
ELSEVIER

Kenneth A

b AT&T Labs Research, 600-700 Mountain Avenue, Murray Hill, NJ 07974, USA

Rossa**, Divesh Srivastavab,*, Peter J. Stuckeyc,3, S. Sudarshand.4

a Columbia University, New York, NY 10027, USA

Theoretical
Computer Science

Theoretical Computer Science 193 (1998) 149-179

Foundations of aggregation constraints’

c University of Melbourne, Parkville 3052, Australia
d Indian Institute of Technology, Powai, Mumbai 400 076. India

Received June 1995; revised November 1996

Communicated by M. Nivat

Abstract

We introduce a new constraint domain, aggregation constraints, that is useful in database
query languages, and in constraint logic programming languages that incorporate aggregate func-
tions. We formally study the fundamental problem of determining if a conjunction of aggregation
constraints is satisfiable, and show that, for many classes of aggregation constraints, the problem
is undecidable. We describe a complete and minimal axiomatization of aggregation constraints,
for the SQL aggregate functions min, max, sum, count and average, over a non-empty, finite
multiset on several domains. This axiomatization helps identify classes of aggregation constraints
for which the satisfiability check is efficient. We present a polynomial-time algorithm that di-
rectly checks for satisfiability of a conjunction of aggregation range constraints over a single
multiset; this is a practically useful class of aggregation constraints. We discuss the relationships
between aggregation constraints over a non-empty, finite multiset of reals, and constraints on
the elements of the multiset. We show how these relationships can be used to push constraints
through aggregate functions to enable compile-time optimization of database queries involving
aggregate functions and constraints.

1. Introduction

Database query languages such as SQL use aggregate functions (such as min, max,

sum, count and average) to obtain summary information from the database. Aggregate

* Corresponding author. E-mail: divesh@research.att.com.

’ A preliminary version of this paper appeared in [5].
2 Supported by NSF grant IRI-9209029, by a grant from the AT&T Foundation, by a David and Lucile

Packard Foundation Fellowship in Science and Engineering, by a Sloan Foundation Fellowship, and by an

NSF Young Investigator Award.

3 Partially supported by the Centre for lntelligent Decision Systems and ARC Grant A49130842.

4 Work was performed while he was at AT&T Bell Laboratories, Murray Hill, NJ 07974, USA.

0304-3975/98/$19.00 @ 1998 -EElsevier Science B.V. All rights reserved

PZI s0304-3975(97)00011-x

150 K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179

functions are typically used in combination with a grouping facility: values are par-

titioned into groups and aggregate functions are applied to the multiset of values

within each group. Database query languages also allow constraints (e.g., Ml >O,

M2 < 10 000) to be specified on values, in particular on the results of aggregate func-

tions, to restrict the answers to a query.

In this paper, we formally study constraints on the results of aggregate functions

on multisets; we refer to this constraint domain as aggregation constraints. This is

a novel constraint domain that is useful in database query languages, and in constraint

logic programming languages that incorporate aggregate functions [3]. We make the

following contributions in this paper:

1. We study the fundamental problem of determining if a conjunction of aggregation

constraints is satisfiable, and show that, for many classes of aggregation constraints,

the problem is undecidable (Section 3).

2. We describe a complete and minimal axiomatization of aggregation constraints, for

the aggregate functions min, max, sum, count and average, over a non-empty, fi-

nite multiset on several domains (Section 4). These aggregate functions are exactly

those supported in SQL-92 [4]. The axiomatization enables a natural reduction from

this class of aggregation constraints to the class of mixed integer/real, non-linear

arithmetic constraints. This axiomatization also helps identify interesting classes of

aggregation constraints for which the satisfiability check is efficient.

3. We present a polynomial-time algorithm that checks for satisfiability of a conjunction

of aggregation range constraints, for the SQL aggregate functions, over a non-empty,

finite multiset of reals (Section 5 and Appendix). Our algorithm operates directly

on the aggregation constraints, rather than on the reduced form obtained using the

axiomatization; it is not clear how to operate directly on the reduced form to attain

the same complexity.

4. We discuss the relationships between aggregation constraints over a non-empty,

finite multiset of reals, and constraints on the elements of the multiset. In Section 6,

we describe how to infer aggregation constraints on a multiset, given constraints on

the elements of the multiset. In Section 7, we describe how to infer constraints on

multiset elements, given aggregation constraints on the multiset.

5. We show how aggregation constraints on queries (i.e., query constraints involv-

ing aggregation) can be used for compile-time database query optimization.

(Section 8).

Example 1.1 (Illustrative Example). Let E denote an employee relation with attributes

Emp denoting the employee identifier, Dept denoting the employee’s department, and

Salary denoting the employee’s salary. The following view V defines departments (and

aggregates of their employees’ salaries) where the minimum salary is greater than 0,

where the maximum salary is less than or equal to 10 000 and where the number of

employees is less than or equal to 10:

K. A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179 151

CREATE VIEW V(Dept, Min-Sal, Max-Sal, Sum-Sal, Count-Emp) AS

SELECT Dept, MIN(Salary), MAX(Salary), SUM(Salary1, COUNT(Salary1

FROM E

GROUP BY Dept

HAVING COUNT(Salary)<lO AND MIN(Salary)>O

AND MAX(Salary1 < 10000

Consider the query Q given by

SELECT *

FROM V

WHERE Sum-Sal > 100 000

To determine (at compile-time, by examining only the view definition and the query,

but not the database) that there are no answers to this query, we need to determine that,

independent of the actual tuples in the employee relation E, the conjunction of aggre-

gation constraints: min(S) > 0 A count(S) d 10 A max(S) < 10 000 A sum(S) > 100 000 is

unsatisfiable, where S is a non-empty, finite multiset of salaries. This can be deter-

mined by observing that the results of different aggregate functions on a multiset S are

not independent of each other. For example, the results of the sum, count and max

aggregate functions are related as follows:

sum(S) <count(S) * max(S).

This inequality can be used to infer the unsatisfiability of the previous conjunction of

aggregation constraints, and hence determine that the query Q has no answers. The

techniques described in this paper can be used to efficiently check for satisfiability of

such aggregation constraints.

Checking satisfiability of aggregation constraints can be used much like checking sat-

isfiability of ordinary arithmetic constraints in a constraint logic programming system

like CLP(9) [l]. Aggregate functions are typically applied only after multisets have

been constructed. However, checking satisfiability of aggregation constraints even before

the multisets have been constructed can be used to restrict the search space by not gen-

erating subgoals that are guaranteed to fail, as illustrated by the above view and query.

Our work provides the foundations of the area of aggregation constraints. We believe

there is a lot of interesting research to be done in the further study of aggregation con-

straints, e.g., the relationships between aggregation constraints on different multisets

that are related by multiset functions and predicates such as U, fl, C, applications of

aggregation constraints to query optimization, database integrity constraints and con-

straint logic programming.

