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Let E/F be a quadratic extension of p-adic fields. We compute the value of ε( 1
2 , π , r, ψ )

for a square integrable representation π of GLn(E ), which is (Galois) conjugate self-dual,

where r denotes the Asai representation. This is the twisted version of a well-known

result due to Bushnell and Henniart. The proof makes use of a result on the corresponding

global root number, which is proved by a method conceived by Lapid and Rallis.

1 Introduction

A representation (π , V ) of a group G is said to be distinguished with respect to a character

χ of a subgroup H if there exists a linear form � of V such that �(π (h)v) = χ (h)�(v) for all

v ∈ V and h ∈ H . The representation is said to be distinguished with respect to H if χ

is the trivial character. The concept of distinction is especially important when H is the

fixed group of an involution on G. In this case, according to the philosophy of Jacquet,

H-distinguished representations of G are often functorial lifts from another group G ′

[18].

In the global context of automorphic representations, distinction is defined in

terms of the nonvanishing of the period integral. Suppose F is a number field and AF its

ring of adeles. Let G be a reductive algebraic group over F and H a reductive subgroup

of G over F . Assume that the center ZH of H is contained in the center ZG of G. Let χ be a

one-dimensional representation of H (AF ) trivial on H (F ) such that ZH (AF ) acts trivially
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on φ(h)χ−1(h). Then a cuspidal representation π of G(AF ) is said to be χ-distinguished if

the period integral

∫
H (F )ZH (AF )\H (AF )

φ(h)χ−1(h)dh

is nonzero for some φ ∈ π .

In this paper, we are interested in the pair G = GLn(E ) and H = GLn(F ), where

E/F is a quadratic extension of p-adic fields (or the corresponding adelic situation) [8].

A cuspidal (resp. square integrable) representation π of GLn(AE ) (resp. GLn(Ew)) being

distinguished is characterized by the global (resp. local) Asai L-function having a pole at

s = 1 (resp. s = 0) [2, 7]. Thus it follows from the following factorization of L-functions

[12, 19]

L(s, π × πσ ) = L(s, π , r)L(s, π ⊗ κ, r)

that π∨ � πσ , i.e. π is conjugate self-dual, if and only if π is distinguished or distin-

guished with respect to the quadratic character ωE/F (but not both). Here κ is an extension

of ωE/F to A
∗
E (or E∗

w) and r is the Asai representation [7, 12].

We note that the characterization of distinction in terms of poles of Asai L-

functions reduces to well-known results in the case when E = F ⊕ F . In this case,

G = GLn(F ) × GLn(F ) and a representation π of G is of the form π1 ⊗ π2. Now the

Asai representation is just the tensor product and consequently the Asai L-function

L(s, π , r) is nothing but the Rankin–Selberg L-function L(s, π1 × π2). The represen-

tation π is distinguished precisely when π1 and π2 are duals of each other and

this is characterized by L(s, π1 × π2) having a pole at s = 0 (or s = 1 in the global

case).

We now turn our attention to the epsilon factor ε(s, π , r, ψ ), where ψ is an additive

character of F [36]. We want to compute the value of ε( 1
2 , π , r, ψ ) when π is distinguished.

Bushnell and Henniart have computed the corresponding epsilon value in the case when

E = F ⊕ F [4]. For an irreducible admissible representation π of GLn(F ), they show that

ε( 1
2 , π × π∨, ψ ) = ωπ (−1)n−1, where ωπ is the central character of π . That the epsilon value

is ±1 is clear from the local functional equation and the theorem of Bushnell and Henniart

fixes this sign. The local result of course would imply the global result ε( 1
2 , π × π∨) = 1

for a cuspidal representation π of GLn(AF ).

Now let E/F be a quadratic extension of p-adic fields and let π be an irreducible

admissible representation of GLn(E ). The epsilon factor ε(s, π , r, ψ ) satisfies the following
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identity [36]:

ε(s, π , r, ψ )ε(1 − s, π∨, r, ψ−1) = 1.

Thus if π∨ � πσ , it can be deduced (cf. 2.1, (d)) that

ε(1/2, π , r, ψ )2 =
{

ωE/F (−1)(
n
2) if π is distinguished

ωE/F (−1)(
n+1

2 ) if π is ωE/F -distinguished,

where ωE/F is the quadratic character of F ∗ associated to E/F . Our main theorem com-

putes this epsilon value when π is a square integrable representation.

Let λ(E/F , ψ ) denote Langlands’ λ-factor. This is the root number of the quadratic

character ωE/F and thus λ(E/F , ψ )2 = ωE/F (−1).

Theorem 1.1. Let E/F be a quadratic extension of p-adic fields and let π be an irre-

ducible square integrable representation of GLn(E ) such that π∨ � πσ . Then

ε(1/2, π , r, ψ ) =
{

ωπ (δ)n−1λ(E/F , ψ )(
n
2) if π is distinguished

ωπ (δ)n−1λ(E/F , ψ )(
n+1

2 )ωE/F (−1)(
n
2) if π is ωE/F -distinguished,

where δ is an element of E∗ of trace zero. �

Note that in the above theorem, ωπ (δ)n−1 does not depend on the choice of δ.

Indeed, if π is distinguished, ωπ has trivial restriction to F ∗ and hence ωπ (δ) itself does

not depend on the choice of δ. If π is ωE/F -distinguished, ωπ |F∗ = 1 or ωE/F depending on

whether n is even or odd. Again the claim follows.

The proof of Theorem 1.1 is by global means, making use of the following global

theorem.

Theorem 1.2. Let E/F be a quadratic extension of number fields. Let π be an irreducible

cuspidal representation of GLn(AE ) such that π∨ � πσ . Then ε( 1
2 , π , r) = 1. �

We note that Theorem 1.2 should be viewed as an instance of an automorphic

analogue of the well-known result of Fröhlich and Queyrut according to which the Artin

root number of an orthogonal Galois representation is always 1 [6, 10]. In general, one

expects the global root number ε( 1
2 , π , ρ) to be 1 if the Langlands parameter of π composed

with ρ is orthogonal. Recently Lapid and Rallis verified this expectation for root numbers

of symmetric square and exterior square L-functions [23] (see [25], and more generally
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[26], for another instance of this). For a precise conjecture about the root numbers of

automorphic L-functions, we refer to [30].

