
Journal of Algebra 423 (2015) 1–27
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Iwahori–Hecke model for supersingular 

representations of GL2(Qp)

U.K. Anandavardhanan ∗, Gautam H. Borisagar
Department of Mathematics, Indian Institute of Technology Bombay, 
Mumbai-400076, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 December 2013
Available online 22 October 2014
Communicated by Michel Broué

MSC:
primary 11F33
secondary 11F70, 11F80, 11F85

Keywords:
Mod p representations of p-adic 
groups
Supersingular representations
Self-extensions of supersingular 
representations

In this paper, we realize a regular supersingular representa-
tion π of GL2(Qp) as a quotient of a representation induced 
from the Iwahori subgroup of GL2(Qp). We also show that 
this realization provides a uniform way of looking at all the 
self-extensions of π which have a four dimensional space of 
I(1)-invariants.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The theory of mod p smooth representations of p-adic reductive groups started 
with the seminal work of Barthel and Livné [3,4] which classified smooth irreducible 
F̄p-representations of GL2(F ), where F is a finite extension of Qp, with a central charac-
ter. These representations fall into four disjoint classes: (i) one dimensional characters, 
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(ii) twists of the Steinberg representation, (iii) irreducible principal series, and (iv) the 
so-called supersingular representations, which, it turns out, cannot be obtained as a sub-
quotient of any principal series representation. In the work of Barthel and Livné, both the 
Steinberg and the principal series representations are explicitly realized. For F = Qp, the 
classification of supersingular representations has been carried out by Breuil [6], where 
it is proved that the relevant quotients for supersingulars

indGL2(F )
GL2(OF )·F∗ Symr

F̄2
p

(T )

considered by Barthel and Livné are in fact irreducible. When F �= Qp, the corresponding 
quotient representations are of infinite length and are not admissible [8, Theorem 3.3], 
and the classification of supersingular representations is quite complicated [8,5].

When F = Qp, the extensions between these representations are understood by the 
work of Paškūnas [16]. For a supersingular representation π of GL2(Qp), it is known that 
(for p > 3)

dim Ext1GL2(Qp)(π, π) = 3,

where Ext is computed in the category of smooth representations with a given central 
character [16, Theorem 1.1].

Let G = GL2(Qp) and K = GL2(Zp) be its standard maximal compact subgroup. Let 
Z be the center of G. Let

πr =
indG

KZ Symr
F̄2
p

(T ) ,

where 0 ≤ r ≤ p −1, be a supersingular representation of G = GL2(Qp). Here, the Hecke 
operator T is such that [3, Proposition 8]

EndG

(
indG

KZ Symr F̄2
p

) ∼= F̄p[T ].

We have the following isomorphism (cf. [6, Theorem 1.3], Theorem 5.1, and Remark 5):

indG
KZ Symr

F̄2
p

(T )
∼=

indG
KZ Symp−1−r

F̄2
p

(T ) ⊗ detr. (1)

Before we come to our results, it is instructive to draw a consequence of the above 
isomorphism to the question of finding self-extensions of πr. One important property of 
the Hecke operator T is that it is injective, and this has the corollary that we have an 
exact sequence:

0 → πr →
indG

KZ SymrF̄2
p

2 → πr → 0.
(T )
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Thanks to (1), we get one more non-split self-extension of πr given by

indG
KZ Symp−1−r F̄2

p

(T 2) ⊗ detr.

It is known that the two dimensional subspace of the three dimensional Ext1G(πr, πr)
spanned by the classes of these two self-extensions consists of all the self-extensions 
of πr which have a four dimensional space of I(1)-invariants, where I(1) denotes the 
pro-p-Iwahori subgroup of G (cf. Subsection 7.4).

Our focus in this paper is to give an alternative description of πr as a quotient of a 
representation induced from the Iwahori subgroup of G by the images of certain Iwahori–
Hecke operators. We carry this out only when πr is regular; i.e., when 0 < r < p −1. Via 
this model, which we call the Iwahori–Hecke model, the self-extensions of πr belonging 
to the above mentioned two dimensional space can all be realized in a natural manner.

To this end, consider the unique nontrivial element in

P1(Ext1GL2(Fp)
(
Symp−1−r

F̄2
p ⊗ detr, Symr

F̄2
p

))
given by

0 → SymrF̄2
p → indGL2(Fp)

B(Fp) dr → Symp−1−rF̄2
p ⊗ detr → 0, (2)

where dr denotes the character [7, Proof of Proposition 4.7] (see also [9, §7] and [15, §3.1])
(
a b

0 d

)
�→ dr.

Let dr continue to denote the character of I, the Iwahori subgroup of G, obtained by 
inflating dr under reduction modulo p. We then have [3, Proposition 13]:

EndG

(
indG

IZ dr
) ∼= F̄p[T−1,0, T1,2]

(T−1,0T1,2, T1,2T−1,0)
,

where T−1,0 and T1,2 are certain Iwahori–Hecke operators (cf. Subsection 2.4).
The following theorem gives the Iwahori–Hecke model of a supersingular representa-

tion.

Theorem 1.1. For 0 < r < p − 1, the representation

indG
IZ dr

(T−1,0, T1,2)

is isomorphic to πr = indG
KZ Symr F̄2

p

(T ) , and thus it is an irreducible supersingular represen-
tation.
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In Section 4, we in fact prove the stronger assertion that (cf. Theorem 4.1)

indG
KZ Symr F̄2

p
∼= indG

IZ dr

(T−1,0)
,

from which Theorem 1.1 is immediate. We may also remark here that Theorem 4.1 and 
the first part of Theorem 1.1 hold true for any totally ramified extension of Qp as well 
(cf. Remark 1 and Remark 3).

The two non-split self-extensions mentioned earlier can now be realized as follows (cf. 
Section 6):

indG
KZ Symr F̄2

p

(T 2)
∼= indG

IZ dr

(T−1,0, T 2
1,2)

, (3)

indG
KZ Symp−1−r F̄2

p

(T 2) ⊗ detr ∼= indG
IZ dr

(T 2
−1,0, T1,2)

. (4)

And hopefully by taking a larger reducible representation in the numerator instead 
of the irreducible symmetric powers, we have created more space to carve in different 
directions and to quotient out, in order to realize linear combinations of (3) and (4) as 
well. Indeed, in Section 6, we show that

indG
IZ dr

(λ−1
1 T−1,0 − λ−1

2 T1,2)
, (5)

where λ1λ2 �= 0, is a non-split self-extension of πr, which is in fact

λ1
indG

IZ dr

(T 2
−1,0, T1,2)

+ λ2
indG

IZ dr

(T−1,0, T 2
1,2)

,

where + indicates the addition of associated short exact sequences in Ext1G(πr, πr) (cf. 
Section 6).