2. Aggregation constraints

The constraint domain we study is specified by the class of first-order languages

L(J), where J C W is an arithmetic domain, and W denotes the reals. For example,

152 K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179

J can denote the reals, the integers, the non-negative integers, etc. The distinguished

sorts in L(J) are:

l the atomic sorts, which include J, the non-negative integers ,Y‘, the positive inte-

gers &“+, and the sort J/M’ (e.g., &‘/.A’+ denotes the non-negative rationals, and

W/.X+ = 9), and

l the multiset sorts, which include finite multisets of elements from J, denoted by

A(J), and non-empty, finite multisets of elements from J, denoted by A+(J).

Clearly, .A’(J) contains A’(J).

Apart from the set J over which we are defining multisets, we need to introduce

the sorts Jf and J/N+ in order to define the return values for the aggregate functions

count and average, respectively.

Constants of the atomic sorts are in L(J). Variables of sort A(J) and A’+(J) are

called multiset variables, and are usually denoted by S, Sr, etc. For simplicity, we do

not consider variables of the atomic sorts in our treatment.

Multiplication and addition functions on the atomic sorts J, A”, JV+ and J/M+ (and

between these sorts) are in L(J). We require that each of J, N, Jlr+, and JJJlr+ is

closed under addition and multiplication, as is any union of these sorts.

The aggregate functions are the functions sum, min, max, count and average in L(J).

The functions sum, min, and max take arguments from A’+(J) and return a value of

sort J. The function count takes arguments from A(J) and returns a value of sort A’“.

The function uverage takes arguments from A’(J) and returns a value of sort J/A”+.

The primitive terms of L(J) are constants of the atomic sorts, and aggregation terms,

which are formed using aggregate functions on multiset variables. Thus, 7, 3.142 and

max(S), where S is a multiset variable of type A+(W), are primitive terms of L(9).

Complex terms are constructed using primitive terms and arithmetic functions such as

+ and *. Thus, min(S1) *max(&) + (-3.142) *count(&) is a complex term in L(B).

A primitive aggregation constraint in L(J) is constructed using complex terms and

arithmetic predicates such as d, <, = , # , > and 3, which take arguments of the

atomic sorts J,M,Jlr+ and J/N+. Thus, sum(S~)6min(S~)+max(S2)+3.1 is a primi-

tive aggregation constraint in L(2). Complex aggregation constraints can be constructed

using conjunction, disjunction and complementation, in the usual manner. However, in

this paper, we shall deal only with conjunctions of primitive aggregation constraints.

Thus, for our purposes, an aggregation constraint is a conjunction of primitive aggre-

gation constraints. Note that the multiset variables cannot be quantified in L(J).

Given an aggregation term E, an aggregation range constraint on E is a conjunction

of primitive aggregation constraints, where each primitive constraint is of the form

E op c or of the form c op E, op is one of < and 6, and c is a constant of an

atomic sort.

2.1. Satisjiability

Given a sort J for multiset elements, an argument of an aggregate function in

1 min, max, sum, count, average} is said to be well-typed, if it matches the

K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179 153

signature of the aggregate function. Thus, S in max(S) is well-typed if it is of type

u&+(J).

The notion of multiset assignments, 8, of values to free variables (here, the multiset

variables) is defined in the usual way. Given a sort J, an assignment is said to be

well-typed if each of the variables in the assignment is well-typed for the aggregate

functions it participates in.

We are interested in the following fundamental problem.

Satisjiability: Given a conjunction %? of primitive aggregation constraints, does there

exist a well-typed assignment 0 of multisets to the multiset variables in %?, such that

%?6 is satisfied?

Checking for satisfiability of more complex aggregation constraints can be reduced

to this fundamental problem. The other important problems of checking implication

(or entailment) and equivalence of pairs of aggregation constraints can be reduced to

checking satisfiability of other aggregation constraints, in polynomial-time.

Example 2.1. Consider the aggregation constraint

max(S) = 2 * min(S) A count(S) >3

where S is of type J&‘+(M). A multiset assignment that satisfies the constraint is {S H

{2,3,4}}. Hence, the above aggregation constraint is satisfiable.

We can determine that one aggregation constraint implies (+) another using satis-

fiability. For example, we can determine whether

max(S) = 2 * min(S) A count(S) > 3 + sum(S) 2 0

where S is of type A+(M), by testing the satisfiability of

max(S) = 2 * min(S) A count(S) 23 A sum(S) ~0.

As this aggregation constraint is unsatisfiable, the implication holds.

2.2. A taxonomy

We present below several factors that affect the complexity of checking for satis-

fiability, and in later sections present algorithms for checking satisfiability of special

cases of aggregation constraints, defined on the basis of these factors.

Domain of multiset elements: This determines the feasible assignments to the mul-

tiset variables in checking for satisfiability. Possibilities include integers and reals;

correspondingly, the multiset variables range over finite multisets of integers or finite

multisets of reals. In general, restricting the domain of the multiset elements to integers

increases the difficulty of the problem.

Operations: If we allow just addition and multiplication, solving constraints may be

easier than if we also allowed exponentiation, for example.

154 K.A. Ross et al. ITheoretical Computer Science 193 (1998) 149-179

Aggregate functions: This determines the possible aggregate functions that are al-

lowed in constructing aggregation terms. In general, the complexity of checking for

satisfiability increases if more aggregate functions are allowed.

Class of constraints: This determines the form of the primitive aggregation con-

straints considered. There are at least two factors that are relevant:

1. Linear vs. Non-linear constraints: Checking for satisfiability of linear constraints is,

in general, easier than for non-linear constraints. By restricting the form even further,

such that each primitive aggregation constraint has at most one or two aggregation

terms, the problem can become even simpler.

2. Constraint predicates allowed: The complexity of checking for satisfiability also

depends on which types of constraint predicates are allowed. We can choose to

allow only equational constraints (=) or add inequalities (<, <) or possibly even

disequalities (f). In general, the difficulty of the satisfiability problem increases

with each new type.

Separability. This also determines the form of the primitive aggregation constraints

considered. The two possible dimensions in this case are:

1. Multiset variables: A conjunction of primitive aggregation constraints is said to be

multiset-variable-separable if each primitive aggregation constraint involves only

one multiset variable. For example, the conjunction of primitive aggregation con-

straints min(SI) + max(S1) < 5 A sum(&) > 10 is multiset-variable-separable, while

min(SI) + mm(&) 6 10 is not. In general, multiset-variable-separability makes the

satisfiability problem easier since one can check satisfiability of the aggregation

constraints separately for each multiset variable.

2. Aggregate functions: A conjunction of primitive aggregation constraints is said to be

aggregate-function-separable if each primitive aggregation constraint involves only

one aggregate function. For example, the conjunction min(SI) d min(&) A sum(S1) 3

sum($) + 2 is aggregate-function-separable. Note that this conjunction is not

multiset-variable-separable.

3. Undecidability results

We show undecidability of checking satisfiability of conjunctions of primitive aggre-

gation constraints by a linear-time, linear-space reduction from quadratic arithmetic

constraints over the positive integers to linear aggregation constraints over non-empty,

finite multisets of reals. The reduction makes essential use of the relationships sum(S) =

count(S) * average(S), and min(S) = max(S) implies sum(S) = count(S) * min(S).

