chatterjee, A., Saranath, D., Bhatter, P., and Mistry, N. (2013) Global transcriptional profiling of longitudinal clinical isolates of Mycobacterium tuberculosis exhibiting rapid accumulation of drug resistance. *PloS one* **8**, e54717

- 18. Jungblut, P. R., Schaible, U. E., Mollenkopf, H. J., Zimny-Arndt, U., Raupach, B., Mattow, J., Halada, P., Lamer, S., Hagens, K., and Kaufmann, S. H. (1999) Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. *Molecular microbiology* **33**, 1103-1117
- 19. Mattow, J., Schaible, U. E., Schmidt, F., Hagens, K., Siejak, F., Brestrich, G., Haeselbarth, G., Muller, E. C., Jungblut, P. R., and Kaufmann, S. H. (2003) Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen. *Electrophoresis* **24**, 3405-3420
- 20. Gupta, S., Pandit, S. B., Srinivasan, N., and Chatterji, D. (2002) Proteomics analysis of carbonstarved Mycobacterium smegmatis: induction of Dps-like protein. *Protein Eng* **15**, 503-512
- 21. Rao, P. K., and Li, Q. (2009) Principal Component Analysis of Proteome Dynamics in Ironstarved Mycobacterium Tuberculosis. *Journal of proteomics & bioinformatics* **2**, 19-31
- 22. Bahk, Y. Y., Kim, S. A., Kim, J. S., Euh, H. J., Bai, G. H., Cho, S. N., and Kim, Y. S. (2004) Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. *Proteomics* **4**, 3299-3307
- 23. Jiang, X., Zhang, W., Gao, F., Huang, Y., Lv, C., and Wang, H. (2006) Comparison of the proteome of isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis. *Microb Drug Resist* **12**, 231-238
- 24. Hebert, A. S., Richards, A. L., Bailey, D. J., Ulbrich, A., Coughlin, E. E., Westphall, M. S., and Coon, J. J. (2014) The one hour yeast proteome. *Molecular & cellular proteomics : MCP* **13**, 339-347
- 25. Mann, M., Kulak, N. A., Nagaraj, N., and Cox, J. (2013) The coming age of complete, accurate, and ubiquitous proteomes. *Molecular cell* **49**, 583-590
- 26. Nagaraj, N., Kulak, N. A., Cox, J., Neuhauser, N., Mayr, K., Hoerning, O., Vorm, O., and Mann, M. (2012) System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. *Molecular & cellular proteomics : MCP* **11**, M111 013722
- 27. Schmidt, F., Donahoe, S., Hagens, K., Mattow, J., Schaible, U. E., Kaufmann, S. H., Aebersold, R., and Jungblut, P. R. (2004) Complementary analysis of the Mycobacterium tuberculosis proteome by two-dimensional electrophoresis and isotope-coded affinity tag technology. *Mol Cell Proteomics* **3**, 24-42
- Ang, K. C., Ibrahim, P., and Gam, L. H. (2014) Analysis of differentially expressed proteins in late-stationary growth phase of Mycobacterium tuberculosis H37Rv. *Biotechnol Appl Biochem* 61, 153-164
- 29. Ang, K. C., Ibrahim, P., and Gam, L. H. (2013) Analysis of differentially expressed proteins in late-stationary growth phase of Mycobacterium tuberculosis H37Rv. *Biotechnology and applied biochemistry*
- 30. Albrethsen, J., Agner, J., Piersma, S. R., Hojrup, P., Pham, T. V., Weldingh, K., Jimenez, C. R., Andersen, P., and Rosenkrands, I. (2013) Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems. *Mol Cell Proteomics* **12**, 1180-1191
- 31. Chopra, T., Hamelin, R., Armand, F., Chiappe, D., Moniatte, M., and McKinney, J. D. (2014) Quantitative Mass Spectrometry Reveals Plasticity of Metabolic Networks in Mycobacterium smegmatis. *Mol Cell Proteomics*
- Schubert, O. T., Mouritsen, J., Ludwig, C., Rost, H. L., Rosenberger, G., Arthur, P. K., Claassen, M., Campbell, D. S., Sun, Z., Farrah, T., Gengenbacher, M., Maiolica, A., Kaufmann, S. H., Moritz, R. L., and Aebersold, R. (2013) The Mtb proteome library: a resource of assays to quantify the complete proteome of Mycobacterium tuberculosis. *Cell Host Microbe* 13, 602-612
- 33. Mehaffy, C., Hess, A., Prenni, J. E., Mathema, B., Kreiswirth, B., and Dobos, K. M. (2010) Descriptive proteomic analysis shows protein variability between closely related clinical isolates of Mycobacterium tuberculosis. *Proteomics* **10**, 1966-1984