We summarize the above discussion as our next theorem.

Theorem 1.2. Let πr = indG
KZ Symr F̄2

p

(T ) , 0 < r < p − 1, be an irreducible supersingular 
representation of GL2(Qp). Then a basis for the subspace of Ext1G(πr, πr) consisting of 
isomorphism classes of short exact sequences

0 → πr → τ → πr → 0,

where the representation τ has a four dimensional space of I(1)-invariants, is given by 
isomorphism classes of
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(i) 0 → πr → indG
IZ dr

(T−1,0,T 2
1,2)

∼= indG
KZ Symr F̄2

p

(T 2) → πr → 0,

(ii) 0 → πr → indG
IZ dr

(T 2
−1,0,T1,2)

∼= indG
KZ Symp−1−r F̄2

p

(T 2) ⊗ detr → πr → 0.

Furthermore, for λ1, λ2 ∈ F̄×
p , the linear combination of the above elements, namely 

λ1 · (i) + λ2 · (ii), in Ext1G(πr, πr) is given by the class of

0 → πr → indG
IZ dr

(λ−1
1 T−1,0 − λ−1

2 T1,2)
→ πr → 0. (6)

In the last section, Section 7, we analyze the pro-p-Iwahori Hecke module structure 
on the space of pro-p-Iwahori invariants of these representations. Appealing to a result 
of Ollivier on the equivalence between the category of smooth representations, with a 
given central character, of GL2(Qp) which are generated by their I(1)-invariants and the 
category of pro-p-Iwahori–Hecke algebra modules [14], we provide a second proof of (6)
(cf. Proposition 7.1). Yet another, perhaps more conceptual, approach to this question 
is indicated in Subsection 7.3, and the argument there is supplied to us by V. Paškūnas.

We end this introduction by noting that the Iwahori–Hecke model appears to be more 
amenable to carrying out certain computations. For instance, the authors have used the 
methods of this paper to give a short proof of the K-socle filtration of a supersingular 
representation of GL2(Qp) and to determine the structure of invariants under the prin-
cipal congruence subgroups of K as a K-module [1]. These results are originally due to 
S. Morra [12,13]. We hope that the idea of considering quotients of compact inductions 
from groups smaller than the maximal compact group may prove to be useful in more 
general situations.

2. Preliminaries

For most part of this section, we follow [3, §2, §3] and [6, §2] closely.

2.1. Notations

Let p ≥ 3 be a prime number. Let Fp denote the field with p elements. We fix 
an algebraic closure F̄p of Fp. Let Qp denote the field of p-adic numbers, and Zp, its 
ring of integers. Let G = GL2(Qp). The standard maximal compact subgroup of G is 
K = GL2(Zp). The center of G is denoted by Z. Let I (resp. I(1)) denote the Iwahori 
(resp. pro-p-Iwahori) subgroup of G. We have:

I =
(

Z×
p Zp

pZp Z×
p

)
, I(1) =

(
1 + pZp Zp

pZp 1 + pZp

)
.

We also define:
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α =
(

1 0
0 p

)
, β =

(
0 1
p 0

)
, w =

(
0 1
1 0

)
.

Let A be the tree of SL2(Qp). The vertices (resp. oriented edges) of A are in 
G-equivariant bijection with G/KZ (resp. G/IZ). Put I0 = {0}, and for n > 0, let

In =
{
[λ0] + [λ1]p + . . . + [λn−1]pn−1, λi ∈ Fp

}
⊂ Zp,

where [·] denotes the multiplicative representative. For n ∈ N and λ ∈ In, define:

g0
n,λ =

(
pn λ

0 1

)
, g1

n,λ =
(

1 0
pλ pn+1

)
.

Note that

g0
0,0 = Id, g1

0,0 = α, βg0
n,λ = g1

n,λw.

The g0
n,λ and g1

n,λ together form a set of representatives for G/KZ:

G =
(∐

n,λ

g0
n,λKZ

)
�
(∐

n,λ

g1
n,λKZ

)
.

Similarly, a set of coset representatives for G/IZ is given by

{
g0
n,λ, g

1
n,λw, g

0
n,λ

(
1 μ

0 1

)
w, g1

n,λw

(
1 μ

0 1

)
w

}

where μ ∈ I1.
For 0 ≤ m ≤ n, let [·]m : In → Im denote the truncation map given by

n−1∑
i=0

[λi]pi �→
m−1∑
i=0

[λi]pi.

2.2. Generalities on Hecke algebras

Let H be an open subgroup of G and let (σ, Vσ) be a smooth representation of H
over F̄p. Let (indG

H σ, S(G, σ)) denote the compactly supported induction of σ:

S(G, σ) =
{
f : G → Vσ

∣∣ f(hg) = σ(h)
(
f(g)

)
, h ∈ H, g ∈ G

}
,

where f is locally constant and compactly supported modulo H on the left. The group G

acts on S(G, σ) on the right:
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(gf)
(
g′
)

= f
(
g′g
)
.

For g ∈ G and v ∈ Vσ, let [g, v] denote the element of indG
H σ defined by

[g, v]
(
g′
)

=
{
σ(g′g) · v if g′g ∈ H,

0 otherwise.

Observe that

g
([
g′, v
])

=
[
gg′, v

]
and

[gh, v] =
[
g, σ(h)v

]
,

for h ∈ H. Any element in indG
H σ is a finite sum 

∑
i[gi, vi] with gi ∈ G, vi ∈ Vσ.

The Hecke algebra associated to (H, σ) is by definition EndG(indG
H σ). By Frobe-

nius reciprocity, the Hecke algebra is isomorphic to the algebra of functions φ : G →
EndF̄p

(Vσ) with compact support modulo H such that

φ(h1gh2) = σ(h1) ◦ φ(g) ◦ σ(h2)

for h1, h2 ∈ H and g ∈ G. If φ is such a function, the corresponding intertwining operator 
Tφ is defined by

Tφ

(
[g, v]

)
=

∑
g′H∈G/H

[
gg′, φ

(
g′

−1)(v)].
If φ is supported on one double coset Hγ−1H for some γ ∈ G, then if HγH =

∐
i hiγH, 

we may write the above formula as

Tφ

(
[g, v]

)
=
∑
i

[
ghiγ, φ

(
γ−1)σ(h−1

i

)
(v)
]
.

