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Abstract. For a symmetric space (G, H), one is interested in un-
derstanding the vector space of H-invariant linear forms on a rep-
resentation π of G. In particular an important question is whether
or not the dimension of this space is bounded by one. We cover
the known results for the pair (G = RE/F GL(n), H = GL(n)), and
then discuss the corresponding SL(n) case. In this paper, we show
that (G = RE/F SL(n), H = SL(n)) is a Gelfand pair when n is
odd. When n is even, the space of H-invariant forms on π can have
dimension more than one even when π is supercuspidal.

The latter work is joint with Dipendra Prasad.

1. Introduction

Let G be a group, and H the group of fixed points of an involution
on G. A representation π of G is said to be distinguished with respect
to H, if the space of H-invariant linear forms on π is nonzero. More
generally, if the space HomH(π, χ) is nonzero for a character χ of H, we
say that π is χ-distinguished with respect to H. In this paper we are
interested in the case when (G, H) is defined over a p-adic field.

The initial impetus for much of the research in this field came from
the work of Harder, Langlands, and Rapoport [9] where they introduce
the notion of distinguishedness (in terms of the non-vanishing of a certain
period integral) when (G,H) is defined over the adeles of a number
field. Specifically a careful analysis of distinguishedness for the pair
G = RF/QGL(2), H = GL(2), where F is a real quadratic extension of
Q, was required to settle the Tate conjecture for the Hilbert modular
surface associated to G.
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The philosophy (due to Jacquet) is that distinguishedness for the
pair (G,H) often characterise the image of a lift from a suitable group
H ′. For instance if G = GLn(E) and H = GLn(F ), where E/F a
quadratic extension of p-adic (or number) fields, the H-distinguished
representations are the ones in the image of the base change map from
a suitable unitary group [5]. Conversely if H is a unitary group (with
respect to E/F ), then H ′ is GLn(F ) (see the series of papers starting
with [13] and [14]).

From now on let E/F be a quadratic extension of p-adic fields. The
groups that we consider will be defined over F . For a representation π of
G, one is interested in a better understanding of the space HomH(π, 1).
A symmetric pair (G,H) is said to have the multiplicity one property
(equivalently (G,H) is called a Gelfand pair) if the above space has
dimension less than or equal to one for all irreducible admissible rep-
resentations π of G. The pair (GLn(E), GLn(F )) is known to have the
multiplicity one property ([5],[10]). Here it is not very hard to deduce
the multiplicity one property, as it is relatively easy to show that all the
double cosets of H in G are fixed by an involution. Nevertheless proving
that a pair (G,H) is a Gelfand pair can turn out to be quite hard. For
instance this is the case when G = GL2n(F ) and H = GLn(F )×GLn(F )
[15].

An example of a non-Gelfand pair is obtained by taking G = GLn(E)
and H = U(n,E/F ), the quasi-split unitary group with respect to E/F .
But in this case, dimCHomH(π, 1) is conjectured to be bounded by one,
if π is a supercuspidal representation (see [11] for details). Such a pair
is often called a supercuspidal Gelfand pair. It is known that if “almost
all” double cosets HgH are fixed by an involution of G, then (G, H) is
a supercuspidal Gelfand pair [12].

It is natural to ask whether there is a symmetric space for which the
multiplicity one property fails even for supercuspidal representations.
There are such spaces, and an example is (G = SLn(E), H = SLn(F )),
n being an even integer [2]. This can be deduced from the formula for the
dimension of HomH(π, 1) proved in [2]. This is stated as Theorem 4.3
in this paper, and we also sketch a proof of it. Also worth pointing out
is the fact that the multiplicity formula in this context resembles closely
to the Labesse-Langlands multiplicity formula for the multiplicity of a
representation in the cuspidal spectrum of SL2(AF ) (for a number field
F ) [17, 21].

Interestingly, when n is odd, (SLn(E), SLn(F )) is a Gelfand pair.
We record this in the following theorem.
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Theorem 1.1. Let π be an irreducible admissible representation of
SLn(E). Then if n is odd, dimCHomSLn(F )(π, 1) ≤ 1.