- 34. Nagaraj, N., D'Souza, R. C., Cox, J., Olsen, J. V., and Mann, M. (2010) Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation. *J Proteome Res* **9**, 6786-6794
- Vizcaino, J. A., Deutsch, E. W., Wang, R., Csordas, A., Reisinger, F., Rios, D., Dianes, J. A., Sun, Z., Farrah, T., Bandeira, N., Binz, P. A., Xenarios, I., Eisenacher, M., Mayer, G., Gatto, L., Campos, A., Chalkley, R. J., Kraus, H. J., Albar, J. P., Martinez-Bartolome, S., Apweiler, R., Omenn, G. S., Martens, L., Jones, A. R., and Hermjakob, H. (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. *Nature biotechnology* **32**, 223-226
- Kumar, D., Nath, L., Kamal, M. A., Varshney, A., Jain, A., Singh, S., and Rao, K. V. (2010) Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. *Cell* 140, 731-743
- Nagaraj, N., Wisniewski, J. R., Geiger, T., Cox, J., Kircher, M., Kelso, J., Paabo, S., and Mann, M.
 (2011) Deep proteome and transcriptome mapping of a human cancer cell line. *Molecular* systems biology 7, 548
- 38. Kelkar, D. S., Kumar, D., Kumar, P., Balakrishnan, L., Muthusamy, B., Yadav, A. K., Shrivastava, P., Marimuthu, A., Anand, S., Sundaram, H., Kingsbury, R., Harsha, H. C., Nair, B., Prasad, T. S., Chauhan, D. S., Katoch, K., Katoch, V. M., Kumar, P., Chaerkady, R., Ramachandran, S., Dash, D., and Pandey, A. (2011) Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry. *Mol Cell Proteomics* **10**, M111 011627
- 39. Geiger, T., Velic, A., Macek, B., Lundberg, E., Kampf, C., Nagaraj, N., Uhlen, M., Cox, J., and Mann, M. (2013) Initial Quantitative Proteomic Map of 28 Mouse Tissues Using the SILAC Mouse. *Molecular & cellular proteomics : MCP* **12**, 1709-1722
- 40. Forrellad, M. A., McNeil, M., Santangelo Mde, L., Blanco, F. C., Garcia, E., Klepp, L. I., Huff, J., Niederweis, M., Jackson, M., and Bigi, F. (2014) Role of the Mce1 transporter in the lipid homeostasis of Mycobacterium tuberculosis. *Tuberculosis (Edinb)* **94**, 170-177
- 41. Kumar, D., and Rao, K. V. (2011) Regulation between survival, persistence, and elimination of intracellular mycobacteria: a nested equilibrium of delicate balances. *Microbes Infect* **13**, 121-133
- 42. Vashisht, R., Bhat, A. G., Kushwaha, S., Bhardwaj, A., Consortium, O., and Brahmachari, S. K. (2014) Systems level mapping of metabolic complexity in Mycobacterium tuberculosis to identify high-value drug targets. *Journal of translational medicine* **12**, 263
- Galagan, J. E., Minch, K., Peterson, M., Lyubetskaya, A., Azizi, E., Sweet, L., Gomes, A., Rustad, T., Dolganov, G., Glotova, I., Abeel, T., Mahwinney, C., Kennedy, A. D., Allard, R., Brabant, W., Krueger, A., Jaini, S., Honda, B., Yu, W. H., Hickey, M. J., Zucker, J., Garay, C., Weiner, B., Sisk, P., Stolte, C., Winkler, J. K., Van de Peer, Y., Iazzetti, P., Camacho, D., Dreyfuss, J., Liu, Y., Dorhoi, A., Mollenkopf, H. J., Drogaris, P., Lamontagne, J., Zhou, Y., Piquenot, J., Park, S. T., Raman, S., Kaufmann, S. H., Mohney, R. P., Chelsky, D., Moody, D. B., Sherman, D. R., and Schoolnik, G. K. (2013) The Mycobacterium tuberculosis regulatory network and hypoxia. *Nature* 499, 178-183
- 44. Rustad, T. R., Minch, K. J., Ma, S., Winkler, J. K., Hobbs, S., Hickey, M., Brabant, W., Turkarslan, S., Price, N. D., Baliga, N. S., and Sherman, D. R. (2014) Mapping and manipulating the Mycobacterium tuberculosis transcriptome using a transcription factor overexpression-derived regulatory network. *Genome Biol* **15**, 502
- 45. Dasgupta, N., Kapur, V., Singh, K. K., Das, T. K., Sachdeva, S., Jyothisri, K., and Tyagi, J. S. (2000) Characterization of a two-component system, devR-devS, of Mycobacterium tuberculosis. *Tuber Lung Dis* **80**, 141-159
- 46. Gordon, B. R., Li, Y., Wang, L., Sintsova, A., van Bakel, H., Tian, S., Navarre, W. W., Xia, B., and Liu, J. (2010) Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in Mycobacterium tuberculosis. *Proc Natl Acad Sci U S A* **107**, 5154-5159
- 47. Liu, J., and Gordon, B. R. (2012) Targeting the global regulator Lsr2 as a novel approach for anti-tuberculosis drug development. *Expert Rev Anti Infect Ther* **10**, 1049-1053