2.3. The spherical Hecke algebra

Let Symr F̄2
p denote the representation of K obtained by inflating the rth symmetric 

power of the standard representation of GL2(Fp). Recall that

(
Symr F̄2

p,

r⊕
i=0

F̄px
r−iyi

)

is given by
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(
Symr F̄2

p

)(( a b

c d

))(
xr−iyi

)
= (ax + cy)r−i(bx + dy)i.

Then, Symr F̄2
p, 0 ≤ r ≤ p − 1, are irreducible, and moreover these are all the irreducible 

representations of K, up to twisting by one dimensional characters.
Taking H = KZ and considering Symr F̄2

p as a representation of KZ by making 
diag(p, p) act trivially, the formula for Tφ can be written in terms of the specific coset 
representatives introduced earlier in Subsection 2.1, where φ is supported in KZα−1K. 
To this end, for λ ∈ Zp, let wλ =

(
0 1
1 −λ

)
. Then (cf. [6, §2.5])

Tφ

(
[g, v]

)
=
∑
λ∈I1

[
gg0

1,λ, σ(w)φ
(
α−1)σ(wλ)(v)

]
+
[
gα, φ

(
α−1)(v)],

where σ = Symr
F̄2
p.

Let T = Tφ1 denote the intertwining operator corresponding to φ1 which has support 
on KZα−1K and such that

φ1
(
α−1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
·

0 ·
·
0

0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(r+1)×(r+1)

,

in the basis {xr−iyi}0≤i≤r of Symr F̄2
p. Now,

T
([

Id, xr−iyi
])

=
{∑

λ∈I1
(−λ)i[g0

1,λ, x
r] if i �= r,

[α, yr] +
∑

λ∈I1
(−λ)r[g0

1,λ, x
r] if i = r.

(7)

Moreover, the spherical Hecke algebra is the polynomial algebra in one variable [3, Propo-
sition 8]:

EndG

(
indG

KZ Symr F̄2
p

) ∼= F̄p[T ].

We know that

πr =
indG

KZ Symr F̄2
p

(T )

is irreducible [6, Theorem 1.1]. As already recalled in the introduction, we have the 
following isomorphism [6, Theorem 1.3]:

indG
KZ Symr

F̄2
p

(T )
∼= indG

KZ σp−1−r

(T ) ⊗ detr.
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2.4. The Iwahori–Hecke algebra

Let dr, 0 < r < p − 1, denote the character

(
a b

0 d

)
�→ dr

of the Borel subgroup of GL2(Fp), and let dr continue to denote the character of IZ, 
obtained on I by inflating dr under reduction modulo p, and by making diag(p, p)
act trivially. We are interested in the Iwahori–Hecke algebra of (IZ, dr). For this, let 
φn,n+1 (resp. φn+1,n) be the element of the associated convolution algebra, which is 
supported on IZα−nI (resp. IZβα−nI) and is determined by φn,n+1(α−n) = 1 (resp. 
φn+1,n(βα−n) = 1). The corresponding intertwining operators are denoted by Tn,n+1 and 
Tn+1,n. Among the various properties of these Hecke operators, we will have occasion to 
use the following:

T−1,0 ◦ T1,2 = 0 & T1,2 ◦ T−1,0 = 0. (8)

In fact the Iwahori–Hecke algebra is the following commutative algebra:[3, Proposi-
tion 13]:

EndG

(
indG

IZ dr
) ∼= F̄p[T−1,0, T1,2]

(T−1,0T1,2, T1,2T−1,0)
.

The cases r = 0, p − 1 have to be dealt with separately [4], but we do not get into the 
details as we restrict ourselves to the regular case 0 < r < p − 1 throughout this paper.

Let us denote a typical element of indG
IZ dr by �g, 1�. We have the following explicit 

formulas

T−1,0
(�g, 1�) =

∑
λ∈I1

�
gg0

1,λ, 1
�
. (9)

T1,2
(�g, 1�) =

∑
λ∈I1

�
gβ

(
1 λ

0 1

)
w, 1

�
, (10)

obtained by substituting n = 1 in [3, (16) and (17)].
Note that in our identification of oriented edges of the tree A of SL2(Qp) with G/IZ, 

the edge corresponding to �g, 1� has the edge corresponding to �gβ, 1� as its opposite edge. 
Now for an oriented edge e of A, let o(e) (resp. t(e)) denote its origin (resp. terminus). 
Then,

T−1,0(e) =
∑
′

a
(
e′
)
e′,
t(e )=o(e)
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and

T1,2(e) =
∑

o(e′)=t(e)

b
(
e′
)
e′,

where a(e′), b(e′) ∈ Fp can be easily worked out using (9) and (10). Visualizing the 
Iwahori–Hecke operators this way will come in handy in investigating their properties in 
Section 3.

3. The generators of the Iwahori–Hecke algebra

In this section, we prove a couple of properties of the Iwahori–Hecke operators T−1,0
and T1,2 which we will use in the sequel.

We know from (8) that ImT1,2 ⊆ KerT−1,0 and ImT−1,0 ⊆ KerT1,2. The next propo-
sition asserts that they are in fact equal.

Proposition 3.1. We have:

ImT−1,0 = KerT1,2 & ImT1,2 = KerT−1,0.

Proof of Proposition 3.1. We need to prove only one of the two identities in the statement 
of Proposition 3.1, as the proof of the other one proceeds exactly the same way. Thus, 
we are going to prove that

KerT1,2 ⊆ ImT−1,0.