Theorem 1.2 will be proved by the method of Lapid and Rallis [23]. Consider

the quasi-split unitary group G = U (n, n) in 2n variables with a maximal parabolic P =
MU , where we identify M with RE/F GLn. Let π = ⊗vπv be a cuspidal representation

of GLn(AE ), which is distinguished with respect to GLn(AF ). From the inner product

formula for residues of Eisenstein series associated to the representation I (π , s) of G

parabolically induced from π ⊗ | |s
E
, it follows that the form (M−1φ1, φ2) defined on I (π , 1

2 )

is positive semi-definite, where M−1 is the residue of the intertwining operator M(s) :

I (π , s) −→ I (π , −s) at s = 1
2 (here π is identified with its conjugate dual). Now consider

the normalized intertwining operator R(s) = ⊗v Rv(s) given by M(s) = m(s)R(s), where

m(s) = L(2s, π∨, r)

ε(2s, π∨, r)L(2s + 1, π∨, r)
.

From the properties of the normalized intertwining operator, it follows that the form

(R( 1
2 )φ1, φ2) on I (π , 1

2 ) is semi-definite. Using a local argument originally due to Keys and

Shahidi [20], the multiplicativity of the normalized intertwining operators and the theory

of R-groups [13], one shows that the Hermitian form (Rv(0)φ1,v, φ2,v) on I (πv, 0) is positive

definite on I (πv, 0). A continuity argument on K-types of I (πv, s) for 0 ≤ s ≤ 1
2 , and the crux

of the work of Lapid and Rallis is to make this continuity argument work, will show that

the form (Rv( 1
2 )φ1,v, φ2,v) on I (πv, 1

2 ) is positive semi-definite. It follows that the global form

(R( 1
2 )φ1, φ2) is positive semi-definite, as the global form is a product of the local forms

(Rv( 1
2 )φ1,v, φ2,v). Therefore the residue of m(s) at s = 1

2 is positive and from this we can

conclude that the Asai root number of π is 1 whenever π is distinguished with respect

to GLn(AF ). As already observed before, the local theorem of Bushnell and Henniart [4]

implies that the global root number ε(s, π × πσ ) is 1. Therefore, as we already know that

one of the factors in

ε(s, π × πσ ) = 1 = ε(s, π , r)ε(s, π × κ, r)

is 1, so is the other one too, proving Theorem 1.2.

At this point, it needs to be pointed out that it is more standard to define I (π , s) as

IndG
P (π ⊗ | |s/2

E
) in the Langlands–Shahidi paradigm. However, we make the transformation

s → 2s, and this explains the appearance of 2s in the normalizing factor m(s), to be

consistent with the work of Lapid and Rallis.

As for Theorem 1.1, we first prove it in the case of a supercuspidal distinguished

representation. Assuming that we have proved Theorem 1.2, the idea to prove Theorem 1.1



Root Numbers of Asai L-Functions 5

is to globalize the supercuspidal distinguished representation πv of GLn(Ev) to a cuspidal

distinguished representation π of GLn(AE ) in a suitable way by appealing to the glob-

alization theorem of Hakim and Murnaghan [16]. In fact, we will make use of a refined

form of the globalization theorem due to Prasad and Schulze-Pillot [33], so that we can

assume that the finite components of π outside v are unramified. The local epsilon values

of these unramified representations as well as the archimedean components will then

be computed by making use of the theorem of Bushnell and Henniart [4] and by using

properties of the Asai representation r. These computations together with Theorem 1.2

will establish Theorem 1.1 in this case. Now the root number of an ωE/F -distinguished su-

percuspidal representation can be computed by employing a somewhat similar strategy.

The square integrable case is then dealt with by making use of the multiplicativity of

γ -factors. Of crucial importance in carrying out this step is the following theorem, which

says when the generalized Steinberg representation is distinguished (cf. Section 4.4 of

[3]).

Theorem 1.3. Let τ be an irreducible supercuspidal representation of GLa (E ) and let

π = St(τ ) be the unique square integrable constituent of the representation parabolically

induced from τ | |
1−b

2
E ⊗ · · · ⊗ τ | |

b−1
2

E . If b is odd (resp. even), then π is distinguished with

respect to GLn(F ), where n = ab, if and only if τ is distinguished (resp. ωE/F -distinguished)

with respect to GLa (F ). �

For other instances of local epsilon factor computations of similar flavor, see [32].

In the final section of this paper, we make a conjecture about the value of

ε( 1
2 , π1 × π2, ψ ′), where πi are irreducible admissible representations of GLni (E ) distin-

guished with respect to GLni (F )(i = 1, 2). We also indicate how Theorem 1.1 provides

some evidence towards this conjecture. The interest in these epsilon values stems out of

the fact that they characterize distinction as well as functorial lifts from unitary groups

in the case when n1 = 2, n2 = 1 [1, 15], thus leading to a proof of the Flicker–Rallis con-

jecture, which links distinction with lifting from the unitary groups [8]. Assuming that a

distinguished representation descents to U (n) and that this descent preserves the epsilon

factor, we also demonstrate that our conjecture is in agreement with the calculation of

the local root number, of a representation of U (n), defined via the doubling method of

Piatetski-Shapiro and Rallis [26]. We refer to [24] for a concrete situation in a similar

setting where the descent method plays an important role. Motivated by the analysis

of representations of “G-type” as in the work of Lapid and Rallis [23] as well as by cer-

tain computations on the Langlands parameters by D. Prasad (cf. p. 431, [31]), in this
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section we also conjecturally relate distinction with intertwining operators on induced

representations.

It should be noted that the local L-functions and the ε-factors can be defined in

three distinct ways: via the Langlands formalism on the Galois side of the Langlands

correspondence, via the Langlands–Shahidi method applied to a suitable unitary group

[12, 36], and via the Rankin–Selberg approach [9, 19]. The first and second definitions of

the L-function match and the corresponding definition of epsilon factors match up to

a root of unity by the work of Henniart [17]. Similar matching holds true in the second

and third definitions too, but this is known only when the representation is square

integrable [3]. The L-function and the ε-factor of this paper are the ones defined by

the Langlands–Shahidi method. Computing the local Asai root number defined via the

Rankin–Selberg integrals is an interesting problem, which we do not address in this

paper (cf. Remark 4.4).