Theorem 3.1. Checking satisfiability of a linear aggregation constraint Y? over non-

empty, finite multisets of reals is undecidable if

1. %2 involves the sum, count and average aggregate functions, or

2. %? involves the sum, min, max and count aggregate functions.

K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-l 79 155

Proof. Consider a conjunction %? of quadratic primitive arithmetic constraints over the

positive integers. Replace each quadratic term Xj *Xk (where Xj and Xk are not nec-

essarily distinct variables) in V by a “new” positive integer variable Xi, and conjoin

a quadratic equation of the form Xi = Xj * Xk to %. The resulting conjunction of con-

straints %?I is equivalent to %3 (on the variables of 59). Further, %‘I contains only linear

arithmetic constraints and quadratic equations of the form Xi = Xj * Xk over the positive

integers.

For each variable Xi in %?I, the reduction algorithm creates a new multiset variable Sj

of type M+(3), and replaces each occurrence of Xi in the linear arithmetic constraints

of %?I by the aggregation term count(Si). For each quadratic equation of the form

Xi = Xj *Xk in %‘I, the reduction algorithm Cream a new multiset variable sjjk of

type _&‘+(9?), and replaces the above quadratic equation by the following three linear

aggregation equations:

count(&) = average(S;jk)

The resulting conjunction of linear aggregation constraints %?2 is satisfiable over non-

empty, finite multisets of reals if and only if the original conjunction of quadratic

constraints %? is satisfiable over the positive integers.

There is a similar reduction using the aggregate functions sum, min, max and

count, where the quadratic arithmetic equation Xi =Xj *Xk is replaced by the fol-

lowing four linear aggregation equations: count($) = sum(Sijk), count(Sj) = count(Sijk),

count(&) =mi?Z(Sijk) and count(&) = max(&jk). Again, the resulting conjunction of

linear aggregation constraints is satisfiable over non-empty, finite multisets of reals

if and only if the original conjunction of quadratic constraints is satisfiable over the

positive integers.

The theorem follows from the undecidability of the satisfiability of quadratic arith-

metic constraints over the positive integers (e.g., Diophantine equations). 0

The proof of the above theorem can be easily modified to establish the following

result.

Corollary 3.1. Checking satisjiability of a linear aggregation constraint W over non-

empty, jinite multisets of integers is undecidable if

1. %? involves the sum, count and average aggregate functions, or

2. V involves the sum, min, max and count aggregate functions.

A natural question that can be raised is the complexity of checking for satisfiability

when fewer aggregate functions occur in the aggregation constraints. The following

result establishes the hardness of some simple special cases.

156 K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-I 79

Theorem 3.2. Checking sutisjability of a linear aggregation constraint over finite

multisets of values drawn from any domain, involving just the count aggregate jiinc-

tion is W-complete.

Checking satisjability of a linear aggregation constraint over 3nite multisets of

integers, involving either min or max or sum is W-complete.

Proof. For integer linear arithmetic constraints, there is a reduction to linear aggrega-

tion constraints, where integer variable X, is replaced by either of:

l count(Si~) - count(&), where Sir and $2 are new multiset variables ranging over

finite multisets of values drawn from any domain, or

l any of the aggregation terms min(S;), max(Si) or sum(S), where S, is a new multiset

variable ranging over non-empty, finite multisets of integers.

There is a similar reduction from linear aggregation constraints to integer linear arith-

metic constraints as well. Checking for satisfiability of linear arithmetic constraints over

the integers is NP-complete [6]. The result follows. 0

4. An axiomatization

In this section, we present a complete and minimal set of relationships between the

values of the aggregate functions on a single multiset. The intuition here is that the

domain of aggregation constraints only allows aggregation terms on individual multi-

sets. Interactions between different multisets is possible only via arithmetic constraints

between the results of the aggregate functions on individual multisets. Consequently,

relationships between the results of aggregate functions on different multisets can be

inferred using techniques from the language of ordinary arithmetic constraints (see [6],

for example).

Definition 4.1 (Aggregate assignment and aggregate satisjiability). An aggregate

assignment maps each aggregation term of the form F(S), where F is an aggregate

function and S is a multiset variable, to a value.

An aggregate assignment is said to be well-typed if each term F(S) is mapped to a

value that is in the sort of the result of F(S).

An aggregation constraint is said to be satisjed by an aggregate assignment if the

aggregate assignment is well-typed and the constraint obtained by replacing each F(S)

by its value in the aggregate assignment is satisfiable.

An aggregation constraint is said to be aggregate satis$able if there exists an ag-

gregate assignment that satisfies the constraint.

To each multiset assignment there corresponds a unique aggregate assignment ob-

tained by setting the aggregation terms to the values given by the application of the

aggregate function to the assigned multiset. However some aggregate assignments do

K.A. Ross et al. I Theoretical Computer Science 193 (1998) 145379 157

not correspond to any multiset assignment since they do not satisfy necessary relation-

ships between aggregation terms.

Example 4.1. Consider the aggregation constraint %?I

min(S) + MUX(S) = sum(S) A average(S) = sum(S) - 3,

where S is of type A+(W). Two aggregate assignments that satisfy this constraint are

H, = {min(S) H l,max(S) H 5,sum(S) H 6,average(S) H 3)

and

02 = {min(S) H 5,max(S) H 2,sum(S) H 7,uueruge(S) H 4).

Hence, the aggregation constraint is aggregate satisfiable. Note that, while for 8, there

exists a multiset S = { 1,5} for which the aggregation terms will take the appropriate

values, no such multiset corresponds to 02.

An aggregation constraint d(S) that defines the relationships between the results

of aggregate functions on a single multiset S is said to be an uxiomutizution of the

aggregate functions on S. We can use an axiomatization to reduce the problem of

satisfiability of an aggregation constraint to a problem of aggregate satisfiability.

Intuitively, to ensure satisfiability of a given aggregation constraint, we must check

the aggregate satisfiability of the conjunction of the aggregation constraint with the

axiomatizations S(Si) for each multiset Si in the aggregation constraint. (The axioma-

tization may depend on the sort of S;.) Checking for aggregate satisfiability amounts to

treating each F(Si) as a distinct variable (of the appropriate sort), and using techniques

from the domain of ordinary arithmetic constraints.

Definition 4.2 (Soundness and completeness). An axiomatization d(S) is sound for a

given sort of multisets if every finite multiset S of the appropriate sort satisfies d(S).

An axiomatization d(S) is complete for a given sort of multisets and a given

collection of aggregate functions if for every aggregate assignment that assigns values

to the given aggregate functions on S, and that satisfies d(S), there exists a finite

multiset S of the appropriate sort, with the corresponding aggregate values.