Let f ∈ KerT1,2. Write f = f0 + f1 where f0 is a linear combination of vectors of the 
form

�
g0
n,λ, 1

�
,

�
g0
n−1,[λ]n−1

(
1 λn−1
0 1

)
w, 1

�
, �β, 1�, (11)

and f1 is a linear combination of vectors of the form

�
g1
n,λw, 1

�
,

�
g1
n−1,[λ]n−1

w

(
1 λn−1
0 1

)
w, 1

�
, �Id, 1�, (12)

where, n ≥ 1 is an integer, λ = [λ0] + [λ1]p + . . . + [λn−1]pn−1 ∈ In, and [·] is the 
truncation map (cf. Subsection 2.1). It is useful to visualize the vectors in (11) as edges 
on one side of the tree A, say on the left, and the vectors in (12) as edges on the other 
side of the tree, say on the right. Observe that the decomposition f = f0 + f1 is unique. 
Now, by (10), T1,2(f0) (resp. T1,2(f1)) is again a linear combination of edges on the 
left (resp. right). Thus, it follows that both f0 and f1 are in KerT1,2. Since βf1 is a 
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linear combination of vectors of the form (11), and since T−1,0 and T1,2 are intertwining 
operators, without loss of generality we can assume that f itself is a linear combination 
of vectors of the form (11).

Now write f uniquely as

f = fm + fm−1 + . . . + f1,

where fi (i ≥ 2) is a linear combination of vectors of the form

�
g0
i,λ, 1

�
,

�
g0
i−2,[λ]i−2

(
1 λi−2
0 1

)
w, 1

�
(13)

and f1 is a linear combination of �g0
1,λ, 1� and �β, 1�. In our description of vectors in 

indG
IZ dr as edges of the tree A, the edges in (13) are the edges in f with terminus, i.e., 

oriented towards, the vertices of A associated to the cosets

g0
i−1,[λ]i−1

KZ ∈ G/KZ,

for various

[λ]i−1 = [λ0] + [λ1]p + · · · + [λi−2]pi−2.

Now T1,2(fi) consists of linear combinations of edges which constitute edges of the form 
fi+1 and fi−1 with their origins at vertices g0

i−1,[λ]i−1
KZ. We conclude that T1,2(fi)

and T1,2(fj) have no oriented edge in common for i �= j. It follows that each fi
(i = 1, 2, . . . , m) is in KerT1,2.

We do one more reduction. Write each fi as

fi = fi,1 + . . . + fi,pi−1

where the j’s in fi,j ’s are indexed by (λ0, λ1, . . . , λi−2) ∈ Fi−1
p , with each fi,j a linear 

combination of vectors of the form (13) for a fixed (λ0, λ1, . . . , λi−2). Observe that for a 
fixed (λ0, λ1, . . . , λi−2), we may think of

fi,(λ0,λ1,...,λi−2)

as that part of fi consisting of edges oriented towards the vertex

g0
i−1,[λ0]+[λ1]p+···+[λi−2]pi−2KZ.

Once again, T1,2(fi,j) and T1,2(fi,k) have no edge in common for j �= k, and therefore 
we conclude that each fi,j ∈ KerT1,2.

In order to finish the proof, we claim that

fi,j ∈ Im T−1,0
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for all (i, j). If j corresponds to (λ0, λ1, . . . , λi−2), note that (g0
i−1,[λ]i−1

)−1fi,j is a linear 
combination of �g0

1,λi−1
, 1� and �β, 1�. Thus, Proposition 3.1 follows from Lemma 3.2. �

Lemma 3.2. Let T−1,0, T1,2 ∈ EndG(indG
IZ dr) as in Subsection 2.4. Assume that r �= 0, 

p − 1. Then,

z�β, 1� +
p−1∑
μ=0

zμ

�(
p μ

0 1

)
, 1

�
∈ KerT1,2

=⇒ z�β, 1� +
p−1∑
μ=0

zμ

�(
p μ

0 1

)
, 1

�
∈ Im T−1,0.

Proof of Lemma 3.2. Suppose

z�β, 1� +
p−1∑
μ=0

zμ

�(
p μ

0 1

)
, 1

�
∈ KerT1,2.

Applying the formula (10) for T1,2, we see that:

z
∑
λ∈I1

�(
1 λ

0 1

)
w, 1

�
+
∑
μ∈I1

∑
λ∈I1

zμ

�(
p μ

0 1

)
β

(
1 λ

0 1

)
w, 1

�
= 0.

Now,

∑
μ∈I1

∑
λ∈I1

zμ

�(
p μ

0 1

)
β

(
1 λ

0 1

)
w, 1

�

=
∑
μ∈I1

∑
λ∈I1

zμ

�(
μλ + 1 μ

λ 1

)
, 1

�

=
∑
μ∈I1

zμ

�(
1 μ

0 1

)
, 1

�
+
∑
μ∈I1

∑
λ �=0

zμ

�(
1 μ + 1

λ

0 1

)
w

(
λ 1
0 − 1

λ

)
, 1

�

=
∑
μ∈I1

zμ�Id, 1� +
∑
μ∈I1

∑
λ �=0

zμ

(
− 1
λ

)r
�(

1 μ + 1
λ

0 1

)
w, 1

�

=
∑
μ∈I1

zμ�Id, 1� +
∑
μ∈I1

∑
λ �=μ

zμ(μ− λ)r
�(

1 λ

0 1

)
w, 1

�

=
( ∑

μ∈I1

zμ

)�Id, 1� +
∑
λ∈I1

( ∑
μ∈I1

zμ(μ− λ)r
)�(

1 λ

0 1

)
w, 1

�
.

Note that we have made use of the condition r �= 0, p − 1, in the very last step.
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Thus, we get the following linear system of equations:

∑
μ∈I1

zμ = 0, (14)

∑
μ∈I1

zμ(μ− λ)r = −z. (15)

The space of solutions of the corresponding homogeneous system is spanned by the 
following p − 1 − r vectors:

(
μi
)
0≤μ≤p−1, 0 ≤ i ≤ p− 2 − r.

Indeed, these p − 1 − r vectors are linearly independent and they do satisfy the ho-
mogeneous system of equations, and by plugging in the r + 1 vectors (μi)0≤μ≤p−1, 
p − 1 − r ≤ i ≤ p − 1, we see that the rank of the associated matrix is at least r + 1, 
thus showing that the space of solutions is of dimension p − 1 − r (and that the rank of 
the associated matrix is r + 1). Clearly, a particular solution of the system is given by 
(zμp−1−r)0≤μ≤p−1.

Hence, to prove the lemma, we need to check that the p − 1 − r vectors

p−1∑
μ=0

μi

�(
p μ

0 1

)
, 1

�
, 0 ≤ i ≤ p− 2 − r,

and

�β, 1� +
p−1∑
μ=0

μp−1−r

�(
p μ

0 1

)
, 1

�

are in ImT−1,0.
To this end, we start by computing

T−1,0

(
z�Id, 1� +

p−1∑
μ=0

zμ

�(
1 μ

0 1

)
w, 1

�)
.