The plan of the paper is as follows. We recall some of the main results
in the case (GLn(E), GLn(F )) in Section 2. The case (GLn(E), U(n)) is
dealt with in the next section. Final two sections deal with the symmet-
ric pair (SLn(E), SLn(F )), and the proof of Theorem 1.1. This is joint
work with Dipendra Prasad.

It is a pleasure to thank R. Tandon (and the organisers) for inviting
me to give a talk at the Hyderabad conference. I would also like to thank
him for constant encouragement over the years. I would like to thank
Dipendra Prasad for many discussions, suggestions, and encouraging
words. Thanks are also due to David Manderscheid, A. Raghuram, and
C.S. Rajan for questions and comments on this material. I would also
like to thank the referee for several helpful suggestions.

2. The symmetric space (RE/F GL(n), GL(n))

Let F be a p-adic field and let E be a degree two extension of F .
Let σ denote the nontrivial element of Gal(E/F ). We recall some of the
main theorems and conjectures about representations of G = GLn(E)
distinguished with respect to H = GLn(F ).

As already pointed out in the introduction (G,H) is a Gelfand pair.
The key here is that there is an involution of G that fixes all the double
cosets HgH. Specifically one knows the following lemma (Proposition
10, [5]).

Proposition 2.1. The involution g 7→ g−σ fixes the double cosets
of H in G.

Proof (sketch). Consider the map from G/H to the set S = {g ∈
G | ggσ = 1} given by

gH 7→ gg−σ.

This map is a bijection (it is clearly well defined and injective, and sur-
jectivity follows by Hilbert 90). Next step is to show that two elements
of S which are conjugate in G are conjugate in H. Now consider the
elements gg−σ and g−σg. Since these two elements are conjugate in G,
they should be conjugate in H. The proof follows from this. ¤

Thus any distribution on G that is H-bi-invariant is invariant under
the above involution. Also if an irreducible admissible representation π
of G admits an H-invariant linear form, then so does the contragredient
π∨ of π. Therefore the multiplicity one property follows from the well-
known lemma due to Gelfand.
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Proposition 2.1 also proves the following result (see Proposition 12,
[5]).

Theorem 2.2. If π is an irreducible admissible representation of G
which is distinguished by H, then π∨ ∼= πσ.

Also note that an obvious necessary condition for π being distin-
guished with respect to H is that the central character ωπ of π restricts
trivially to F ∗. Are these conditions sufficient too? A precise conjectural
answer is given below (here and elsewhere ω

E/F
signifies the quadratic

character associated to the extension E/F ).

Conjecture 1 (Jacquet). Let π be an irreducible admissible rep-
resentation of GLn(E) such that ωπ|F∗ = 1 and π∨ ∼= πσ. Then π is
H-distinguished if n is odd. If n is even, π is either distinguished or
ω

E/F
-distinguished with respect to H = GLn(F ).

When E/F is unramified, and π a supercuspidal, this is proved by
D. Prasad [19] where the proof eventually boils down to a similar re-
sult about stable representations of finite groups of Lie type. More
recently the conjecture is settled by Anthony Kable [16] whenever π is
a square integrable representation. The proof uses the theory of the
twisted tensor L-function (aka the Asai L-function) [6], and has two
main parts. First he proves the following identity which relates the
twisted L-function with the Rankin-Selberg L-function.

L(s, π × πσ) = L(s,As(π))L(s, As(π)⊗ ω
E/F

)(1)

Then it is proved that if L(s,As(π)) has a pole at s = 0, then π is H-
distinguished. Thus the Jacquet’s conjecture follows as it is well known
that L(s, π × π∨) has a pole at s = 0 (necessarily simple when π is in
the discrete series).

In fact the Asai L-function L(s,As(π)) having a pole at s = 0 charac-
terises π being distinguished for a discrete series π. The other direction
is proved in [3]. Thus we have the following proposition.

Proposition 2.3. Let π be a square integrable representation of
GLn(E). Then π is distinguished with respect to GLn(F ) if and only
if L(s,As(π)) has a pole at s = 0.