- 48. Qu, Y., Lim, C. J., Whang, Y. R., Liu, J., and Yan, J. (2013) Mechanism of DNA organization by Mycobacterium tuberculosis protein Lsr2. *Nucleic Acids Res* **41**, 5263-5272
- 49. Cohen, K. A., Bishai, W. R., and Pym, A. S. (2014) Molecular Basis of Drug Resistance in Mycobacterium tuberculosis. *Microbiology spectrum* **2**
- 50. Silva, P. E., Bigi, F., Santangelo, M. P., Romano, M. I., Martin, C., Cataldi, A., and Ainsa, J. A. (2001) Characterization of P55, a multidrug efflux pump in Mycobacterium bovis and Mycobacterium tuberculosis. *Antimicrob Agents Chemother* **45**, 800-804
- 51. Sharma, P., Kumar, B., Gupta, Y., Singhal, N., Katoch, V. M., Venkatesan, K., and Bisht, D. (2010) Proteomic analysis of streptomycin resistant and sensitive clinical isolates of Mycobacterium tuberculosis. *Proteome Sci* **8**, 59
- 52. Bisson, G. P., Mehaffy, C., Broeckling, C., Prenni, J., Rifat, D., Lun, D. S., Burgos, M., Weissman, D., Karakousis, P. C., and Dobos, K. (2012) Upregulation of the phthiocerol dimycocerosate biosynthetic pathway by rifampin-resistant, rpoB mutant Mycobacterium tuberculosis. *J Bacteriol* **194**, 6441-6452
- 53. Zhu, C., Zhao, Y., Huang, X., Pang, Y., Zhao, Y., Zhuang, Y., and He, X. (2013) [Quantitative proteomic analysis of streptomycin resistant and sensitive clinical isolates of Mycobacterium tuberculosis]. *Wei Sheng Wu Xue Bao* **53**, 154-163
- 54. Parish, T., Smith, D. A., Kendall, S., Casali, N., Bancroft, G. J., and Stoker, N. G. (2003) Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. *Infection and immunity* **71**, 1134-1140
- 55. Colangeli, R., Helb, D., Sridharan, S., Sun, J., Varma-Basil, M., Hazbon, M. H., Harbacheuski, R., Megjugorac, N. J., Jacobs, W. R., Jr., Holzenburg, A., Sacchettini, J. C., and Alland, D. (2005) The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. *Mol Microbiol* **55**, 1829-1840
- 56. de Stoppelaar, S. F., Bootsma, H. J., Zomer, A., Roelofs, J. J., Hermans, P. W., van 't Veer, C., and van der Poll, T. (2013) Streptococcus pneumoniae serine protease HtrA, but not SFP or PrtA, is a major virulence factor in pneumonia. *PloS one* **8**, e80062
- 57. Ibrahim, Y. M., Kerr, A. R., McCluskey, J., and Mitchell, T. J. (2004) Role of HtrA in the virulence and competence of Streptococcus pneumoniae. *Infection and immunity* **72**, 3584-3591
- 58. Sebert, M. E., Palmer, L. M., Rosenberg, M., and Weiser, J. N. (2002) Microarray-based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colonization. *Infection and immunity* **70**, 4059-4067
- 59. Bhatt, A., Fujiwara, N., Bhatt, K., Gurcha, S. S., Kremer, L., Chen, B., Chan, J., Porcelli, S. A., Kobayashi, K., Besra, G. S., and Jacobs, W. R., Jr. (2007) Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. *Proceedings of the National Academy of Sciences of the United States of America* **104**, 5157-5162
- Gao, L. Y., Laval, F., Lawson, E. H., Groger, R. K., Woodruff, A., Morisaki, J. H., Cox, J. S., Daffe, M., and Brown, E. J. (2003) Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. *Molecular microbiology* 49, 1547-1563
- 61. Vilcheze, C., Molle, V., Carrere-Kremer, S., Leiba, J., Mourey, L., Shenai, S., Baronian, G., Tufariello, J., Hartman, T., Veyron-Churlet, R., Trivelli, X., Tiwari, S., Weinrick, B., Alland, D., Guerardel, Y., Jacobs, W. R., Jr., and Kremer, L. (2014) Phosphorylation of KasB regulates virulence and acid-fastness in Mycobacterium tuberculosis. *PLoS Pathog* **10**, e1004115
- Mukherjee, P., Sureka, K., Datta, P., Hossain, T., Barik, S., Das, K. P., Kundu, M., and Basu, J. (2009) Novel role of Wag31 in protection of mycobacteria under oxidative stress. *Molecular microbiology* 73, 103-119
- 63. Kang, C. M., Nyayapathy, S., Lee, J. Y., Suh, J. W., and Husson, R. N. (2008) Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. *Microbiology* **154**, 725-735