Finally, a word about the notation: we will index local constituents of global

objects by places of F . For instance, πv denotes πw if v is a place of F that is inert in

E and w is the unique place of E lying over v and it denotes πw1 ⊗ πw2 if v splits as

w1w2. Thus, L(s, πv, r) signifies either the Asai L-function L(s, πw, r) or the Rankin–Selberg

L-function L(s, πw1 × πw2 ).

2 Preliminaries

2.1 The Asai representation

The Asai representation r is a representation of

L [RE/F GL(n)] = GLn(C) × GLn(C) � Gal(E/F )

(where σ acts by swapping) on C
n ⊗ C

n is given by

r((a, b))(x ⊗ y) = ax ⊗ by,

r(σ )(x ⊗ y) = y ⊗ x.

This representation r is equivalent to the adjoint action of L [RE/F GL(n)] on the Lie algebra
Ln of the unipotent radical of the parabolic subgroup of U (n, n) with Levi component
L [RE/F GL(n)] [7]. Given an n-dimensional representation ρ of the Weil–Deligne group WE
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of E , via r, we get an n2-dimensional representation, say r(ρ), of the Weil–Deligne group

WF of F .

For general properties of r, we refer to [29]. We, however, list a few properties

that we will need. Suppose ρ is a representation of WE . Then,

(a) r(ρ)|WE = ρ ⊗ ρσ

(b) r(ρ1 ⊕ ρ2) = r(ρ1) ⊕ r(ρ2) ⊕ IndWF
WE

(ρ1 ⊗ ρσ
2 )

(c) r(ρ) = r(ρσ )

(d) det r(ρ) = r(det ρ)nω
(n

2)
E/F .

We start with a small lemma in view of which a result of the type of Theorem 1.2 should

be expected.

Lemma 2.1. If ρ is an irreducible representation of WE such that ρ∨ ∼= ρσ , then r(ρ) is

orthogonal. �

Proof. First, r(ρ) is self-dual by (c). Now fix a nondegenerate bilinear form, unique up to

scaling, B : ρ × ρ −→ C such that B(gv, gσ w) = B(v, w). Then there exists a constant c(ρ) ∈
{±1} such that B(v, w) = c(ρ)B(w, v). We can define a nondegenerate invariant bilinear

form on r(ρ) by sending (v1 × v2, w1 × w2) to B(v1, w2)B(w1, v2). �

Remark 2.2. The constant c(ρ) is introduced by Rogawski (cf. 15.1, [34]). If ρ∨ ∼= ρσ , then

r(ρ) contains the trivial representation if and only if c(ρ) = 1. �

The factorization of the Rankin–Selberg L-function L(s, π × πσ ) given in the in-

troduction is formally a consequence of (a). The factorization

L
(
s, πv × πσ

v

) = L(s, πv, r)L(s, πv ⊗ κv, r)

holds at all the finite places v of F . This is proved by Goldberg via the Langlands–Shahidi

method [12]. Alternatively, one can deduce this from the formal property (a) by appealing

to Henniart’s result [17]. At the archimedean places, the L-function that we consider

coincides with the Langlands L-function on the Galois side [36] and hence property (a)

can be employed again. Hence we have the global identity

L(s, π × πσ ) = L(s, π , r)L(s, π ⊗ κ, r),
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where π is a cuspidal representation of GLn(AE ). From the global functional equations

[36]

L(s, π , r) = ε(s, π , r)L(1 − s, π∨, r)

and

L(s, π1 × π2) = ε(s, π1 × π2)L
(
1 − s, π∨

1 × π∨
2

)
,

it follows that we have the following global identity:

ε(s, π × πσ ) = ε(s, π , r)ε(s, π ⊗ κ, r). (1)

Similarly, starting with property (c), we get

L(s, π , r) = L(s, πσ , r) & ε(s, π , r) = ε(s, πσ , r). (2)

Remark 2.3. The theorem, quoted in Section 1, due to Bushnell and Henniart [4] implies

that ε( 1
2 , π × π∨) = 1 for a cuspidal representation of GLn(AE ). Thus if π is such that

π∨ � πσ , it follows from the identity (1) that

ε
(

1
2 , π , r

) = ε
(

1
2 , π ⊗ κ, r

)
.

This is because π∨ � πσ implies that both these epsilon values are ±1 as can be seen

from the global functional equation of Asai L-functions. �

Lemma 2.4. Let E/F be a quadratic extension of p-adic fields. Let π be an irreducible

admissible generic representation of GLn(E ). Then,

L(s, π , r) = L(s, πσ , r),

and

ε(s, π , r, ψ ) = ε(s, πσ , r, ψ ). �

Proof. The equality of L-functions is a formal consequence of property (c), as by

Henniart’s work [17], the Langlands–Shahidi L-function is the same as the L-function on

the Galois side.

If π is a (unitary) supercuspidal representation, then the equality of epsilon

factors once again follows from the work of Henniart (cf. 1.8, [17]). This is because it is
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possible to realize a supercuspidal representation as a component of a global cuspidal

representation in such a way that at all the other finite places, the local representation

is unramified (Proposition 5.1, [36]).

Now the general result follows from the inductive property of the γ -factors (cf.

(3.13), Theorem 3.5, [36]), the knowledge of how the γ -factor behaves under twisting by

unramified characters (cf. (3.12), Theorem 3.5, [36]), and by the first part of the lemma.

�

Remark 2.5. A general method to establish an equality for two possibly different defi-

nitions of L-functions at “bad” places applies once there are global functional equations,

equality of the L-functions at all the “good” places, and regularity in the region Re(s) ≥ 1
2

for the “bad” L-functions. Thus the knowledge of equality of two L-functions at all the

unramified places and the split places leads to the equality of the L-functions for a

square integrable representation. If multiplicativity is known for the corresponding γ -

factors, the equality can be extended to all irreducible admissible representations. For

more details, see the remarks in Section 3 of [3] and the references therein. �

Remark 2.6. Henniart’s work on equality of Asai L-functions also implies that the

corresponding epsilon factors are equal up to a root of unity. �

2.2 Intertwining operators

Let Jn be the n × n matrix whose (i, j) entry is (−1)n−iδi,n− j+1. Let G = U (n, n) be the

quasi-split unitary group in 2n variables associated to the quadratic extension E/F of

number fields defined with respect to the form J2n.