Combining with the identity (1), this proves the following.

Corollary 2.4. Let π be a square integrable representation of GLn(E).
Then π cannot be both distinguished and ω

E/F
-distinguished with respect

to GLn(F ).
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Note that the central character considerations make this corollary
obvious when n is odd, and hence the nontrivial part is the case of an
even n.

As already mentioned in the introduction, conjecturally, H-distinguished
representations lie in the image of the base change map from U(n,E/F )
to GLn(E). There are two base change maps from U(n) to GLn(E),
stable and unstable. The precise conjecture is as follows (see [5]).

Conjecture 2 (Flicker-Rallis). Let π be an irreducible admissible
representation of GLn(E). Then π is H-distinguished if and only if it is
an unstable (resp. stable) base change lift from U(n) if n is even (resp.
odd).

Note that Conjecture 1 follows from Conjecture 2.
When π is in the discrete series, the images of the two base change

maps are believed to form two disjoint sets. Thus corollary 2.4 is in
agreement with this conjecture.

Dually we have (see [13, 14]):

Conjecture 3 (Jacquet-Ye). The representation π is distinguished
with respect to U(n) if and only if it is a base change lift from GLn(F ).

Remark 1. A finite field analogue of the above two conjectures can
be found in [8]. Moreover it is proved there that both the pairs have the
multiplicity one property (over a finite field).

Conjecture 2 is known when n = 2. In [5], Flicker deduces it from
a similar global result. A local proof is provided in [1]. There, closely
following a method due to Hiroshi Saito [20], images of the base change
lifts are characterised in terms of the local factors of the representation,
which characterise distinguishedness by a result of Jeff Hakim [10]. Re-
cently, in a joint work with C.S. Rajan, we have been able to prove
Conjecture 2 for n = 3, when π is in the discrete series. This is achieved
by closely analysing properties of the Asai L-function [4]. Conjecture 3
(globally) is known for n = 2, 3 from the work of Jacquet and Ye.

3. The symmetric space (RE/F U(n), U(n))

In this case G = GLn(E), and H = U(n). The pair (G,H) is
conjectured to be a supercuspidal Gelfand pair, and the conjecture has
been proved in several cases (see [11]). In this section we only recall
how this can be seen when n = 2.

Consider the group GL+
2 (F ) = {g ∈ GL2(F ) | det g ∈ NE/F (E∗)}.

Then we know that E∗GL+
2 (F ) = E∗U(2). Using this identity one proves

the following proposition.
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Proposition 3.1. Let π be an irreducible admissible representation
of GL2(E) with central character ωπ = µ◦NE/F for a character µ of F ∗.
Then π is U(2)-distinguished if and only if it is either µ-distinguished
or µω

E/F
-distinguished with respect to GL2(F ).

Moreover a µ-distinguished (or µω
E/F

-distinguished) functional is
a U(2)-distinguished functional. Conversely a U(2)-distinguished func-
tional uniquely determines a nonzero functional on which GL2(F ) acts
by µ (or µω

E/F
). Thus for a supercuspidal representation, the space

of H-invariant linear forms has dimension less than or equal to one by
Corollary 2.4.

On the other hand there are principal series representations of GL2(E)
which may admit a two dimensional space of H-invariant linear forms.
For instance, take π = Ps(χ, χ−1) where χ is a character of E∗ such
that χ = χσ. Then π is both distinguished and ω

E/F
-distinguished with

respect to GL2(F ) [10], and the corresponding functionals are U(2)-
distinguished.

4. The symmetric space (RE/F SL(n), SL(n))

Representation theory of SLn(E) can be understood in terms of the
representation theory of GLn(E) [7]. An irreducible admissible represen-
tation π of SLn(E) comes in the restriction of an irreducible admissible
representation π′ of GLn(E). It is a theorem of M. Tadic that the restric-
tion to SLn(E) of an irreducible admissible representation of GLn(E) is
multiplicity free [22]. If two representations of GLn(E) restrict to the
same representation of SLn(E), then they are equivalent up to a twist
by a character of E∗. Constituents in the direct sum decomposition of
a representation of GLn(E) form an L-packet of SLn(E).