- 64. Andersen, A. B., Andersen, P., and Ljungqvist, L. (1992) Structure and function of a 40,000molecular-weight protein antigen of Mycobacterium tuberculosis. *Infection and immunity* **60**, 2317-2323
- 65. Stephenson, K., and Hoch, J. A. (2002) Two-component and phosphorelay signal-transduction systems as therapeutic targets. *Current opinion in pharmacology* **2**, 507-512
- 66. Kaczmarczyk, A., Hochstrasser, R., Vorholt, J. A., and Francez-Charlot, A. (2014) Complex twocomponent signaling regulates the general stress response in Alphaproteobacteria. *Proceedings of the National Academy of Sciences of the United States of America* **111**, E5196-5204
- 67. Bartek, I. L., Woolhiser, L. K., Baughn, A. D., Basaraba, R. J., Jacobs, W. R., Jr., Lenaerts, A. J., and Voskuil, M. I. (2014) Mycobacterium tuberculosis Lsr2 is a global transcriptional regulator required for adaptation to changing oxygen levels and virulence. *MBio* **5**, e01106-01114
- 68. Sassetti, C. M., and Rubin, E. J. (2003) Genetic requirements for mycobacterial survival during infection. *Proc Natl Acad Sci U S A* **100**, 12989-12994
- 69. Gioffre, A., Infante, E., Aguilar, D., Santangelo, M. P., Klepp, L., Amadio, A., Meikle, V., Etchechoury, I., Romano, M. I., Cataldi, A., Hernandez, R. P., and Bigi, F. (2005) Mutation in mce operons attenuates Mycobacterium tuberculosis virulence. *Microbes Infect* **7**, 325-334
- 70. Pandey, A. K., and Sassetti, C. M. (2008) Mycobacterial persistence requires the utilization of host cholesterol. *Proc Natl Acad Sci U S A* **105**, 4376-4380
- 71. Lee, J. S., Krause, R., Schreiber, J., Mollenkopf, H. J., Kowall, J., Stein, R., Jeon, B. Y., Kwak, J. Y., Song, M. K., Patron, J. P., Jorg, S., Roh, K., Cho, S. N., and Kaufmann, S. H. (2008) Mutation in the transcriptional regulator PhoP contributes to avirulence of Mycobacterium tuberculosis H37Ra strain. *Cell Host Microbe* **3**, 97-103
- 72. Frigui, W., Bottai, D., Majlessi, L., Monot, M., Josselin, E., Brodin, P., Garnier, T., Gicquel, B., Martin, C., Leclerc, C., Cole, S. T., and Brosch, R. (2008) Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. *PLoS Pathog* **4**, e33
- 73. He, X. Y., Zhuang, Y. H., Zhang, X. G., and Li, G. L. (2003) Comparative proteome analysis of culture supernatant proteins of Mycobacterium tuberculosis H37Rv and H37Ra. *Microbes Infect* **5**, 851-856
- 74. Malen, H., De Souza, G. A., Pathak, S., Softeland, T., and Wiker, H. G. (2011) Comparison of membrane proteins of Mycobacterium tuberculosis H37Rv and H37Ra strains. *BMC Microbiol* **11**, 18
- McLaughlin, B., Chon, J. S., MacGurn, J. A., Carlsson, F., Cheng, T. L., Cox, J. S., and Brown, E. J.
 (2007) A mycobacterium ESX-1-secreted virulence factor with unique requirements for export.
 PLoS Pathog 3, e105
- 76. Beatty, W. L., and Russell, D. G. (2000) Identification of mycobacterial surface proteins released into subcellular compartments of infected macrophages. *Infection and immunity* **68**, 6997-7002
- 77. Malik, Z. A., Thompson, C. R., Hashimi, S., Porter, B., Iyer, S. S., and Kusner, D. J. (2003) Cutting edge: Mycobacterium tuberculosis blocks Ca2+ signaling and phagosome maturation in human macrophages via specific inhibition of sphingosine kinase. *J Immunol* **170**, 2811-2815
- 78. Brodin, P., Rosenkrands, I., Andersen, P., Cole, S. T., and Brosch, R. (2004) ESAT-6 proteins: protective antigens and virulence factors? *Trends in microbiology* **12**, 500-508