Theorem 4.1. Suppose an axiomutizution d(S) is sound and complete for u given

sort of multisets and a given collection of aggregate functions. An aggregation con-

straint %? using the given aggregate functions on multisets SI, . . . ,S,, of the given sort

is sutisjuble ifs GF? A &(Si) A . . . A _QZ(S,,) is aggregate satisjable.

Proof. For the “only if” direction, if the aggregation constraint is satisfiable by an

assignment to the multiset variables S 1,. , S,, we can assign to each aggregation term

F(Si) the value defined by the assignment to Si. The soundness of the axiomatization

implies aggregate satisfiability.

158 K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179

For the “if” direction, suppose we have an aggregate assignment that satisfies V A

&(St) A . A &al(&). For each variable Si, the completeness of the axiomatization

implies that there is a multiset S; of the appropriate sort such that d(S) is satisfiable

using S,!, and the results of the aggregate functions on S,! are the same as in the

aggregate assignment. Hence, %? is satisfiable. 0

For the SQL aggregate functions sum, min, mux, count and uverage, on the sorts

A+(J) for several different J, there is a sound and complete axiomatization as shown

by the following theorem. The only aggregate function in the above set applicable to

A&‘(J), for any J, is count. The axiomatization for this case is trivial.

Theorem 4.2. The conjunction oj the following primitive aggregation constraints

(axioms) provides a sound, complete and minimal axiomutization of’ the relationships

between uggregate junctions min,max,sum,count and average on a jinite multiset S

from A?+(J), where J is either the reals, the rationals, the integers, the non-negative

integers, or the integers divisible by any jixed number k.

1. min(S)bmax(S).

2. count(S) 3 min(S) + max(S) <sum(S) + min(S).

3. sum(S) + max(S) <min(S) + count(S) * max(S).

4. sum(S) = average(S) * count(S).

Proof. That the axiomatization is sound follows from the mathematical properties of

the various aggregate functions. We now consider completeness.

Consider an arbitrary non-empty, finite multiset S = {Xl,. . .,X,,} where n 2 1 and

X,&Y*< ... <X,. By definition, we have min(S) = Xl, max(S) =X,,, sum(S) =X1 +

. . . +X,, count(S) = n, and average(S) = (Xl +. . +X,)/n. We consider several cases.

count(S) = 1: The axiomatization implies min(S) = max(S) = sum(S) = averuye(S).

For any choice of min(S), we let Xt =min(S), and we have the required multiset.

count(S) = 2: The axiomatization implies that min(S) dmux(S), sum(S) = min(S) +

max(S), sum(S) = 2 *average(S). Choose Xt = mm(S), XI = max(S), and we have the

required multiset.

count(S) = 3: The axiomatization implies that min(S) <mux(S), sum(S) <min(S) +

2 * max(S), sum(S) 22 * min(S) + max(S), sum(S) = 3 * averuge(S). Choose Xl =

min(S), X3 = max(S), X2 = sum(S) - min(S) - max(S) and we have the required mul-

tiset.

count(S) > 4: The axiomatization implies that min(S) < max(S), sum(S) < min(S)

+(n - 1) * max(S), sum(S) 2 (n - 1) * min(S) + max(S), sum(S) = n * average(S).

We choose Xt = min(S), X,, = max(S). We now subdivide into several cases:

1. J is the reals or the rationals. Choose X2 = . . . =X+1 = (sum(S) - mm(S) -

max(S))/(n - 2), and we have the required multiset.

2. J is the integers. Let x = (sum(S) -min(S) -max(S))/(n - 2). Choose X2 = . . =

Xj=lX] andxj+l=...=x,_,=Txl,wherej=l+(n-2)(rxl-x),andwehave

the required multiset.

3.

This

K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179 159

If J is the non-negative integers, or the integers divisible by k for any fixed k,

then a construction similar to that of the previous case applies.

completes the proof of completeness. Minimal&y follows from the fact that none

of the primitive constraints is entailed by the remaining primitive constraints. ’ 0

Other relationships between the results of aggregate functions can be inferred using

these basic relationships. For example, we can infer that count(S) = 1 implies that

min(S) = wax(S). Similarly, we can infer that the constraint max(S) < average(S) is

unsatisfiable.

Example 4.2. Consider the aggregation constraint Vi from Example 4.1:

min(S) + max(S) = sum(S) A average(S) = sum(S) - 3

where S is of type A+(w). Then for the aggregation constraint Vi A d(S)

8, = {IMzqS) H l,mux(S) H 5,sum(S) H 6,uueruge(S) H 3)

is an aggregate assignment that satisfies the constraint. But

t9* = {min(S) I--+ 5, mux(S) H 2, sum(S) H 7, average(S) H 4)

does not. For example, the axiom min(S)<mux(S) in d(S) is not satisfied.

The above axiomatization contains non-linear constraints. We now show that linear

constraints are not sufficient to axiomatize aggregation constraints.

Theorem 4.3. There is no jnite linear aggregation constraint over non-empty, jinite

multisets of reals and integers that soundly and completely uxiomutizes the relution-

ships between the aggregate functions min, mux, sum and count.

Proof. From axioms (l)-(3), the following statement Q is provable:

min(S) = mux(S) A min(S) = count(S) + sum(S) = count(S) * count(S).

Given the linear aggregation constraint min(S) = mux(S) A min(S) = count(S), the set

of possible values for sum(S) is { 1,4,9,16,. . .}, which cannot be expressed as the

solution of a linear constraint. Thus, Q cannot be entailed by a finite linear aggregation

constraint.

For any sound finite linear axiomatization &, Q is not entailed by d. It follows

that it is possible to choose values of min(S), mux(S), sum(S), and count(S) such

that min(S) = mux(S), min(S) = count(S) and sum(S) # count(S) * count(S), but for

which these values satisfy the axioms of d. Since no such multiset S exists, d is not

complete. 0

5 Axiom (1) is implied by axioms (2) and (3) only for the case that count(S)>3.

160 K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-I 79

5. Satisfiable special cases

In this section, we present some special cases of aggregation constraints where check-

ing for satisfiability is tractable, i.e., satisfiability can be checked in time polynomial

in the size of the representation of the constraints.

5.1. Directly using the axiomatization

We briefly describe two cases where the axiomatization presented in Section 4 can

be used to obtain polynomial-time algorithms for checking satisfiability. The intuition

here is that in each of the two cases the axiomatization of the relationships between the

results of the various aggregate functions can be simplified to a conjunction of linear

arithmetic constraints. These simplified axioms can then be conjoined with the given

aggregation constraints, each distinct aggregation term can be replaced by a distinct

arithmetic variable (of the appropriate sort) and satisfiability can be determined using

techniques from existing constraint domains.

The first case is when the aggregation constraint involves only min and max.

In this case, only the axiom min(S)<max(S) needs to be conjoined for each multiset

variable S involved. If the original aggregation constraint is linear and the multiset

elements are drawn from the reals, the transformed arithmetic constraint is also linear

over the reals; satisfiability can now be checked in time polynomial in the size of the

aggregation constraint, using any of the standard techniques (see [6], for example) for

solving linear arithmetic constraints over the reals.