Let π be an irreducible admissible representation of SLn(E) which
is distinguished with respect to SLn(F ). Let π′ be a representation of
GLn(E) such that π occurs in the restriction of π′. Thus π′ is distin-
guished with respect to SLn(F ). Consequently its central character ωπ′

is trivial on the nth roots of unity in F ∗. It follows that ωπ′ |F∗ = ηn for
a character η of F ∗. Thus we can assume, after twisting by a charac-
ter of E∗ if necessary, that ωπ′ restricts trivially to F ∗. Now the space
HomSLn(F )(π′, 1) has the structure of a GLn(F )-module (with the obvi-
ous action) on which F ∗SLn(F ) acts trivially. Thus it is a direct sum of
characters of F ∗ as a GLn(F ) module. Equivalently π′ is χ-distinguished
with respect to GLn(F ) for a character χ of F ∗. Hence there is no loss of
generality in assuming that π′ is distinguished with respect to GLn(F ).
Also dimCHomSLn(F )(π′, 1) equals the number of characters χ of F ∗ for
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which π′ is χ-distinguished with respect to SLn(F ). This is so since
dimCHomGLn(F )(π′, χ) ≤ 1.

Consider the subgroup of GLn(E) defined by

GLn(E)+ = {g ∈ GLn(E) | det g ∈ F ∗E∗n}.
Also let us fix a nontrivial additive character ψ of E which has trivial
restriction to F . Assume that π′ is tempered (this is because we need
to use Proposition 4.1).

In the restriction of π′ to GLn(E)+, exactly one representation is
ψ-generic, say π+. We contend that the SLn(F )-invariant linear forms
on π′ are nontrivial only on the space of π+ (among all the irreducible
constituents of π′|

GLn(E)+
). For the above claim we require the following

proposition (Corollary 1.2, [3]).

Proposition 4.1. Let π′ be a tempered representation of GLn(E)
that is GLn(F )-distinguished. Let ψ be a nontrivial additive character
of E that has trivial restriction to F . Then the (nontrivial) GLn(F )-
invariant linear form on π′ can be realized on the the ψ-Whittaker model
of π′ by `(W ) =

∫
Nn(F )\Pn(F ) W (p)dp. Here Pn(F ) is the mirabolic

subgroup of GLn(F ), and Nn(F ) is the unipotent radical of the Borel
subgroup of GLn(F ).

Further we have,

Proposition 4.2. All the constituents of the restriction of a rep-
resentation of GLn(E)+ to SLn(E) admit the same number of linearly
independent SLn(F )-invariant functionals.

Proof. Indeed the constituents are conjugates of one another under
the inner conjugation action of GLn(F ) on SLn(F ) (as GLn(F )SLn(E)E∗ =
GLn(E)+). ¤

Thus dimCHomSLn(F )(π, 1) is zero if π does not occur in the restric-
tion of π+ to SLn(E). Moreover this dimension is the same nonzero
number for all π that appear in the restriction of π+ to SLn(E). From
the preceding discussion it is clear that this dimension is

q(π) = q(π′) =
|Xπ′ |

|Zπ′ |/|Yπ′ |
where

Xπ′ = {χ ∈ F̂ ∗ | π′ is χ− distinguished},
Yπ′ = {µ ∈ Ê∗ | π′ ⊗ µ ∼= π′, µ|

F∗ = 1},
Zπ′ = {µ ∈ Ê∗ | π′ ⊗ µ ∼= π′},
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since |Zπ′ | is the cardinality of the L-packet of π, and |Yπ′ | is the number
of constituents in the restriction of π′ to GLn(E)+ (by the result of Tadic
quoted in the beginning of this section). Note that the cardinalities of
the sets above do not depend on the choice of π′.

Notice that q(π) is a non-negative integer. This is so since the group
Zπ′/Yπ′ acts freely on Xπ′ (assume Xπ′ is non-empty, q(π) = 0 other-
wise), and hence q(π) is the number of orbits.