Figure Legends.

Figure 1. Proteome analysis of virulent and avirulent Mtb strains. A. In vitro growth analysis of mycobacterial strains H37Ra, H37Rv, BND and JAL in 7H9 medium. All the cultures were seeded at an initial A_{600} of 0.05 and growth was monitored every 24 h for seven days. *B.* Schematic illustration of the design and workflow to perform the quantitative proteomics analysis across the four-mycobacterium strains. Cell pellets were lysed with 8M Urea/AB-25 and equal amounts of lysates were trypsin-digested and the purified peptides were identified using high-resolution LC-MS/MS analysis using LTQ Orbitrap Velos instrument. *C.* Raw MS

files were processed with MaxQuant (version. 1.4.1.2) against the *Mtb* uniprot reference proteome database. The false discovery rate was set at 0.01 for both peptides and proteins. Bioinformatics analysis was performed using Perseus software. Custom made perl scripts were utilized for correlating mycobacterium uniprot nomenclature with tuberculist database entries. Table shows the number of proteins identified for each biological replicate for all four strains. *D*. Venn diagram showing the number of unique and common proteins among the four strains. *E*. Pie chart showing the details of tuberculist functional categories classification of Mtb proteome. *F*. The Barplots demonstrating classification of identified proteins (2161) in the 10 tuberculist functional categories. Left panel shows the number and percentage of 2161 identified proteins belonging to each functional category. Right panel shows the percentage of identified proteins in a particular functional category compared with the total number of proteins in that category.

Figure 2. iBAQ analysis and dynamic range estimation of identified mycobacterium proteome. A. The combined iBAQ protein expression values for the 2157 proteins were plotted with log₁₀iBAQ intensity on the y-axis and proteins ranked by iBAQ intensity on the x-axis. Plot reveals a dynamic range of 6 orders of magnitude (left panel). *B*. The list of nine most (colored red) and least (colored blue) abundant proteins based on iBAQ intensity. *C*. Strain specific proteins expression plot based on iBAQ intensities. Rv, Ra, BND and JAL strain specific proteins were represented in blue, green, pink and yellow colors.

Figure 3. Relative protein quantification. A. Brief overview of data analysis steps. *B.* Venn diagram showing details of tuberculist functional categories classification among the ANOVA significant proteins. *C. Left panel.* Clustergram of the ANOVA significant 257 proteins differing among the four strains. The Z-scored normalized abundance values of proteins are represented by red (high abundance) and green (low abundance) colors as indicated in the color scale bar at the top. The two highlighted clusters represent proteins with decreased (green) and increased (red) abundance in JAL strain. *Right panel.* Profile plots displaying the low and high abundant clusters of clustergram with respect to the JAL strain.

Figure 4. PCA analysis and validation of significant proteins. A. Profile plots showing the fold change analysis of selected genes, which were up or downregulated in JAL strain. The median values obtained for each strain were plotted on Y-axis. *B.* Whole cell lysates (WCLs) were estimated with the help of BCA assay kit (Thermo). 50 µg of whole cell lysates were resolved on SDS-PAGE, transferred to nitrocellulose membrane and probed separately with α-CFP10, α-ESAT6 and α-ADH antibodies (Abcam, USA). 7.5 µg of WCLs were used for probing with α-GroEL1 antibody (control). *C.* Biplots of a principal component analysis performed on mycobacterial cell lines measured in quadruplicates. Matlab was utilized for Principal Component Analysis (PCA). The arrows indicate the loadings of the cell lines (Rv, Ra, BND and JAL). All 257 ANOVA significant proteins were used in the analysis. *D.* The Parreto's plot for the principal components (figure 3C). Fractions of variability in the data captured by each of the principal components is represented as the line. Note that first two principal components together account for more than 70% of the variance.