Example 5.1. Consider the aggregation constraint %?z

max(S1) + max(&) = 2 A min(S1) + 2 * min(&) 3 5,

where St and S2 are of type A+(.@). Then this can be checked for satisfiability by

simply finding an aggregate assignment that aggregate satisfies the constraint

%?2 A min(Sl)dmax(S,) A min(&)<max(&).

This can be achieved by replacing each aggregation term by a real variable, e.g.,

replacing min($) by xi and max(&) by yi we obtain

yi $y2=2Ax, +2*x2>55x,<y, Axz<y2.

Then a solution for the resulting linear real constraint is found, e.g., {xi H -1,

ye H -1,x2 H 3,y2 H 3). And finally this solution is mapped back to form an

aggregate assignment. For example,

(min(S1) H -l,max(S,) H -l,min(&) H 3,max(S2) H 3)

is such an aggregate assignment.

Any such aggregate assignment can be extended to a multiset assignment, by allow-

ing Si to be the multiset {min(Si),max(Si)}. Hence, {Si w{-1,-l},& H {3,3}} is

K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179 161

a multiset assignment satisfying the aggregation constraint %‘2. Similarly we can show

that the aggregation constraint P& A min(S,) 3 0 A min(S2) > 0 is unsatisfiable, since

there is no aggregate assignment for

%Yz A min(Sl)>O A min(&)>O A min(Sl)dmax(&) A min(&)<max(&). 0

The second case where we can obtain polynomial-time algorithms is when the linear

aggregation constraint explicitly specifies the cardinality of each multiset, i.e., for each

multiset variable Si, we know that count(&) = ki, where ki is a constant. In this case,

each of the non-linear axioms can be simplified to a linear primitive constraint; checking

for satisfiability again takes time polynomial in the size of the aggregation constraints

if the multiset elements are drawn from the reals.

Example 5.2. Consider the aggregation constraint %?s

count(S) = 2 A sum(S) = average(S) A min(S) 2 0,

where S is of type A+(%?). The axiomatization d(S) for multiset S simplifies to the

following linear aggregation constraint given count(S) = 2:

min(S) d max(S)

A min(S) + max(S) <sum(S)

A sum(S) dmin(S) + max(S)

A sum(S) = 2 * average(S).

The conjunction of 97s with the above aggregation constraint has a single aggregate

assignment that aggregate satisfies it

{min(S) H O,max(S) H O,sum(S) H O,auerage(S) H O,count(S) H 2)

We can deduce this using standard methods for linear real arithmetic. Then by

Theorem 4.2 there must exist at least one multiset assignment that satisfies aggregation

constraint +5’s, in this case {S H (0, 0)).

5.2. Linear separable aggregation constraints

In this section, we examine a very useful class of aggregation constraints, and present

a polynomial-time algorithm to check for satisfiability of constraints in the class. Our

technique operates directly on the aggregation constraints, rather than on their reduction

to arithmetic constraints. The reduced form of this class includes mixed integer/real

constraints, and is non-linear; it is not clear how to operate directly on the reduced form

and attain the same complexity as our algorithm. We specify the class of constraints

in terms of the factors, described in Section 3, that affect the complexity of checking

for satisfiability. We require the following:

1. The domain of multiset elements is W, the reals.

162 K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179

2. The constraints are linear and specified using <, <, =, > and 2.

3. The constraints are multiset-variable-separable and aggregate-function-separable.

The above restrictions ensure that we can simplify the given conjunction of aggregation

constraints to range construints on each aggregation term. We refer to this class of

aggregation constraints as 99-aggregation-constraints. 6

Most aggregation constraints occurring in queries are multiset-variable-separable.

Only when we consider constraint propagation or fold/unfold transformations are we

likely to obtain non-multiset-variable-separable aggregation constraints. The further re-

strictions for L?Y-aggregation-constraints are not onerous; Example 1.1 uses such con-

straints.

The general algorithm along with a proof of correctness is presented in the appendix.

Here, to present the main ideas underlying the general algorithm, we describe the algo-

rithm for the simpler case when the only aggregate functions present are miqmax, sum

and count, i.e., there are no aggregation constraints involving average.

5.2.1. Multiset ranges: No average

The heart of our algorithm is a function Multiset-Ranges that takes four finite and

closed ranges, [ml, mh], [MI,MA], [s,,sh], and an integer range [k~,kh], and answers the

following question:

Do there exist k > 0 numbers, k between kl and kh, such that the minimum of the k

numbers is between ml and mh, the maximum of the k numbers is between MI and

M,,, and the sum of the k numbers is between s[and sh?

When a > b, the closed range [a, b] is empty. We use operations such as “overlaps”

on pairs of ranges; these can be defined easily in terms of the primitive comparison

operations between endpoints of the two ranges. Note that the empty range does not

overlap with any range.

function Multiset-Ranges (ml, mh, Ml, Mh,sl,sh, k,, kt,) {

I* We assume finite and closed ranges. *I

(I) I* Tighten min,max and count bounds. “1

(a) if (Ml < ml) then A4j =ml.

(b) if (mh > Mh) then mj, =Mh.

(c) if (kj < 1) then kj= 1.

(2) /* Obviously unsatisfiable cases. */

(a) if (k, > kh or ml > mh or Ml > MJ, or sl > sh) then

/* infeasible ranges *I

return 0.

I* Case A: Elements can be negative, positive, or 0. *I

6 YY = linear, separable.

K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179

(3) if ([ml,Mh] overlaps [O,O]) then

(a) if ([sl,sh] does not overlap [(IQ - 1) *ml +M,,
mh + (kh - 1) * Mh]) then return 0.

(b) else return 1.

/* Case B: All elements are negative. Switch everything. */

(4) if (Mh < 0) then

(a) [tl, t2] = [-kfh, -Ml]; [MI,Mh] = [-mh, -ml]; [ml,mh] = [tl,t2].

(b) t= -S[; S[= -S/,; S,,=t.

I” Continue with Case C “I

/* Case C: All elements are positive. */

(5) I* ml > 0. *I

163

(a)

(b)

(c)

(4

(e)

1

if ([s[,sh] does not overlap [(kl - 1) *ml +M,,
mh + (kh - 1) *k&l) then return 0.

I* sum is too low or too high. *I

define integers kl and k2 by sl =rnh + (kl - 1) * k$, - k2,
O<k2 CM,,.
/* Multiset cardinality must be >kl, for surnasl. */

define integers kx and k4 by sh =(k~ - 1) *ml +MI + k4,
O<k4 <ml.
/* Multiset cardinality must be <k3, for sum <sh. */

if ([kl,k3] overlaps [kj,kh]) then

return 1. I* any k in the intersection is a witness. *I

else return 0.

Theorem 5.1. Function MultiseLRanges returns 1 rr there exist k > 0 (real or inte-
ger) numbers, kl <k <kh, such that the minimum of the k numbers is in [ml,mh], the
maximum of the k numbers is in [M,,Mh], and the sum of the k numbers is in [s,,sh].