Let B = TU denote the Borel subgroup of G over F corresponding to the upper

triangular matrices. Let A0 be the maximal F -split torus in T . Then,

A0(F ) = diag
(
x1, . . . , xn, x−1

n , . . . , x−1
1

)
.

The restricted root system �(G, A0) is of type Cn. We identify the set of positive roots

determined by U with {ei ± ej, 2ek | 1 ≤ i < j ≤ n, 1 ≤ k ≤ n}, where the ei’s denote the

standard basis vectors of R
n. Let � = {ei − ei+1, 2en | 1 ≤ i ≤ n − 1} be a subset of simple

roots.

Let P = MN be a maximal parabolic of G generated by θ = � − {α}, where α = 2en.

We identify M(AF ) with GLn(AE ) and N(AF ) is given by

N(AF ) =
{(

In X

0 In

)
| X ∈ Mn(AE ); t Xσ = Jn X Jn

}
.
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Let w̃ be the unique element of the Weyl group of A0 in G such that w̃(θ ) ⊂ � and w̃(α) < 0.

Then w̃ corresponds to the n × n matrix with −1 on its antidiagonal and zeros elsewhere.

Note that P is self-conjugate; i.e. w̃(θ ) = θ . Let us also choose a representative w of w̃ in

G following the recipe given in [20]. Thus,

w =
(

0 (−1)n−1 In

−In 0

)
,

and hence w2 = (−1)n I2n. With our identification of M with RE/F GL(n), w becomes the

involution Jn
t g−σ J−1

n .

We fix a nontrivial additive character ψ = ⊗vψv of AF , which is trivial on F . Then,

(xi, j) −→ ψ
((

x1,2 + xσ
1,2

) + · · · + (
xn−1,n + xσ

n−1,n

) + xn,n+1
)

defines a nondegenerate character of U (AF )/U (F ), which we continue to denote by ψ .

If π is a cuspidal representation of GLn(AE ), let I (π , s) denote the normalized

induced representation

IndG
P

(
π ⊗ | |s

E

)
.

We define the global intertwining operator M(s, π ) by

M(s, π )φs(g) =
∫

N(AF )
φs(w

−1ng)dn,

where g ∈ G and φs ∈ I (π , s). Then M(s, π ) maps I (π , s) to I (wπ , −s) = I (π∨σ , −s). In a similar

fashion, in the local case we can define the local intertwining operators between the local

induced representations. We have

M(s, π ) = ⊗v M(s, πv),

where π = ⊗πv.

Consider the Eisenstein series

E (s, φ, g) =
∑

γ∈P (F )\G(F )

φs(γg),

where φs is a K-finite vector in I (π , s). It is known that the series converges for Re s large,

it extends to a meromorphic function of s in C, with only a finite number of poles in the

plane Re s ≥ 0, all simple and on the real axis, and that the poles of the Eisenstein series

coincide with those of its constant terms.
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Let R(s, π ) and R(s, πv) = Rψv (s, πv) denote Shahidi’s normalized intertwining oper-

ators. In our situation, the adjoint action r of L M on Ln is irreducible and in the notation

of Shahidi [36], r = r1. Thus, we have R(s, πv) = mv(s, πv)M(s, πv), where the normalization

factor mv(s, πv) = mψv
v (s, πv) is given by

λ(Ev/Fv, ψv)(
n
2)L

(
2s, π∨

v , r
)

ε
(
2s, π∨

v , r, ψ−1
v

)
L
(
2s + 1, π∨

v , r
) . (3)

Remark 2.7. Note that we have the λ-factor coming in the normalization. The λ-factor

is thrown in in order to prove that the normalized operator is Hermitian when πv is

conjugate self-dual (cf. Proposition 2.10). The appearance of this factor does not affect the

analytic properties of the intertwining operator. Also note that the factor λ(Ev/Fv, ψv)(
n
2)

is precisely the constant λG (ψv, w) that appears in the formula for the local coefficient in

Shahidi’s paper (cf. (3.11), p. 289, [36]). �

The so-called Assumption (A) of Kim [21] is known in our case (for instance, see

Proposition 5.2 of [22]):

Proposition 2.8. R(s, πv) is holomorphic and nonvanishing for Re s ≥ 1
2 for any v. �

Remark 2.9. In fact, Kim and Krishnamurthy obtain holomorphy and nonvanishing for

Re s > − 1
2 (cf. Proposition 9.4, [22]). �

2.3 The inner product formula

Let R(s, π ) = ⊗v R(s, πv). Then M(s, π ) = m(s, π )R(s, π ), where

m(s, π ) = L(2s, π∨, r)

ε(2s, π∨, r)L(2s + 1, π∨, r)
.

Thanks to Proposition 2.8, it follows that the singularities of E (s, φ, g) in Re s ≥ 0 coincide

with those of L(2s, π∨, r) (cf. Proposition 2.2, [11]) and hence the only possible singularity

of E (s, φ, g) in Re s ≥ 0 is a simple pole at s = 1
2 . Further, one knows that this pole occurs

if and only if π is distinguished with respect to GLn(AF ) [7]. Thus, if π is distinguished

with respect to GLn(AF ), then m(s, π ) will have a pole at s = 1
2 and the residue there is

given by

m−1 = 1

2
· ress=1L(s, π∨, r)

ε(1, π∨, r)L(2, π∨, r)
= 1

2
· ress=1L(s, π , r)

ε(1, π , r)L(2, π , r)
, (4)

since π∨ � πσ and L and ε are invariant under the Galois action (cf. Lemma 2.4).
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Let E−1(φ, ·) denote the residue of E (s, φ, g) at s = 1
2 . In particular, it is identically

zero unless π∨ ∼= πσ , since this condition is necessary for π to be distinguished. The inner

product formula for two residues of Eisenstein series [23, 27] is given, up to a positive

constant, by

∫
G(F )\G(AF )

E−1(φ1, g)E−1(φ2, g) dg =
∫

K

∫
A

∗
E GLn(E )\GLn(AE )

M−1φ1(mk)φ2(mk) dm dk, (5)

where K is the standard maximal compact of G(AF ) and M−1 is the residue of the inter-

twining operator M(s, π ) at s = 1
2 .

Now suppose π = ⊗vπv is distinguished with respect to GLn(AF ), where the re-

stricted tensor product is taken with respect to a choice of unramified vectors ev almost

everywhere. Let (·, ·)π be the invariant positive definite Hermitian form on π . This gives

rise to the invariant nondegenerate sesqui-linear form

(·, ·)s : I (π , −s) × I (π , s) −→ C

given by

(φ1, φ2)s =
∫

K
(φ1(k), φ2(k))π dk.