Figure 5. K-means cluster analysis of ANOVA significant proteins. A. Proteins showing significant protein abundance changes were grouped into seven clusters. Median of Z-scored log 2 normalized values for each quadruplicate was used for cluster analysis. Matlab was utilized for for K-means clustering. B. Bar chart showing the number of protein in each cluster.

Figure 6. Distribution among the K-mean clusters. A. Bar chart showing the percentage of tuberculist functional categories present in each cluster. B & C. Metabolic pathway for the

beta-oxidation of fatty acids. B. Clustergram of the 12 differentially expressed proteins across the four *Mtb* strains in the subsystem 'Beta oxidation of fatty acids'. The Z-scored normalized abundance values of proteins are represented by red (high abundance) and green (low abundance) colors. *C.* The β-oxidation of fatty acids is accomplished by four enzyme catalyzed reactions as given in the outline. This pathway is highly redundant at the level of genes encoding the associated enzymes for the four reactions. In the *Mtb* genome, there are 35 predicted genes for Acyl-CoA dehydrogenase, 22 predicted genes for Enoyl-CoA hydratase, 4 predicted genes for L-3-Hydroxyacyl-CoA dehydrogenase, and 6 predicted genes for b-ketothiolase (indicated). The differentially expressed genes in the β-oxidation pathway across the four *Mtb* strains are indicated in Blue.

Figure 7. Protein levels of transcription factors vary among the strains. A. Profile plots showing the fold change of different transcription factors found among the 257 ANNOVA significant proteins. *B.* Galagan network analysis of transcriptional factors. *C.* Profile plots showing the fold change of the target proteins, whose expression is regulated by Lsr2. *D.* Profile plots showing the fold change of the target proteins whose expression is regulated by R2839. *E.* Profile plots showing the fold change of the target of the target proteins whose expression is regulated by R2839.

Figure 8. Proteins levels of Esx and Mce proteins vary among the strains. A. Profile plots showing the fold changes between different *Mtb* strains for the *mce* proteins. **B**. Profile plots showing the fold changes of different ESX pathway proteins (among the 257 proteins) between the four-mycobacterial strains. C. Culture filtrate fraction for each strain was estimated with the help of BCA assay kit. 15 µg of culture filtrates were resolved on SDS-PAGE, transferred to nitrocellulose membrane and probed separately with α-CFP10, α-ESAT6 and α-ADH antibodies. D. THP1 cells differentiated with PMA were infected with Rv, Ra, BND and JAL strains and CFUs were enumerated at different time points post infection. The CFUs at different time point for each strain were calculated with respect to the CFUs obtained at 0 h, which was normalized to 100. The experiment was performed in triplicates and error bars represent s.e.m. E. Uptake compromised with ESAT-6 antibody treatment. Mtb cultures were treated with ESAT-6 antibody (ESAT 6+) for 45 min at room temperature. Post treatment the cultures were washed and processed for infecting PMA differentiated THP-1 cells at multiplicity of infection of 10:1. As a control untreated *Mtb* cultures were used. After 6 hours post-infection the cells were lysed and plated for obtaining cfu. The data represents average of values from three separate experiments.

 Table 1: Candidate proteins that are either up or down regulated in the drug resistant strains. Analysis was limited to streptomycin, isoniazid and rifampicin resistance among the 257 ANOVA significant protein groups. Details of gene identification number, protein name, the median values observed for each strain and the plausible function has been provided.