Further, Multiset-Ranges has polynomial time complexity in the size of the repre-
sentation of the input.

Proof. We prove the first part of the theorem by showing that the algorithm returns 1

if and only if the given constraints along with the four axioms of Theorem 4.2 are

satisfiable.

Steps (la) and (lb) generate all constraints on min and max that can be inferred

from the given range constraints on min and max and the axioms. If Step (2) returns 0,

the resultant set of constraints is clearly unsatisfiable. Else, the conjunction of the given

range constraints on min,max and count along with all the axioms is satisfiable. We

now have to consider only the constraints on sum.
All elements in the multiset have to lie in the range [ml,Mh]; the minimum and max-

imum elements are additionally constrained to lie in the ranges [ml, mh] and [Ml,Mh],

respectively. Axioms (2) and (3) are satisfied if and only if the sum is in the union

164

of the ranges:

iQ, [(i - 1

K. A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179

)*m~+M~,mh+(i- I)*Mh].

In general, this union of ranges need not be convex; there may be gaps.

Thus, the conjunction of the given constraints and axioms (l)-(4) is satisfiable if

and only if there is an i such that the given range on sum [s~,sh] overlaps with the

range: [(i - 1) * ml + M/, mh + (i - 1) * Mh]. The algorithm for testing the above has

three cases, based on the location of the [rnl,Mh] range with respect to zero.

The first case is when the [ml,Mh] range includes zero; in this case, the union of

the ranges from which the sum can take values is convex, and is given by

Step (3) checks that [sl,sh] overlaps with this range.

The second case is when the [ml,Mh] range includes only negative numbers, and the

third case is when the [ml,&] range includes only positive numbers. These two cases

are symmetric, and we transform the second case into the third case in Step (4), and

consider only the third case in detail.

In the third case, the sum lies within the range [(k, - 1) * ml f hfj, mh + (kh - 1) * hfh],

but not all values in this range are feasible - there may be gaps. The conjunction

of constraints is unsatisfiable if and only if the [sj,sh] range lies outside [(kl - 1) *

ml + Ml, mh + (kh - 1) * Mh], or entirely within one of the gaps. Step (5a) checks for

the first possibility, and Steps (5b)-(Se) check for the second possibility. The number

kr gives the smallest cardinality that the multiset can have subject to the constraints

on min and max, such that its sum is 3~1. Similarly, the number kj gives the largest

cardinality that the multiset can have subject to the constraints on min and max, such

that its sum is bsh.

Clearly, if [kl, kj] is infeasible, and hence by definition [kl, k3] does not overlap

[kl, kh], then the constraints are unsatisfiable. If [kl, k3] is feasible, let i be any integer

in [kl , k3]. The possible values of sum for this j are all values in [(J’ - 1) *ml +Ml, mh +

(j - 1) * Mh]. Now by the definition of kl the range for j = kl is not entirely to the

left of [sI,Q], and the range for j = kj is not entirely to the right of [sI,s~]. But since

kl <kj, both these ranges must overlap [sI,sh]. It is then easy to show that for all

j in [k,, k3] the range for j overlaps [s/,sJ,]. Since [kl, k3] overlaps [kf, kh], there is

a j element multiset that satisfies all the constraints. This concludes the proof of the

first part of the theorem.

The proof of the second part of the theorem is straightforward because the number of

steps in Multiset-Ranges is bounded above by a constant, and each step is polynomial

in the size of representation of the input. (7

Checking for satisfiability of a conjunction of

as follows. Since the aggregation constraints are

itive aggregation constraints can be partitioned

PY-aggregation constraints proceeds

multiset-variable-separable, the prim-

based on the multiset variable, and

K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179 165

the conjunction of aggregation constraints in each partition can be solved separately.

The overall conjunction is satisfiable 8 the conjunction in each partition is separately

satisfiable.

Though _YY-aggregation-constraints are restricted, they are strong enough to infer

useful new aggregation constraint information. They can be used to infer some informa-

tion about an arbitrary aggregation constraint V by determining an _YY-aggregation-

constraint H that is implied by %; any aggregation constraints implied by H are then

also implied by Q?.

5.2.2. Dealing with average in Multiset Ranges

In the appendix we describe Gen-Multiset-Ranges, which is a generalization of the

function MultisetJanges, described in the previous section. It takes a finite and closed

range [al, ah] for average, in addition to the ranges for min,max,sum and count, and

determines in polynomial-time if there is a non-empty, finite multiset of real numbers

that satisfies all the aggregation constraints. Gen-Multiset-Ranges is based on three

key observations, presented here.

l Requiring the minimum value of a multiset to be in the (consistent) range [ml,mh],

and the maximum value of the multiset to be in the (consistent) range [M,,Mh],

allows us to infer that the sum of the values of an i element multiset must be in

the range:

[(i-l)*ml+Ml,mh$_(i-l)*Mh]

Given that the average value of a multiset is in the (consistent) range [a[,~], we

can infer that the sum of the values of an i element multiset must be in the range:

[i * al, i * ah].

The first key observation used in Gen-Multiset_Ranges combines these two ideas

as follows. Given range constraints on the minimum value, on the maximum value,

and on the average value of a multiset, the sum of the values of an i element mul-

tiset must be in the intersection of the inferred ranges for sum, based on min and

max, on the one hand, and based on average, on the other. When the count of the

multiset is known to be in the range [kl,kh], we can infer that the sum must be in

the following union of ranges:

8 ([(i-l)*mr+M/,mh+(i-l)*Mh]n[i*Ul,i*Uh]).
i=k,

l The second key observation used in Gen_MultisetLRanges is as follows: If il is the

smallest integer i 3 k, for which the ranges [(i - 1) * ml + kf/, mh + (i - 1) * Mh] and

[i * al, i * ah] overlap, then for all iail, the two ranges overlap.

This observation can be inferred from the following facts: (a) the maximum value

of a multiset can be no smaller than the minimum value (i.e., M/ >,rnj and Mh 3 mh),

(b) the average value of a multiset can be no smaller than the minimum value

(i.e., ai >ml), and no larger than the maximum Value of the multiset (i.e., ah <Mh).

166 K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179

l The third key observation, repeatedly used in Gen_Multiset_Ranges, involves two

properties of ranges: (a) given three ranges such that every pair from this collec-

tion overlap, there exists at least one point that is common to all three ranges, and

(b) given two ranges that overlap, a third range does not overlap with the intersec-

tion of the two ranges if and only if the third range does not overlap with at least

one of the two ranges.

Thus, in checking that the given range [sI,.s~] on the sum of the values of a multiset

overlaps with the inferred union of ranges for sum (see first observation above), it

suffices to check that there exists at least one i in [il,kh] such that [s/,sh] overlaps

with [(i - 1) * ml + Ml, rn/, + (i - 1) * A4h], as well as with [i * al, i * ah]. Each of

these checks can be independently done using the technique described in Multiset-

Ranges.