Note that the right-hand side of (5) viewed as a positive definite invariant Hermitian

form on I (π , 1
2 ) is (M−1φ1, φ2) 1

2
. Choose positive definite Hermitian forms (·, ·)πv

on πv for

all v so that (ev, ev)πv
= 1 almost everywhere. We get sesqui-linear forms (·, ·)v,s as above.

Then, (·, ·)π = ⊗v(·, ·)πv
and (·, ·)s = ⊗v(·, ·)v,s up to a positive constant.

Proposition 2.10. Suppose πv is such that π∨
v

∼= πσ
v . Then, the normalized operator

Rψv (s, πv) is Hermitian for s ∈ R. �

Proof. The adjoint of

M(s, πv, w) : I (πv, s) −→ I (wπv, −s)

is the operator

M(s̄, wπv, w−1) : I (wπv, s̄) −→ I (πv, −s̄)

(cf. Proposition 2.4.2, [35]). Since w2 = (−1)n I2n, it follows that M(s, πv, w)� =
ωπv

(−1)nM(s, πv, w) for s real. Since πv is unitary, we have,

L
(
2s, π∨

v , r
) = L(2s̄, πv, r),
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and

ε
(
2s, π∨

v , r, ψ−1
v

) = ε(2s̄, πv, r, ψv).

Therefore we see that

mψv
v (s, πv) = ωπv

(−1)nmψv

v (s, πv)

for s ∈ R, by Lemma 2.4, property (d) of Section 2.1, and Remark 2.6. The proposition

follows. �

3 Proof of Theorem 1.2

3.1 Idea of the proof

We proceed as in Lapid–Rallis. Let π be a cuspidal representation of GLn(AE ) dis-

tinguished with respect to GLn(AF ). We consider the form J(π , s) on I (π , s) defined by

(R(s)φ1, φ2)s, where s ∈ R and R(s) = R(s, π ) is the normalized intertwining operator. From

(5), we know that (M−1φ, φ) 1
2

≥ 0. Now M−1 = m−1 R( 1
2 ), and therefore it follows that J(π , 1

2 )

is semi-definite with the same sign as m−1. As in [23], the idea is to show that J(π , 1
2 ) is

positive semi-definite and to conclude that m−1 > 0.

We know that L(s, π , r) is holomorphic and nonzero for Re s > 1 [7]. Since π is

unitary, L(s, π , r) = L(s, π∨, r). Since s ∈ R and π∨ ∼= πσ as π is distinguished, we see that

L(s, π , r) is real and nonzero for s > 1 by (2). Therefore we get

ress=1L(s, π , r)

L(2, π , r)
> 0.

Hence (4) implies that ε(1, π , r) > 0. Similarly, ε(s, π , r) is real (and nonzero) and so

ε( 1
2 , π , r) > 0. Now from the functional equation, we have

ε(s, π , r)ε(1 − s, π∨, r) = 1

and hence ε( 1
2 , π , r) = ±1 again by (2). This proves that ε( 1

2 , π , r) = 1 if π is distinguished. If

π∨ ∼= πσ , then either π or π ⊗ κ is distinguished by the factorization of global L-functions

given in the introduction. Now Theorem 1.2 follows from (1).

3.2 The continuity argument

We need to show that J(π , 1
2 ) is positive semi-definite. The form J(π , s) admits a local

analogue and we have J(π , s) = ⊗v Jψv (πv, s) up to a positive constant. We know that
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Jψv (πv, 1
2 ) is Hermitian (cf. Proposition 2.10). It is also semi-definite. We will prove that

each Jψv (πv, 1
2 ) is positive semi-definite. Observe that in the unramified situation, that is

when both Ev/Fv and πv are unramified, this latter claim is obvious as R(s, πv) fixes the

spherical vector for all s.

We can follow [23] verbatim. We will only summarize the key points here. The

first step is to reduce to the case of tempered πv. There is a continuous path πv,t , t ∈
[0, 1], inside unitary generic conjugate self-dual representations, from πv = πv,1 to the

tempered representation πv,0. As in [23], one can prove that if Jψv (πv, 1
2 ) is semi-definite

then Jψv (πv,0, 1
2 ) is semi-definite with the same sign, by applying the following elementary

lemma to the family of Hermitian forms {J(πv,t , 1
2 ), 0 < t ≤ 1} on K-types of I (πv,t , 1

2 ). The

proof of the fact that the rank of J(πv,t , 1
2 ) is constant on a K-type requires a subtle

analysis of reducibility of certain induced representations (cf. p. 22, [23]).

Lemma 3.1. Let {Js}a≤s≤b be a continuous family of Hermitian forms on a finite-

dimensional vector space. Suppose that rank(Js) is constant for a ≤ s ≤ b. Then the pos-

itive and negative parts of the signature of Js are also constant in [a, b]. �

Since J(π , 1/2) is known to be semi-definite, each J(πv, 1/2) is semi-definite. We

may also assume that πv is tempered. Employing the theory of R-groups as in [13], it can

be shown that semi-definiteness of J(πv, 1/2) implies that πv is of “G-type” (cf. Section

5.3). In that case, the multiplicativity of normalized intertwining operators implies that

R(0, πv) is a scalar (cf. Lemma 6 of [23]).

In the next section, following an argument due to Keys and Shahidi, we will show

that

• R(0, πv) fixes the ψv-generic irreducible constituent of I (πv, 0).

Therefore it follows that R(0, πv) = I on I (πv, 0) and that the Hermitian form J(πv, 0) is

positive definite on K-types of I (πv, 0). By the results of Casselman–Shahidi and Muić

[5, 28], it follows that I (πv, s) is irreducible for 0 < s < 1
2 . Thus J(πv, s) is nondegenerate on

a given K-type. Applying Lemma 3.1 again, we see that J(πv, 1/2) is positive semi-definite.

Therefore, J(π , 1/2) is positive semi-definite.