Gene	Protein names	IAL	BND	Ra	Rv	Function	Ref				
Candidate proteins with transport function											
Rv2564	Uncharacterized ABC transporter ATP- binding protein	-1.45907	-0.0728709	0.915215	0.62991	Predicted to be a glutamine ABC	NA				
Rv1410c	MFS-type drug efflux transporter P55	-1 16128	0 368715	0 82969	0 121877	Multidrug Efflux pump protein; Overexpression in BCG conferred streptomycin and tetracyclin	(50)				
Candidates for which the regulation of expression was contrary to the protein levels observed in IAL strain											
Rv3028c	Electron transfer flavoprotein subunit alpha	-1.03707	0.646106	0.392637	0.0287605	Overexpressed in streptomycin and isoniazid resistant clinical isolates	(23,51)				
Rv2933	Phthiocerol synthesis polyketide synthase type I PpsC	0.347323	0.43145	1.01702	-1.34932	Upregulated in ritampicin resistant- <i>rpoB</i> mutant	(52)				
Candidates for which the data from the literature was in agreement with the protein levels observed in JAL strain											
Rv0824c	acyl-[acyl-carrier-protein] desaturase desA1	-1.50968	0.689537	0.492385	0.402516	Downregulated in streptomycin resistant <i>Mtb</i>	(53)				
Rv3133c	Transcriptional regulatory protein DevR (DR)	-1.48441	0.568373	0.255834	0.572789	Downregulated in streptomycin resistant Mtb	(53,54)				
Rv2145c	Cell wall synthesis protein-Wag31	0.90589	-0.100451	-1.19427	0.280966	Overexpressed in streptomycin and isoniazid resistant clinical isolates	(23,51)				
Rv0341	Isoniazid-induced protein-IniB	1.1082	-1.14845	-0.584435	0.231656	Strains overexpressing IniB survive longer at inhibitory concentration of isoniazid	(55)				
Rv1240	Malate dehydrogenase	1.23081	-0.333817	-0.463767	-0.618897	Overexpressed in streptomycin resistant clinical isolates	(51)				
Rv0560c	Uncharacterized protein Rv0560c	1.38842	-0.254523	-0.293821	-0.273248	Overexpressed in streptomycin resistant clinical isolates	(51)				
Rv2971	Uncharacterized oxidoreductase Rv2971	1.568	0.00266458	-0.633307	-0.799756	Overexpressed in streptomycin and isoniazid resistant clinical isolates	(23,51)				
Rv2247	propionyl-CoA carboxylase beta chain 6	1.40693	-0.539375	-0.877811	0.0798006	Expression induced in isoniazid dependent manner	(15)				
Rv1446c	OXPP cycle protein OpcA	1.52307	-0.283431	-1.04449	-0.240305	Overexpressed in isoniazid resistant clinical isolates	(23)				

ď

Figure 3

Figure 4

Figure 5

Supplementary Table4: Comparative table showing strain specific proteins based on four biological replicates highlighted cells indicates the strain specific proteins present in two or more bio replicates