Applying the formula (9) for T−1,0, we see that the image of the second summand above 
under T−1,0 is:

∑
μ∈I1

∑
λ∈I1

zμ

�(
1 μ

0 1

)
w

(
p λ

0 1

)
, 1

�

=
∑ ∑

zμ

�(
μp μλ + 1
p λ

)
, 1

�

μ∈I1 λ∈I1
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=
∑
μ∈I1

zμ

�
β

(
μ 0
μp 1

)
, 1

�
+
∑
μ∈I1

∑
λ �=0

zμ

�(
p μ + 1

λ

0 1

)(
− 1

λ 0
p λ

)
, 1

�

=
∑
μ∈I1

zμ�β, 1� +
∑
μ∈I1

∑
λ �=0

zμλ
r

�(
p μ + 1

λ

0 1

)
, 1

�

=
∑
μ∈I1

zμ�β, 1� +
∑
μ∈I1

∑
λ �=μ

zμ(λ− μ)p−1−r

�(
p λ

0 1

)
, 1

�

=
( ∑

μ∈I1

zμ

)�β, 1� +
∑
λ∈I1

( ∑
μ∈I1

zμ(λ− μ)p−1−r

)�(
p λ

0 1

)
, 1

�
.

Once again, the justification for the last step is that r �= 0, p − 1.
Thus,

T−1,0

(
z�Id, 1� +

p−1∑
μ=0

zμ

�(
1 μ

0 1

)
w, 1

�)

=
( ∑

μ∈I1

zμ

)�β, 1� +
∑
λ∈I1

(
z +
( ∑

μ∈I1

zμ(λ− μ)p−1−r

))�(
p λ

0 1

)
, 1

�
.

In order to finish the proof of Lemma 3.2, we need to show that the system of equations

∑
μ∈I1

zμ = 0 &
∑
μ∈I1

zμ(λ− μ)p−1−r = λi (0 ≤ i ≤ p− 2 − r) (16)

and

∑
μ∈I1

zμ = 1 &
∑
μ∈I1

zμ(λ− μ)p−1−r = λp−1−r (17)

can be solved. This is immediate from

∑
μ∈I1

μi+r(λ− μ)p−1−r =
{

(−1)p−i−r
(
p−1−r

i

)
λi if 0 ≤ i ≤ p− 1 − r,

0 if p− r ≤ i ≤ p− 1.

This proves the lemma. �
We also have:

Proposition 3.3.

KerT1,2 ∩ KerT−1,0 = {0} = ImT1,2 ∩ ImT−1,0.
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Proof of Proposition 3.3. Write 0 �= f ∈ KerT1,2 ∩ KerT−1,0 as

f = f(n) + . . . + f(1) + f(0)

with f(n) �= 0, where f(i) is a linear combination of edges of the tree A of SL2(Qp) at 
distance i from the central edge corresponding to the trivial coset of G/IZ. That is, f(i)
is a linear combination of vectors of the form

�
g0
i,λ, 1

�
,

�
g0
i−1,[λ]i−1

(
1 λi−1
0 1

)
w, 1

�
,

�
g1
i,λw, 1

�
,

�
g0
i−1,[λ]i−1

w

(
1 λi−1
0 1

)
w, 1

�
.

Now if f(n) has edges of the form�
g0
n,λ, 1

�
or

�
g1
n,λw, 1

�
,

then T−1,0(f) �= 0, since T−1,0(f) will then have edges at distance n +1 from the central 
edge of A which will not get canceled with any other edge. If f(n) has edges of the form�

g0
n−1,μ

(
1 μ

0 1

)
w, 1

�
or

�
g1
n−1,μw

(
1 μ

0 1

)
w, 1

�
,

then T1,2(f) will have non-zero edges at distance n +1 from the central vertex of the tree, 
and thus T1,2(f) �= 0. Since a non-zero f(n) has to have an edge of the form considered 
above, we get a contradiction. �
Remark 1. Observe that the arguments in this section do not use the fact that F = Qp

and our proofs go through verbatim in the case when the residue field of F is Fp. Thus 
the results of this section hold true for totally ramified extensions of Qp as well.

4. Iwahori–Hecke model of a supersingular representation

In this section, we prove the following theorem from which it is easy to deduce The-
orem 1.1.

Theorem 4.1. Let 0 < r < p − 1. We have a G-equivariant isomorphism

indG
KZ Symr

F̄2
p
∼= indG

IZ dr

(T−1,0)

which sends [Id, xr] to �β, 1� = �β, 1� + (T−1,0). Under this isomorphism the Hecke 
operator T is mapped to T1,2.

We start with the following lemma.



16 U.K. Anandavardhanan, G.H. Borisagar / Journal of Algebra 423 (2015) 1–27
Lemma 4.2. We have

SymrF̄2
p ↪→ indG

IZ dr

(T−1,0)

given by

xr �→ �β, 1� = �β, 1� + (T−1,0).

Proof of Lemma 4.2. By (10),

T1,2

(∑
λ∈I1

λi
�
g0
1,λ, 1

�)

=
∑
λ∈I1

∑
μ∈I1

λi

�(
1 + λμ λ

μ 1

)
, 1

�

=
∑
λ∈I1

λi�Id, 1� +
∑
λ∈I1

∑
μ�=0

λi

�(
1 λ + 1

μ

0 1

)
w

(
μ 1
0 − 1

μ

)
, 1

�

=
(∑

λ∈I1

λi

)�Id, 1� +
∑
λ∈I1

∑
μ�=0

λi

(
− 1
μ

)r
�(

1 λ + 1
μ

0 1

)
w, 1

�

=
(∑

λ∈I1

λi

)�Id, 1� +
∑
λ∈I1

∑
μ�=0

λi(−μ)r
�(

1 λ + μ

0 1

)
w, 1

�

=
(∑

λ∈I1

λi

)�Id, 1� +
∑
λ∈I1

∑
μ∈I1

λi(−μ)r
�(

1 λ + μ

0 1

)
w, 1

�

=
(∑

λ∈I1

λi

)�Id, 1� +
∑
μ∈I1

(∑
λ∈I1

λi(λ− μ)r
)�(

1 μ

0 1

)
w, 1

�

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if 0 ≤ i ≤ p− 2 − r,

−(−1)i−(p−1−r)( r
i−(p−1−r)

)∑
μ∈I1

μi−(p−1−r)

×
�( 1 μ

0 1

)
w, 1

�
if p− 1 − r ≤ i ≤ p− 2,

−�Id, 1� + (−1)r+1∑
μ∈I1

μr
�( 1 μ

0 1

)
w, 1

�
if i = p− 1.