6. Using constraints on multiset elements

By using the constraints that are known on the elements of a multiset, we can infer

constraints on the results of aggregate functions on the multiset. The following example

illustrates this:

Example 6.1 (Multiset element constraints). Consider again the view V from Exam-

ple 1.1:

CREATE VIEW V(Dept, Min-Sal, Max-Sal, Sum-Sal, Count-Emp) AS

SELECT Dept, MIN(Salary) , MAX(Salary) , SUM(Salary) , COUNT(Salary)

FROM E

GROUP BY Dept

HAVING COUNT(Salary) < 10 AND MIN(Salary) > 0

AND MAX(Salary) d 10 000

In addition to the constraints on the results of the aggregate functions present

in the HAVING clause, constraints may be known on tuples of the employee rela-

tion E; for example, each employee may be known to have a salary between 1000

and 5000. If the employee relation is a database relation, these constraints may be

specified as integrity constraints on the database. If the employee relation is a de-

rived view relation, these constraints may be computed using the integrity constraints

on the database relations and the definition of the employee relation (see [7], for

example).

Constraints on the tuples of the employee relation can be used to infer constraints on

the results of the aggregate functions (and hence on the tuples of V). For example, if

each employee is known to have a salary between 1000 and 5000, then the minimum

salary and the maximum salary of each department in the view can be inferred to be

between 1000 and 5000.

K. A. Ross et al. I Theoretical Computer Science 193 (1998) 145179 167

Consider the query

SELECT *

FROM V

WHERE Sum-Sal > 50000

Given the constraints in the WHERE clause of the above query and in the view definition,

it is possible for this query to have answers. However, if we take the constraints on the

salaries of each employee into account, we can determine that win(S) > 1OOOAmax(S)

<5000, where S is the multiset of salaries of employees in some department. In con-

junction with the aggregation constraint count(S)< 10, it is now possible to determine

that the query can have no answers.

Let each element E of multiset S satisfy constraint V(E), i.e., YE E S, W(E). The

following result provides a technique to infer constraints that hold on the results of

aggregate functions on multiset S.

Theorem 6.1. Let V(E) be an arithmetic constraint (in disjunctive normal form, jijr

simplicity). Consider a non-empty, jinite multiset S of reals. Let d(S) be the ax-

iomcltization relating the results of aggregate functions min, max, sum, count and

average on multiset S. Suppose VE E $59(E). Then, the following constraint holds:

%(min(S)) A %Y(max(S)) A count(S) > 0 A d(S).

Proof. We show soundness by showing the soundness of each conjunct in %(min(S)) A

%‘(max(S)) A count(S) >O A d(S). Since min(S) and max(S) are both elements of

multiset S, they must satisfy the constraint V, by assumption. The constraint count(S) >

0 is equivalent to the assumption that the multiset S is non-empty. The soundness of

d(S) follows from Theorem 4.2. q

Although the constraint Q?(min(S)) A %‘(max(S)) A count(S) > 0 A d(S) is sound,

it may not, in general, be the tightest possible constraint that holds on the results of

the aggregate functions, i.e., the above constraint may be incomplete. The following

examples present several classes of constraints for which the above constraint is in-

complete. Subsequently, we describe a constraint class for which the above constraint

is indeed complete.

Example 6.2 (Zncompleteness with disjunctive linear constraints). Consider a non-

empty, finite multiset S of reals. Let V(E) = E =OV E = 2 be the constraint known

to be satisfied by each element E of the multiset S. It is obvious that sum(S) is

non-negative and even. (Evenness can be expressed using aggregation constraints by

asserting that sum(S) = 2*count(Sl), 7 where Sl is a new multiset variable.) However,

‘Note that %(E)FE =2 * count(Sl), where Sl is a new multiset variable, forces each element of the
multiset S to be the same non-negative even integer, rather than S being any multiset of non-negative even

integers.

168 K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179

this cannot be inferred using the constraint in Theorem 6.1. Intuitively, this is because

the constraint %(min(~))r\~(max(~)) does not imply that each element of the multiset

is either 0 or 2, which is the case in this example.

Example 6.3 (Incompleteness with non-linear construints). Consider a non-empty, fi-

nite multiset S of reals. Let %7(E) = E * E = 2 *E be the constraint known to be satisfied

by each element E of the multiset 5’. Since E * E = 2 *E is equivalent to E = 0 V E = 2,

incompleteness follows from the previous example.

Theorem 6.2. Let V(E) be u runge constraint on E. Consider a non-empty, finite

multiset S of reals. Let .d(S) be the axiom&ization relating the results of’ aggregate

functions min, rnux, sum, count und averqe for multiset S. Suppose VE E S, V(E).

Then,

%F(min(S)) A %?(mux(S)) A count(S) > 0 A d(S)

is a complete aggregation constraint satisfied by the results of the aggregate functions

min, max, sum, count and uverage on multiset S.

Proof. Consider the aggregation constraint

%(min(S)) A V(max(S)) A count(S) > 0 A d(S).

Since W is a range constraint, the constraint %(min(S)) A %(mux(S)) implies that

each element of the multiset lies in the range given by g. Further, the constraint

count(S) > 0 implies that the multiset is non-empty. 0

Note that the constraint q’(E) allowed on the multiset elements is quite restricted.

For example, constraints of the form VEl, E2 ES, El 62 + E2, i.e., constraints that

relate different elements of the multiset, are not allowed. Constraints of the form,

QE ES, E = count(S) are not allowed either since the constraint involves an aggregate

function. Existential quantification on the set elements, such as 3E E S, E = 2 is not

allowed either.

Although the class of constraints allowed on multiset elements is small, it is of

significant practical value in applications such as database query optimization. Data-

base queries typically specify only simple range constraints, as is the case in

Example 6.1.

7. Inferring constraints on multiset elements

Given constraints on an SQL view defined using aggregation, it is useful to be

able to infer constraints on the tuples of the database relations used to define the

view.

K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179 169

Example 7.1 (Inferring constraints on multiset elements). Let P be a database rela-

tion with attributes X and Y. Consider the following view:

CREATE VIEW V (X, Min) AS

SELECT X, MIN(Y)

FROM P

GROUP BY X

Suppose we are given the following (integrity) constraint on the view V:

vxvA4, V(X,M) + (M>5).

Then we can infer the following integrity constraint on the relation P:

KYVY, P(X,Y) --f (Y>5).

The following result is straightforward.

Theorem 7.1. Consider a conjunction of aggregation constraints Y?(S) on a single

multiset variable S. Let d(S) be the axioms on a multiset, as in Theorem 4.2. Then

for any multiset assignment 0 satisfying g(S), f or element e E U(S) the constraint

%7(S) A d(S) A earnin A edmax

is aggregate satis$able.

Let b(E) denote the following constraint on E

3s V(S) A d(S) A E >min(S) A E bmax(S)

b(E) is always a constraint that defines a (possibly unbounded) range of values for E.