	Biological replicates and number of pentides identified									entid	es ide	ntifie							
Rv1	Rv2	Rv3	Rv4 Ra1 Ra2 Ra3 Ra4 BND1 BND2 BND3 RND4 IAI1 IAI2 IAI3 IA				1414	Protein IDs	Uniprot name:Gene name		Protein name								
1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	LOTESS	LOTES5	Rv3251c	Rubredoxin
NA	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	L7N4G1	L7N4G1	Rv0348	Possible transcriptional regulatory protein
1	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	L7N5E4	L7N5E4	Rv1393c	Monooxygenase, flavin-binding family
1	NA	3	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	053624	053624	Rv0079	Uncharacterized protein Rv0079/MT0086
1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	053768	053768	Rv0571c	phosphoribyl transferase Rv0571c/MT0597
1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	P0A562	P0A562	Rv2364c	GTPase Era
NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	P0A660	P0A660	Rv1850	Urease subunit alpha
NA	NA	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	P0A668	P0A668	Rv2875	Immunogenic protein MPT70
1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	P64705	P64705	Rv0485	Uncharacterized protein Rv0485/MT0503
1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	P64741	P64741	Rv0887c	Uncharacterized protein Rv0887c/MT0910
NA	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	P64773	P64773	Rv0960	ribonuclease VapC9
1	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	P95027	P95027	Rv2526	antitoxin VapB17
NA	NA	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	P96263	P96263	Rv0417	Thiazole synthase
NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	LOT6B1	LOT6B1	Rv0317c	glycerophphoryl diester phphodiesterase GlpQ2
NA	NA	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	L0T7I3	L0T7I3	Rv1730c	penicillin-binding protein
NA	NA	NA	NA	1	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	L0T826	L0T826	Rv0974c	acetyl-/propionyl-CoA carboxylase (Beta subunit) AccD2
NA	NA	NA	NA	NA	NA	NA	2	NA	NA	NA	NA	NA	NA	NA	NA	L7N4Z6	L7N4Z6	Rv1187	Delta-1-pyrroline-5-carboxylate dehydrogenase
NA	NA	NA	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	L7N554	L7N554	Rv0067c	Possible transcriptional regulatory protein (Psibly TetR-family)
NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	L/N5K3	L/N5K3	RV0186	Beta-glucidase,
NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	006197	006197	Rv261/c	transmembrane protein
NA	NA	NA	NA	1	NA 1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	P63911	P63911	RV2637	Uncharacterized membrane protein Rv263//M12/15
	NA	NA	NA	1	1	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	P71000	P/1000	RV2552	fattu asid CoA ligase EadD2
NΔ	NΔ	NΔ	NΔ	1	ΝA	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	010528	010528	Rv2250c	
NA	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	010859	010859	Rv1998c	Uncharacterized protein Rv1998c/MT2054
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA	NA	NA	NA	L7N4A9	L7N4A9	Rv1174c	Low molecular weight T-cell antigen TB8.4
NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	L7N4Z9	L7N4Z9	Rv1709	segregation and condensation protein ScpA
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA	NA	NA	NA	L7N574	L7N574	Rv2375	Uncharacterized protein
NA	NA	NA	NA	NA	NA	NA	NA	1	3	NA	NA	NA	NA	NA	NA	L7N5Q9	L7N5Q9	Rv0123	DNA-binding protein, CopG family
NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	053301	053301	Rv3084	acetyl-hydrolase LipR
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	1	NA	NA	NA	NA	053788	053788	Rv0680c	conserved transmembrane protein
NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	P67731	P67731	Rv1994c	HTH-type transcriptional regulator CmtR
NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	P69419	P69419	Rv2922.1c Rv2922A	Acylphphatase
NA	NA	NA	NA	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	NA	P71821	P71821	Rv0765c	Oxidoreductase, short-chain dehydrogenase/reductase family
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA	NA	NA	NA	P71825	P71825	Rv0770	Uncharacterized oxidoreductase Rv0770/MT0794
NA	NA	NA	NA	NA	NA	NA	NA	NA	1	1	NA	NA	NA	NA	NA	P95024	P95024	Rv2529	Uncharacterized protein
NA	NA	NA	NA	NA	NA	NA	NA	1	NA	NA	2	NA	NA	NA	NA	P95110	P95110	Rv2985	8-oxo-dGTP diphphatase 1
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA	NA	NA	NA	P96887	P96887	Rv3282	Maf-like protein Rv3282/MT3381
																		D. 0004	
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA	1	1	LOT8E5	LOT8E5	Rv2024c	Uncharacterized protein
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	1	1	1	LUTA18	LUIA18	RV1644	235 rRNA methyltransferase ISNR
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	1			Rv1615	membrane protein
NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	1	ΝΔ	17N5G7	17N5G7	Rv1976c	Incharacterized protein
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	1	006279	006279	Rv3603c	Conserved hypothetical alapine and leucine rich protein
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	1	033302	033302	Rv2760c	antitoxin VapB42
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	1	1	053168	053168	Rv1477	Peptidoglycan endopeptidase RipA
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2	2	2	2	053374	053374	Rv3322c	methyltransferase
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA	1	1	053610	053610	Rv0065	ribonuclease VapC1
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA	NA	1	O86328	086328	Rv2421c	nicotinate-nucleotide adenylyltransferase
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	1	P0A676	P0A676	Rv1848	Urease subunit gamma
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	1	1	1	P0CW29	P0CW29	Rv0064A	antitoxin VapB1
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2	2	2	4	P65392	P65392	Rv3324c	Cyclic pyranopterin monophphate synthase accessory protein 3
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA	NA	P67134	P67134	Rv2367c	Endoribonuclease YbeY
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	P71650	P71650	Rv2801c	mRNA interferase MazF9
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	1	NA	1	P71835	P71835	Rv0781	protease II PtrBa [first part] (Oligopeptidase B)
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA	P95003	P95003	Rv2550c	Antitoxin VapB20
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	1	P95106	P95106	Rv3053c	Glutaredoxin NrdH,
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	2	1	1	Q50687	Q50687	Rv2277c	Uncharacterized protein Rv2277c/MT2337
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2	2	1	1	Q50737	Q50737	Rv2561/Rv2562	Uncharacterized protein Rv2561/Rv2562/MT2638
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	1	Q8VJ59	Q8VJ59	Rv3190A	Conserved protein

Comparative proteomic analyses of avirulent, virulent and clinical strains of Mycobacterium tuberculosis identifies strain-specific patterns

Gagan Deep Jhingan, Sangeeta Kumari, Shilpa V. Jamwal, Haroon Kalam, Divya Arora, Neharika Jain, Lakshmi KrishnaKumaar, Areejit Samal, Kanury V. S. Rao, Dhiraj Kumar and Vinay Kumar Nandicoori

J. Biol. Chem. published online May 5, 2016

Access the most updated version of this article at doi: 10.1074/jbc.M115.666123

Alerts:

- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material: http://www.jbc.org/content/suppl/2016/05/05/M115.666123.DC1.html

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/early/2016/05/05/jbc.M115.666123.full.html#ref-list-1