Note that we have made use of the condition r �= 0 in the above. Observe also that

T1,2

(∑
λ∈I1

λp−1−r
�
g0
1,λ, 1

�)
= T1,2�β, 1�,

and hence
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∑
λ∈I1

λp−1−r
�
g0
1,λ, 1

�
= �β, 1�

modulo the image of T−1,0 by Proposition 3.1.
By checking the action of the Iwahori subgroup of GL2(Zp) and the Weyl element w, 

it is easy to verify that the r + 1 vectors
{∑

λ∈I1

λi
�
g0
1,λ, 1

� ∣∣∣ p− 1 − r ≤ i ≤ p− 1
}

form a copy of Symr F̄2
p in indG

IZ dr

(T−1,0) and

xr−iyi �→
∑
λ∈I1

λp−1−r+i
�
g0
1,λ, 1

�
for 0 ≤ i ≤ r. �
Proof of Theorem 4.1. By Frobenius reciprocity, the injective morphism given by

SymrF̄2
p ↪→ indG

IZ dr

(T−1,0)

xr �→ �β, 1�
of Lemma 4.2 extends to the injective morphism, say φ,

indG
KZ Symr F̄2

p ↪→ indG
IZ dr

(T−1,0)

given by
[
Id, xr

]
�→ �β, 1�.

We now define a morphism, say ψ, in the opposite direction by

indG
IZd

r → indG
KZ SymrF̄2

p�β, 1� �→
[
Id, xr

]
.

Observe that ψ factors through indG
IZ dr

(T−1,0) . Indeed,

ψ
(
T−1,0

(�Id, 1�)) = ψ

(∑
λ∈I1

�
g0
1,λ, 1

�)
=
∑
λ∈I1

[
g0
1,λβ, x

r
]

=
∑
λ∈I1

[
Id, (λx + y)r

]
= 0,

since r �= p − 1.
Since φ and ψ are obviously inverses of each other, the theorem follows. �
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Remark 2. Note that we have made use of r �= 0 in the proof of Lemma 4.2 and r �= p −1
in the proof of Theorem 4.1.

Remark 3. By Remark 1, Theorem 4.1, and hence the first part of Theorem 1.1, holds 
true for a totally ramified extension of Qp as well.

5. Breuil’s isomorphism

Recall from the introduction that we have the following isomorphism of Breuil [6, 
Theorem 1.3]:

indG
KZ Symr F̄2

p

(T )
∼=

indG
KZ Symp−1−r F̄2

p

(T ) ⊗ detr.

On the Iwahori–Hecke model, the above isomorphism takes the form:

Theorem 5.1. Let dr (resp. ar) denote the character of the Iwahori subgroup of GL2(Zp)
given by

(
a b

pc d

)
�→ dr

(
resp. ar

)
mod p.

Then, we have

indG
IZ dr

(T−1,0, T1,2)
∼= indG

IZ ar

(T−1,0, T1,2)
.

Proof of Theorem 5.1. It is easy to see that we have an isomorphism

indG
IZd

r ∼= indG
IZa

r

given by

�β, 1� ↔ �Id, 1�.
This is nothing but reversing the orientation of the edges on the tree of SL2(Qp). Under 
this map, T−1,0 ↔ T1,2 and vice-versa. Thus, we get:

indG
IZ dr

(T−1,0)
∼= indG

IZ ar

(T1,2)
,

and

indG
IZ dr

(T−1,0, T1,2)
∼= indG

IZ ar

(T−1,0, T1,2)
. �
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Remark 4. We also have the obvious isomorphism

indG
IZa

r ∼= indG
IZd

p−1−r ⊗ detr.

Thus, the isomorphism of Breuil’s is the one in Theorem 5.1.

Remark 5. By Remark 3, Theorem 5.1 holds true for any totally ramified extension of Qp. 
This is Proposition 1.1 of [17].

6. Self-extensions for supersingular representations

In this section, we prove Theorem 1.2. We start by recalling the definition of Baer 
sum, the sum in Ext1(·, ·).

Let π1, π2 be two representations of a group and let

0 −→ π2
f−→ π

g−→ π1 −→ 0

and

0 −→ π2
f ′

−→ π′ g′

−→ π1 −→ 0

be two extensions of π1 by π2. Let

π′′ =
{(

v, v′
)
∈ π × π′ ∣∣ g(v) = g′

(
v′
)}

be the pullback over π1. Now consider the three copies of π2, namely, π2 × 0, 0 ×π2, and 
the skew-diagonal {(−w, w) | w ∈ π2} in π′′. The quotient τ of π′′ by the skew-diagonal 
in which the copies π2 × 0 and 0 × π2 are identified; i.e.,

τ = π′′

(f(w), 0) − (0, f ′(w)) ,

with w ∈ π2, is an extension of π1 by π2:

0 −→ π2 −→ τ −→ π1 −→ 0,

where the first arrow is the map w �→ [(f(w), 0)] = [(0, f ′(w)]], and the second arrow 
is the map (v, v′) �→ g(v) = g′(v). The class of this latter extension is the Baer sum of 
the first two extensions. It is commutative with the trivial element being the class of the 
split extension. A non-zero scalar multiple, say λ, of the extension

0 −→ π2
f−→ π

g−→ π1 −→ 0

can be taken to be the class of the same extension with g replaced by λ−1g.
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We want to verify that the following three representations

(i) indG
IZ dr

(T−1,0, T 2
1,2)

, (ii) indG
IZ dr

(T 2
−1,0, T1,2)

, (iii) indG
IZ dr

(λ−1
1 T−1,0 − λ−1

2 T1,2)
(18)

belong to Ext1G(πr, πr). Here, λ1, λ2 ∈ F̄×
p . Let us clarify our notation in this section; we 

have:

(
T 2
−1,0, T1,2

)
= T 2

−1,0
(
indG

IZ dr
)

+ T1,2
(
indG

IZ dr
)

=
{
T 2
−1,0(f) + T1,2(g)

∣∣ f, g ∈ indG
IZd

r
}
,(

T−1,0, T
2
1,2
)

= T−1,0
(
indG

IZ dr
)

+ T 2
1,2
(
indG

IZ dr
)

=
{
T−1,0(f) + T 2

1,2(g)
∣∣ f, g ∈ indG

IZd
r
}
,(

λ−1
1 T−1,0 − λ−1

2 T1,2
)

=
{
λ−1

1 T−1,0(g) − λ−1
2 T1,2(g)

∣∣ g ∈ indG
IZd

r
}
.