3.3 The Keys–Shahidi argument

We need to show that R(0, πv) fixes the ψv-generic part of I (πv, 0). To this end, let λψv
(s, πv)

be the Whittaker functional on I (πv, s) and let λψv
(−s, wπv) = λψv

(−s, π∨σ
v ) be the Whittaker
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functional associated to I (π∨σ
v , −s). By [35], λψv

is entire and nonvanishing. Moreover,

there exists a complex number Cψv
(s, πv, w), called the local coefficient, such that

λψv
(s, πv) = Cψv

(s, πv, w)λψv
(−s, wπv)M(s, πv, w).

By (3.11) of [36], the local coefficient is given by

Cψv
(s, πv, w) = ε

(
2s, π∨

v , r, ψ−1
v

)
L(1 − 2s, πv, r)

λ(E/F , ψv)(
n
2)L

(
2s, π∨

v , r
) .

Therefore, from (3), we get that

λψv
(s, πv)(φv) = L(1 − 2s, πv, r)

L(1 + 2s, πv, r)
· λψv

(−s, πv)(R(s, πv)(φv)) (6)

by appealing to Lemma 2.4, since π∨
v

∼= πσ
v . Since L(s, πv, r) is holomorphic at s = 1 (cf.

Proposition 7.2, [36]), it follows from (6) that R(0, πv) fixes the ψv-generic irreducible

constituent of I (πv, 0).

4 Proof of Theorem 1.1

We start with the following globalization result [16, 33].

Proposition 4.1. Let E/F be a quadratic extension of p-adic fields. Let π be a supercus-

pidal representation of GLn(E ), which is distinguished with respect to GLn(F ). Then the

following hold.

1. There exist a number field F̃ , a quadratic extension Ẽ of F̃ , and a place v0 of

F̃ inert in Ẽ such that F̃v0 � F and Ẽw0 � E , where w0 is the unique place of

Ẽ dividing v0. Moreover, the archimedean places of F̃ split in Ẽ .

2. There exists a cuspidal representation � of GLn(AẼ ), which is distinguished

with respect to GLn(AF̃ ) such that �w0 � π . Moreover, � can be taken to be

unramified at all the finite places outside w0. �

Let � be a cuspidal representation as in Proposition 4.1. Since � is distinguished,

�∨ � �σ and therefore by Theorem 1.2, we get ε( 1
2 , �, r) = 1. Let � be an additive character

of AF /F such that �v0 = ψ .

We have

ε(s, �, r) =
∏
w|v

ε(s, �w, r, �v) ·
∏

v=w1w2

ε
(
s, �w1 × �w2 , �v

)
. (7)
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Since � is distinguished, we will have that each �w is distinguished and that �w1 and

�w2 are duals of each other. By the result of Bushnell and Henniart, we get:∏
v=w1w2

ε

(
1

2
, �w1 × �w2 , �v

)
=

∏
v

ε

(
1

2
, �v × �∨

v , �v

)
=

∏
v

ω�v
(−1)n−1.

Next we do a local unramified computation.

Proposition 4.2. Let π = I (χ1, χ2, . . . , χn) be an unramified representation of GLn(E ),

which is distinguished with respect to GLn(F ). Then ε( 1
2 , π , r, ψ ) = ωπ (δ)n−1λ(E/F , ψ )(

n
2).

�

Proof. Since π is unramified and distinguished,

π∨ � πσ � π

and ωπ |F∗ = 1. Therefore without loss of generality we conclude that there exists 1 ≤ l ≤ n

such that

χ−1
1 = χ2, χ−1

3 = χ4, . . . , χ−1
2l−1 = χ2l

and

χ−1
i = χi for i = 2l + 1, 2l + 2, . . . , n.

Since there is only one unramified quadratic character of E∗, call it µ, it follows that π

is of the form

π = I
(
χ1, χ−1

1 , . . . , χl , χ
−1
l , 1, . . . , 1, µ, . . . , µ

)
for characters χi of E∗. We also note that the identity (b) of the second section can be

used to compute the epsilon value since we know that for an unramified π , the epsilon

factor defined by the Langlands–Shahidi method matches the one defined on the Galois

side of the Langlands correspondence [36]. Also note that r(χ ) = χ |F∗ . Now

ε
(

1
2 , χi|F∗ , ψ

)
ε
(

1
2 , χ−1

i |F∗ , ψ
) = χi(−1) = 1,

since χi is unramified. We observe that if the number of µ’s coming in π is odd, then

µ|F∗ = 1 from the condition on the central character of π . If this number is even, the µ’s

can be paired up. Thus

ε
(

1
2 , µ|F∗ , ψ

) × · · · × ε
(

1
2 , µ|F∗ , ψ

) = 1,
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since µ(−1) = 1. Now

ε
(

1
2 , IndF

E (χ ), ψ
) = λ(E/F , ψ )ε

(
1
2 , χ , ψE

)
,

where ψE (x) = ψ (trace E/F (x)). Note that

• ε( 1
2 , µ, ψE ) = µ(δ) if µ|F∗ = 1, where δ is a trace zero element of E , by a theorem

due to Fröhlich and Queyrut [10];

• ε( 1
2 , µ2, ψE ) = 1, since µ2 = 1;

• products of the form ε( 1
2 , χ , ψE )ε( 1

2 , χ−1, ψE ) = χ (−1) = 1, since χ is unramified;

• products of the form ε( 1
2 , χµ, ψE )ε( 1

2 , χ−1µ, ψE ) = χµ(−1) = 1, since χ and µ are

unramified.

This proves the proposition. �

Remark 4.3. Note that when E = F ⊕ F , the factor ωη(δ)n−1λ(E/F , ψ )(
n
2) takes the form

ωπ (−1)n−1, where η = π ⊗ π∨. �

Now let δ be a trace zero element in Ẽ . We conclude that the right-hand side of

(7) is

ε

(
1

2
, π , r, ψ

)
·
∏
v �=v0

ω�v
(δ)n−1λ(Ev/Fv, ψv)(

n
2).

On the other hand, the left-hand side of (7) is 1 by Theorem 1.2. Since∏
v

ω�v
(δ)n−1λ(Ev/Fv, ψv)(

n
2) = 1,

it follows that

ε
(

1
2 , π , r, ψ

) = ωπ (δ)n−1λ(E/F , ψ )(
n
2),

if π is a supercuspidal representation of GLn(E ) distinguished with respect to GLn(F ).