All this information can be clubbed together as follows. Define a
pairing between Zπ′ and the L-packet of π by

< µ, π >= µ(a)

where π is ψa-generic. (ψa is the additive character of E given by
ψa(x) = ψ(ax)). Then

1
|Yπ′ |

∑

µ∈Yπ′

< µ, π >

is one if π comes in the restriction of π+, and zero otherwise. Thus we
have (see Theorem 1.4, [2]),

Theorem 4.3. Let π be an irreducible admissible representation of
SLn(E) that comes in the restriction of a tempered representation of
GLn(E). Then,

dimCHomSLn(F )(π, 1) =
q(π)
|Yπ|

∑

µ∈Yπ

< µ, π > .

Remark 2. There is another way of looking at the number q(π).
Define two equivalence relations on the set of all twists of π′ that are
distinguished with respect to GLn(F ) as follows:

π′1 ∼w π′2 ⇐⇒ π′1 ∼= π′2 ⊗ µ, µ ∈ Ê∗

π′1 ∼s π′2 ⇐⇒ π′1 ∼= π′2 ⊗ µ, µ ∈ Ê∗, µ|
F∗ = 1.

Then q(π) is the number of strong equivalence classes in a weak equiva-
lence class of π′.

5. Proof of Theorem 1.1

Let π be an irreducible admissible representation of SLn(E) which
is distinguished with respect to SLn(F ). Let π′ be a representation of
GLn(E) such that π comes in the restriction of π′ to SLn(F ).

We need to introduce the group

Y ′
π′ = {µ ∈ Ê∗ | π′ ⊗ µ ∼= π′, µ|

E1 = 1}
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where E1 denotes the norm one elements of E∗. We claim that the map

χ 7→ χ ◦NE/F

establishes an injection from Xπ′ to Y ′
π′ .

This is of course vacuously true if Xπ′ is empty. Otherwise, as be-
fore, we can assume that π′ is distinguished with respect to GLn(F ).
Then this is a well defined map follows from an application of Theo-
rem 2.2. Injectivity is a consequence of the fact that π′ cannot be both
distinguished and ω

E/F
-distinguished when n is an odd integer. (This

can be seen by considering central characters. This fact is not true in
general when n is even. See also Corollary 2.4). If we assume the truth
of Jacquet’s conjecture, this map is in fact a bijection, but we do not
need that.

Thus

q(π) ≤ |Yπ′ ||Y ′
π′ |

|Zπ′ |
.

If n is an odd integer, note that Yπ′
⋂

Y ′
π′ = {1}. Therefore the quantity

on the right side of the above inequality is
|Yπ′Y

′
π′ |

|Zπ′ | . This forces q(π) to
be zero or one, since we know that it is a non-negative integer.

Now let
π′|

GLn(E)+
= ⊕iπ

+
i

be the direct sum decomposition of π′ restricted to GLn(E)+, where π+
i

are inequivalent. Let ai denote the common dimension (by Proposition
4.2) of the space of SLn(F )-invariant forms on constituents of π+

i |SLn(E)
.

We conclude that ∑

i

ai = q(π).

Thus ai cannot be more than one, proving the theorem.
When n is an even integer, Yπ′

⋂
Y ′

π′ 6= {1} in general, and this
results in higher multiplicities. We restrict ourselves to just one example.

To this end, consider a quadratic extension K of F different from
E, and let η be a character of K∗ with trivial restriction to F ∗. Let L
denote the compositum of E and K. Also assume that K/F is such that
we can choose η so that η8 6= 1. Let π0 be the representation of GL2(F )
obtained by automorphically inducing η, and let π′ be the base change
lift of π0 to GL2(E).

Our assumption on η guarantees that π′ is a supercuspidal represen-
tation, and that |Zπ′ | = 2 (see [17, 21]). This forces |Y ′

π′ | = 2 (as either
µ or µ ◦NE/F has to be in Y ′

π′ if µ ∈ Zπ′). Since n = 2, Yπ′ = Y ′
π′ . Thus

in this case q(π) = 2.
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