Remark 6. Note that

(
λ−1

1 T−1,0 − λ−1
2 T1,2

)
=
(
T 2
−1,0, λ

−1
1 T−1,0 − λ−1

2 T1,2, T
2
1,2
)
,

since

T 2
−1,0(f) = T−1,0

(
T−1,0(f)

)
=
(
λ−1

1 T−1,0 − λ−1
2 T1,2

)(
λ1T−1,0(f)

)
,

and similarly for T 2
1,2(f).

Let us look at the kernel of the natural surjection from the representations listed 
in (18) to

πr
∼= indG

IZ dr

(T−1,0, T1,2)
.

The respective kernels are given by

(i) (T−1,0, T1,2)
(T−1,0, T 2

1,2)
, (ii) (T−1,0, T1,2)

(T 2
−1,0, T1,2)

, (iii) (T−1,0, T1,2)
(λ−1

1 T−1,0 − λ−1
2 T1,2)

.

We only need to claim that the above representations are isomorphic to πr. To see 
this, in cases (i) and (ii), consider the surjection from indG

IZ dr to these representations 
given by

f �→ T−1,0(f) + T1,2(f),

and in case (iii), consider
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f �→ λ−1
1 T−1,0(f) = λ−1

2 T1,2(f).

It is straightforward to verify, by making use of Proposition 3.1 and Proposition 3.3, that 
these maps have (T−1,0, T1,2) as their kernel.

Thus, in order to finish the proof of Theorem 1.2, we need to prove (6). By the 
definition of Baer sum, we have:

λ1
indG

IZ dr

(T 2
−1,0, T1,2)

+ λ2
indG

IZ dr

(T−1,0, T 2
1,2)

= {(f1, f2) | λ−1
1 f1 − λ−1

2 f2 ∈ (T−1,0, T1,2)}
{(T−1,0(f),−T1,2(f)) | f ∈ indG

IZ dr

(T−1,0,T1,2)}
. (19)

Consider the surjective morphism from the numerator of the right hand side of (19) onto

indG
IZ dr

(λ−1
1 T−1,0 − λ−1

2 T1,2)

given by

(f1, f2) �→ λ−1
1 f1 + λ−1

2 f2. (20)

Now,

Ker((20)) =
{
(f1, f2)

∣∣ λ−1
1 f1 + λ−1

2 f2 = λ−1
1 T−1,0(f) − λ−1

2 T1,2(f),∃f
}

=
{
(f1, f2)

∣∣ λ−1
1
(
f1 − T−1,0(f)

)
= −λ−1

2
(
f2 + T1,2(f)

)
, ∃f
}
.

Since f1 ∈ indG
IZ dr

(T 2
−1,0,T1,2) and f2 ∈ indG

IZ dr

(T−1,0,T 2
1,2)

, together with the knowledge that

λ−1
1 f1 − λ−1

2 f2 ∈ (T−1,0, T1,2),

we conclude that

f1 ∈ ImT−1,0 & f2 ∈ ImT1,2.

Since,

λ−1
1
(
f1 − T−1,0(f)

)
= −λ−1

2
(
f2 + T1,2(f)

)
,

it follows from Proposition 3.3 that

Ker((20)) =
{(

T−1,0(f),−T1,2(f)
) ∣∣∣ f ∈ indG

IZ dr

(T−1,0, T1,2)

}
,

showing that (20) is an isomorphism. This proves Theorem 1.2.
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7. Pro-p-Iwahori Hecke module structure

7.1. Preliminaries on the pro-p-Iwahori Hecke modules

We briefly recap the relevant facts about the pro-p-Iwahori Hecke modules. Our ref-
erence here is [16, §9].

The pro-p-Iwahori Hecke algebra H is the Hecke algebra associated to (I(1)Z, ζ) where 
ζ is a smooth character ζ : Z → F̄×

p . For a smooth irreducible representation π of 
GL2(Qp), we take ζ = ω, the central character of π.1 Thus, H = EndG(indG

I(1)Z ω).
Let RepG denote the category of smooth representations of GL2(Qp) with central 

character ω, and let ModH be the category of right H-modules. Consider the functors 
I : RepG → ModH given by

I(π) = πI(1) ∼= HomG

(
indG

I(1)Z ω, π
)
,

and T : ModH → RepG given by

T (M) = M ⊗H indG
I(1)Zω.

We have:

HomH
(
M, I(π)

) ∼= HomG

(
T (M), π

)
.

By a result of Vignéras, I and T induce a bijection between irreducible objects in RepG

and ModH [18, Theorem 5.4]. Ollivier shows that I and T induce an equivalence of 
categories between ModH and the category of smooth F̄p-representations of GL2(Qp), 
with central character ω, generated by their I(1)-invariants [14].

The algebra H has a basis indexed by the double cosets I(1)\G/I(1)Z. Write Tg for 
an element corresponding to I(1)gI(1)Z. If v ∈ πI(1), the action of Tg is given by

Tg(v) =
∑

u∈I(1)/(I(1)∩g−1I(1)g)

ug−1v.

Given a character χ of the maximal split torus T (Fp) of GL2(Fp), define eχ ∈ H by

eχ = 1
|T (Fp)|

∑
t∈T (Fp)

χ(t)Tt.

Then the elements Tw, Tβ , and eχ for all χ, generate H as an algebra, and the following 
relations hold:

1 The representation π has a central character by [2].



U.K. Anandavardhanan, G.H. Borisagar / Journal of Algebra 423 (2015) 1–27 23
T 2
β = 1, eχTw = Tweχw , eχTβ = Tβeχw , eχT

2
w = −eχeχwTw.