It is easy to see that if π = I (χ1, . . . , χn) is unramified and distinguished as in

Proposition 4.2, then

ε
(

1
2 , π ⊗ κ, r, ψ

) = λ(E/F , ψ )nε
(

1
2 , π , r, ψ

)
. (8)

It follows, by Proposition 4.1 and Remark 2.3, that the above identity holds true for a

supercuspidal distinguished π .
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Now let π be a supercuspidal representation of GLn(E ), which is ωE/F -

distinguished with respect to GLn(F ). Then,

ε
(

1
2 , π , r, ψ

) = ε
(

1
2 , (π ⊗ κ−1) ⊗ κ, r, ψ

)
= λ(E/F , ψ )nε

(
1
2 , π ⊗ κ−1, r, ψ

)
= λ(E/F , ψ )nωπ⊗κ−1 (δ)n−1λ(E/F , ψ )(

n
2)

= ωπ (δ)n−1λ(E/F , ψ )(
n+1

2 )ωE/F (−1)(
n
2),

since ωπ⊗κ−1 (δ)n−1 = ωπ (δ)n−1κ−n(n−1)/2(δ2) = ωπ (δ)n−1ωE/F (−1)(
n
2).

Thus Theorem 1.1 is proved in the supercuspidal case.

Let π be a square integrable representation of GLn(E ), which is distinguished

with respect to GLn(F ). Let π be the unique irreducible quotient of the representation

parabolically induced from τ | |
1−b

2
E ⊗ · · · ⊗ τ | |

b−1
2

E , where τ is a supercuspidal representation

of GLa(E ) with n = ab. Since π is distinguished with respect to GLn(F ), by Theorem 1.3,

we know that τ is distinguished (resp. ωE/F -distinguished) with respect to GLa (F ) if b is

odd (resp. even).

If π is parabolically induced from τ1 ⊗ · · · ⊗ τb of GLa1 (E ) × · · · × GLab(E ) with

n = (
∑

i ai)b, then by the multiplicativity of γ -factors (cf. (3.13) of [36]), we get:

γ

(
1

2
, π , r, ψ

)
=

∏
i< j

λ(E/F , ψ )aia j
∏

i

γ

(
1

2
, τi, r, ψ

)∏
i< j

γ

(
1

2
, τi, r, ψ

)
,

where ψE is the additive character of E given by composing ψ with the trace map.

The γ -factor is related to the ε-factor by

γ (s, π , r, ψ ) = ε(s, π , r, ψ ) · L(1 − s, π∨, r)

L(s, π , r)
.

Since the behavior of ε-factors under twists by unramified characters is well understood,

it is not hard to show that in our situation we get the following identity by making use

of multiplicativity:

ε
(

1
2 , π , r, ψ

) = λ(E/F , ψ )(
b
2)a2 · ε

(
1
2 , τ , r, ψ

)b · ε
(

1
2 , π × πσ , ψE

)(b
2) .
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Considering the cases b odd (i.e. τ is distinguished) and b even (i.e. τ is ωE/F -distinguished),

it is straightforward to show the first identity of Theorem 1.1. Similarly, by interchanging

the role of b being odd or even, the second identity can be proved.

Remark 4.4. As mentioned in Section 1, another approach to the local Asai root number

is via the theory of Rankin–Selberg integrals. The theory has been worked out by Flicker

(cf. main theorem of the appendix, [9]) and Kable (cf. Theorem 3, [19]). It is natural

to ask to compute the local root number defined this way for a conjugate self-dual

representation of GLn(E ). Moreover, computing the root number in this manner will be

in the spirit of the proofs of the theorem of Bushnell and Henniart by Bushnell–Henniart

[4] and Jacquet (cf. Lemma 4, [23]). The essential simplifying aspect of these proofs is

that it is easy to make the zeta integrals for ε( 1
2 , π × π∨, ψ ) non-negative by choosing

Whittaker functions W ∈ W(π ) and W ∈ W(π∨). In the Asai situation, it is easy to choose

a Whittaker function that makes the corresponding zeta integrals real valued, but

non-negativity is not obvious at all. Multiplicativity of the corresponding γ -factors,

which is proved in general in the Langlands–Shahidi framework, is also not known in

the Rankin–Selberg context. �

5 Two Conjectures

5.1 Root number of a distinguished representation

Let π be an irreducible admissible representation of GL2(E ) such that its central char-

acter restricts trivially to F ∗. Then it is known that π is distinguished with respect to

GL2(F ) if and only if γ ( 1
2 , π ⊗ λ, ψ ′) = 1 for all characters λ of E∗, which have trivial re-

striction to F ∗ [15]. Here, ψ ′ is an additive character of E/F . Thus, if δ is any trace zero

element, ψ ′ is given by

ψ ′(x) = ψE (δx) = ψ (trace E/F (δx)).

In particular, if π is distinguished with respect to GL2(F ) and λ is distinguished with

respect to GL1(F ), then ε( 1
2 , π × λ, ψ ′) = 1. This is because the epsilon factor is the same

as the gamma factor under the given conditions.

Let π1 and π2 be square integrable representations of GLn1 (E ) and GLn2 (E ), re-

spectively. Let π be the representation of GLn1+n2 (E ) parabolically induced from π1 ⊗ πσ
2 .
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From the inductive property of gamma factors (cf. (3.13), [36]), we get the following

identity:

ε(s, π , r, ψ ) = λ(E/F , ψ )n1n2ε(s, π1, r, ψ )ε
(
s, πσ

2 , r, ψ
)
ε(s, π1 × π2, ψE ),

where the third epsilon factor on the right is the Rankin–Selberg epsilon factor.

Suppose πi are distinguished with respect to GLni (F ) (i = 1, 2). Then Theorem 1.1

of the present paper asserts that

ε
(

1
2 , πi, r, ψ ) = ωπi (δ)ni−1λ(E/F , ψ

)(ni
2 )

for i = 1, 2. If we assume that ε( 1
2 , π , r, ψ ) also has a similar expression, then the above

inductive property would imply that

ε(s, π1 × π2, ψE ) = ωπ1 (δ)n2ωπ2 (δ)n1

and this implies

ε(s, π1 × π2, ψ ′) = 1,

since δ2 ∈ F ∗ and ωπi have trivial restriction to F ∗ (i = 1, 2).