Also, eχeχw = eχ if χ = χw and eχeχw = 0 otherwise.
Now let π be an irreducible supersingular representation of GL2(Qp). For (λ1, λ2) ∈ F̄2

p, 
define an H-module Eλ1,λ2 as follows. It is a four dimensional vector space with basis 
{uχ, uχw , vχ, vχw} with the action of H given on the generators by

Tw(vχ) = λ1uχw , Tw(vχw) = λ2uχ, Tw(uχ) = Tw(uχw) = 0,

and

Tβ(vψ) = vψw , Tβ(uψ) = uψw , eψ(vψ) = vψ, eψ(uψ) = uψ,

for ψ ∈ {χ, χw}. Then 〈uψ, uψw〉 is stable under the action of H and we have an exact 
sequence:

0 → I(π) → Eλ1,λ2 → I(π) → 0.

The extension is split if and only if (λ1, λ2) = (0, 0), and the map sending (λ1, λ2) to 
the equivalence class of the above exact sequence is an isomorphism of F̄p-vector spaces 
between F̄2

p and Ext1H(I(π), I(π)).
We may also note that the embedding given by T below

0 → Ext1H
(
I(π), I(π)

)
→ Ext1G(π, π) → . . . (21)

has in its image precisely those self-extensions which have a four dimensional space of 
I(1)-invariants. If 0 → π → τ → π → 0, and if dim τ I(1) = 4, then, 0 → πI(1) → τ I(1) →
πI(1) → 0, since dim πI(1) = 2, and the claim follows from [16, Proposition 9.1].

7.2. Space of I(1)-invariants

Now we compute the H-module structure on the space of I(1)-invariants of the rep-
resentations in Theorem 1.2. Before we do this, observe that

(
indG

IZ dr

(T−1,0, T1,2)

)I(1)

=
〈�Id, 1�, �β, 1�〉 (22)

as can be seen from Theorem 1.1 together with [6, Theorem 3.2.4]. The dimension of the 
space of I(1)-invariants of the three representations in (18) is four. Indeed, we can exhibit 
four linearly independent I(1)-invariants, and this will do since a priori the dimension of 
the space of I(1)-invariants is at most four as these representations are self-extensions 
of πr.
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The spaces of I(1)-invariants in the three cases are as follows:

(
indG

IZ dr

(T−1,0, T 2
1,2)

)I(1)

=
〈�Id, 1�, �β, 1�, T1,2

(�Id, 1�), T1,2
(�β, 1�)〉, (23)

(
indG

IZ dr

(T 2
−1,0, T1,2)

)I(1)

=
〈�Id, 1�, �β, 1�, T−1,0

(�Id, 1�), T−1,0
(�β, 1�)〉, (24)

and
(

indG
IZ dr

(λ−1
1 T−1,0 − λ−1

2 T1,2)

)I(1)

=
〈�Id, 1�, �β, 1�, λ−1

1 T−1,0
(�Id, 1�)

= λ−1
2 T1,2

(�Id, 1�), λ−1
1 T−1,0

(�β, 1�)
= λ−1

2 T1,2
(�β, 1�)〉. (25)

Note that, in all the cases,

vdr = �Id, 1�,
and

var = �β, 1�,
whereas

udr = T−1,0
(�Id, 1�) or T1,2

(�Id, 1�) or λ−1
1 T−1,0

(�Id, 1�) = λ−1
2 T1,2

(�Id, 1�),
and

uar = T−1,0
(�β, 1�) or T1,2

(�β, 1�) or λ−1
1 T−1,0

(�β, 1�) = λ−1
2 T1,2

(�β, 1�).
Also, it is easy to see that

Tw

(�Id, 1�) = T1,2
(�β, 1�), (26)

and

Tw

(�β, 1�) = T−1,0
(�Id, 1�), (27)

and that Tw takes the value 0 on all the other vectors.
Thus, with the choice of χ = ar, we have proved the following proposition.

Proposition 7.1. The pro-p-Iwahori Hecke module structure of the three representations 
in Theorem 1.2 is as follows:
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(i) ( indG
IZ dr

(T−1,0,T 2
1,2)

)I(1) ∼= E0,1,

(ii) ( indG
IZ dr

(T 2
−1,0,T1,2) )

I(1) ∼= E1,0,

(iii) ( indG
IZ dr

(λ−1
1 T−1,0−λ−1

2 T1,2)
)I(1) ∼= Eλ1,λ2 .

Note that Proposition 7.1 furnishes another proof of (6) in Theorem 1.2.

7.3. Another approach to Theorem 1.2

As mentioned in the introduction, the material in this section is communicated to us 
by V. Paškūnas.

Note that

EndG

(
indG

IZ χ
)

= eχHeχ,

since indG
IZ χ is the direct summand of indG

I(1)Z 1 cut out by the idempotent eχ.
We give a presentation of the H-module E1,0

eχH⊕ eχH → eχH → E1,0 → 0 (28)

as right H-modules. The map eχH → E1,0 is defined by sending eχ to vχ. The relations 
defining E1,0 imply that the images of eχ, eχTw, eχTβ , eχTwTβ form a basis of E1,0 and 
eχTβTw �→ 0.

The map eχH ⊕ eχH → eχH is given by multiplication by eχTβTweχ on the left on 
the first summand, and multiplication by (eχTwTβeχ)2 = eχTwTβTwTβ on the left on 
the second summand. Thus, all elements of the form eχTβTwTg or eχTwTβTwTβTg lie 
in the image. Observe that the only elements which cannot be obtained this way are 
eχ, eχTw, eχTβ , and eχTwTβ . This gives (28).

Applying the functor T from 7.1, we get:

T (E1,0) = indG
IZ χ

(eχTβTweχ, (eχTwTβeχ)2) .

7.4. A remark on Ext1G(πr, πr)

The theorem of Paškūnas [16] referred to in the introduction asserts that

dim Ext1G(πr, πr) = 3.

The proof of this fact is quite nontrivial. In Paškūnas’ proof, the dimension of 
Ext1G(πr, πr) is shown to be 3 in two major steps. In the first, it is proved that 3 is 
an upper bound, and this part of the proof uses only methods of mod p representation 
theory of GL2(Qp). In the second step, where 3 is shown to be a lower bound, Paškūnas 
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uses an argument which is originally due to Colmez and Kisin [10,11]. The Colmez–Kisin 
argument is in the realm of the deformation theory of Galois representations. It seems a 
difficult problem to lay one’s hands on a third self-extension which is linearly indepen-
dent from the self-extensions considered in Theorem 1.2. Of course such a self-extension 
will have < 4 dimensional space of I(1)-invariants as the argument using (21) shows.
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