We are thus led to the following

Conjecture 5.1. Let πi be irreducible admissible representations of GLni (E ) which are

distinguished with respect to GLni (F ) (i = 1, 2). Then, ε( 1
2 , π1 × π2, ψ ′) = 1. �

Remark 5.2. We have already remarked that when n1 = 2 and n2 = 1, the above conjec-

ture is a theorem [15]. It may be of interest to note that when π is ωE/F -distinguished with

respect to GL2(F ) and λ|F∗ = 1, ε( 1
2 , π × λ, ψ ′) = ±1 and that this sign is +1 if and only

if the character of U (1) associated to λ appears in the restriction of the representation

of U (2) associated to π [1]. Thus, perhaps the value of ε( 1
2 , π1 × π2, ψ ′), where π1 is ωE/F -

distinguished (resp. distinguished) with respect to GLn(F ) and π2 is distinguished (resp.

ωE/F -distinguished) with respect to GLn−1(F ), where n is even (resp. odd) might play a

role in the Gross–Prasad conjecture in the context of unitary groups [14]. �
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5.2 Root number for unitary groups

The purpose of this section is to compare Conjecture 5.1 with the computation of the

ε-factor for unitary groups.

Let U (n) = U (n, E/F ) be the unitary group defined with respect to the form Jn,

where Jn be the n × n matrix whose (i, j) entry is (−1)n−iδi,n− j+1. Let τ be an irreducible

representation of U (n). Let ψ be a character of (F , +). For a character ω of E∗ such that

ω|F∗ = ωn+1
E/F

, Lapid and Rallis [26] compute the ε-factor of τ , defined via the so-called

doubling method:

ε

(
1

2
, τ × ω, ψ

)
= ωτ (−1) ·

{
ω(δn) n even

ω(δ) n odd.

Suppose π is the (stable) base change of τ to GLn(E ). Then it is conjectured that π is

distinguished (resp. ωE/F -distinguished) with respect to GLn(F ) if n is odd (resp. even).

Thus for our choice of ω, π ⊗ ω is always distinguished with respect to GLn(F ). According

to Conjecture 5.1,

ε
(

1
2 , π × ω, ψE

) = ωπ⊗ω(δ)

= ωπ (δ)ωn(δ)

= (
ω−1

τ ωσ
τ

)
(δ)ωn(δ)

= ε
(

1
2 , τ × ω, ψ

)
,

since ω(δ2) = 1 when n is odd.

If ω|F∗ = ωn
E/F

, then π ⊗ ω is always ωE/F -distinguished with respect to GLn(F ). In

this case, ε( 1
2 , π × ω, ψE ) is a more subtle invariant (cf. Remark 5.2).

5.3 Distinguished representations and intertwining operators

Let G = U (n, n) be the quasi-split unitary group in 2n variables defined with respect

to E/F . Let P be a parabolic subgroup of G with a Levi component M isomorphic to

GLn1 (E ) × · · · × GLnt (E ) with
∑t

i=1 ni = n. Let πi, 1 ≤ i ≤ t , be square integrable repre-

sentations o GLni (E ). Let π = π1 ⊗ · · · ⊗ πt be the associated square integrable represen-

tation of M. Then the R-group R(π ) is isomorphic to the product of r copies of Z/2’s,

where r is the number of inequivalent representations πi, which are ωE/F -distinguished

with respect to GLni (F ) (cf. Theorem 1.3 of [3], see also Proposition 2.1 of [31]).



22 U. K. Anandavardhanan

Now let π be an irreducible generic representation of GLn(E ) such that π∨ ∼= πσ .

Then π can be written uniquely as a parabolically induced representation of the form

π1 × π2 × π3,

where

• π1 is of the form σ1 × · · · × σs, where the σi’s are square integrable and distin-

guished;

• π2 is of the form ρ1 × · · · × ρr, where the ρi’s are square integrable, mutually

inequivalent, and ωE/F -distinguished;

• π3 is of the form τ∨
1 × τσ

1 × · · · × τ∨
t × τσ

t , where the τi’s are essentially square

integrable and not distinguished, with 0 ≤ e(τi) < 1
2 .

Here e(τ ) is the exponent of τ . It is the unique real number so that τ ⊗ | |−e(τ )
E has a unitary

central character.

Certain computations involving the Rogwaski’s constant mentioned in Remark

2.2 (cf. Remark 2.1 and Corollary 2.1 of [31]) lead us to believe that π is distinguished

with respect to GLn(F ) precisely when π2 = 0.

Let us discuss the conjectural framework in a little bit more detail. To this end,

let φ be a parameter for the unitary group U (n) = U (n, E/F ). Let φE be the Langlands

parameter obtained via the (stable) base change lift. Write φE = ∑
niφi, where ni is

the multiplicity of the irreducible representation φi. According to Corollary 2.1 of [31],

an irreducible conjugate self-dual representation φi appearing with odd multiplicity

in φE must have c(φi) = (−1)n−1. Here c(φi) is the Rogawski’s constant. Recall that the

irreducible admissible representation corresponding to a parameter ρ is supposed to be

distinguished exactly when c(ρ) = 1 (cf. Remark 2.2). Now if π corresponds to φE , then

n has to be odd since π is distinguished. Thus φi appearing in φE with odd multiplicity

implies that the representation corresponding to φi has to be distinguished. If π2 �= 0,

then there is an ωE/F -distinguished representation that comes with odd multiplicity, thus

forcing π2 = 0. On the other hand, if π2 = 0, then π must be distinguished as it is natural to

believe that a representation parabolically induced from distinguished representations

is distinguished. If n is even, by applying similar arguments to π ⊗ κ, we once again

conclude that π2 = 0.

In other words, the distinguished representations are supposed to coincide with

the representations of “G-type” as defined by Lapid and Rallis (cf. p.17, [23]). Specifically,

Lemma 6 of [23] motivates us to make the following conjecture.
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Conjecture 5.3. Let π be an irreducible generic representation of GLn(E ) such that

π∨ ∼= πσ . Then π is distinguished with respect to GLn(F ) if and only if the normalized

intertwining operator R(0, π ) on the parabolically induced representation I (π , 0) of G is

a scalar. �

Note that if π is square integrable and distinguished, I (π , 0) is irreducible and

hence R(0, π ) is a scalar. But in general, π can be distinguished with nontrivial π3 such

that some of the τi’s are square integrable and ωE/F -distinguished and in that case I (π , 0)

is reducible. The point of the conjecture is that even when I (π , 0) is reducible, R(0, π )

remains a scalar.
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