Example 7.2. Consider the aggregation constraint %?d

sum(S)=5Amin(S)al,

where S is of type &F(2). Then d(E) is

3 sum(S) = 5 A min(S) > 1 A d(S) A E >min(S) A E <max(S)

or equivalently E > 1 A E <4. Thus, any multiset assignment satisfying %& for example

{S H (1,411 or {S H {l,l, l,l, l}}, must assign elements to S in the range 1 to 4.

Similarly given the aggregation constraint %?s

sum(S)>, 10 A count(S) = 1,

where S is of type _&z’+(W), then b(E) is equivalent to the (unbounded in one direction)

constraint E Z 10.

We conjecture that b(E) is the tightest constraint in the class of conjunctive lin-

ear arithmetic constraints in E that hold on elements of the multiset satisfying %7(S).

170 K.A. Ross et al. 1 Theoretical Computer Science 193 (1998) 149-179

The conjecture does not hold if either disjunction or non-linearity is allowed, as the

following example demonstrates.

Example 7.3 (Incompleteness with disjunctions or non-linearity). Consider the fol-

lowing conjunction % of aggregation constraints:

sum(S) = 13 A count(S) = 4 A min(S) = 1 A max(S) = 10,

where S is of type J%“(B). In this case b(E) is E 3 1 A E < 10. According to the

above conjecture, this should be the tightest conjunction of constraints linear in E that

holds for all elements of the multiset S. However, the only multiset S that satisfies %?

is { 1, 1, 1, lo}, for which the stronger disjunctive constraint E = 1 V E = 10 holds for all

E ES. Note that this disjunctive constraint is equivalent to the non-linear conjunctive

constraintE*E+lO=ll*E.

8. Query constraints and relevance

Queries can have constraints associated with them. Intuitively, only answers that

satisfy these constraints are “relevant” to the query. Such constraints are referred to as

query constraints, and are used extensively in query optimization (e.g., [7-9,2]).

Query constraints in the presence of aggregate functions have been considered in

[9,2]. However, they consider special cases. Sudarshan and Ramakrishnan [9] es-

sentially consider dynamic order constraints of the form X <fi and X af2, where

f, is the “current” value of min(S) and f2 is the “current” value of max(S), and

S is a multiset that is incrementally computed during program evaluation. Levy et

al. [2] only consider constraints of the form max(S) > c and min(S) <c, where c is a

constant.

The following examples illustrate the benefits of inferring query constraints on mul-

tiset elements, given query constraints on the results of aggregate functions on the

multiset, in cases that are not handled by earlier techniques.

Example 8.1 (Inferring query constraints). Let P be a relation with attributes X and

Y. Consider the following view:

CREATE VIEW V (X, Max) AS

SELECT X, MAX(Y)

FROM P

GROUP BY X

and the following query:

SELECT X, Max

FROM V

WHERE MaxaX

K.A. Ross et al. I Theoretical Computer Science 193 (1998) 145179 171

Consider a tuple (x, y) of P satisfying y <x. Two cases need to be considered. First,

when y is not the maximum value in the group for x. In this case, the tuple (x, y)

is irrelevant for computing V. (Note that an (x,y) tuple of P, where y is not the

maximum value in the group for x, is irrelevant whether or not y <x.) Next, consider

the case when y is the maximum value in the group for x. Then, the tuple (x, y) is in

the extension of V; however, this tuple does not satisfy the given query constraint. In

either case, if y <x, the tuple (x, y) of P is irrelevant to the given query. Hence, the

query constraint P(X, Y) : Y 2X can be inferred on the relation P; this can be used to

optimize query evaluation.

A similar observation holds for the query

SELECT X, Max

FROM V

WHERE Max=X

Since Max = X -+ Max > X, the previous arguments can be used to infer the query con-

straint P(X, Y) : Y 2X on the relation P.

The following theorem indicates how aggregation constraints can be used in query

optimization.

Theorem 8.1. Let view V be defined as follows:

CREATE VIEW V (Xl,X., Max) AS

SELECT Xl , . . . , X, , MAX(Y)

FROM P

GROUP BY X, , . . . , X,

where X 1 , . . . , X, and Y are distinct attributes of P. Let x denote the attributes

Xl, . ., X,, and let 2 denote the attributes of P other than 2 and Y. Suppose we

are given a query on view V with query constraint %@,Max) on the tuples in

V. Let f (2) <Max be a constraint that is implied by the constraint %@,Ma.x).

Then the answer to the query does not change tf the dejinition of V is replaced

with

CREATE VIEW V (Xi, X,, Max) AS

SELECT Xl , . . . , X, , MAX(Y)

FROM

WHERE p1.(X)<Y
GROUP BY X, , . . . , X,

Proof. Consider any tuple (X,5, y) of P that does not satisfy f(2) < y. Two cases need

to be considered. First, when y is not the maximum value in the group for X. In this

case, the tuple (X,5, y) does not contribute to any tuple of V. Next, consider the case

when y is the maximum value in the group for X. Then, the tuple (2, y) is in the

172 K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179

extension of V; however, this tuple does not satisfy the given query constraint on V.

In either case, if f(x) d y is not satisfied, the tuple (X,2, y) of P is irrelevant to the

given query. 0

A consequence of this theorem is that the constraint f (8) < Y can be pushed into

the evaluation of P. If P is itself a view, or if f(J?)< Y allows a more efficient indexed

lookup of P, then we can potentially improve the performance of the query. A result

similar to Theorem 8.1, but with the aggregate function min used in the rule instead

of max, and a constraint of the form f(x)> Min instead of f(z)< Max, also holds.

We conjecture that the query constraint derived by the above theorem is the strongest

conjunctive query constraint that is linear in Y that can be derived on relation P.

9. Conclusions and future work

We have presented a new and extremely useful class of constraints, aggregation
constraints, and studied the problem of checking for satisfiability of conjunctions of

primitive aggregation constraints. There are many interesting directions to pursue. An

important direction of active research is to significantly extend the class of aggrega-

tion constraints for which satisfiability can be efficiently checked. We believe that our

algorithm works on a larger class of aggregation constraints than presented here - for

instance, we believe that our algorithm will work correctly even if we relax the con-

ditions to not require min and max to be separated; characterizing this class will be

very useful.

Combining aggregation constraints with multiset constraints that give additional in-

formation about the multisets (using functions and predicates such as U, E, C, etc.) will

be very important practically.

Another important direction is to examine how this research can be used to improve

query optimization and integrity constraint verification in database query languages

such as SQL. Sudarshan and Ramakrishnan [9] and Levy et al. [2] consider how to

use simple aggregation conditions for query optimization; it would be interesting to

see how their work can be generalized. It would also be interesting to see how to use

aggregation constraints in conjunction with Stuckey and Sudarshan’s technique [8] for

compilation of query constraints.

We believe that we have identified an important area of research, namely aggregation

constraints, and have laid the foundations for further research.

Appendix. Multiset ranges: min, max, sum, average and count

The function Gen_Multiset_Ranges, below, is a generalization of the function in

Section 5.2.1. It takes five finite and closed ranges, [ml, mh], [Ml,Mh], [s~,sh], [al,ah]

and an integer range [ki,kh], and answers the following question:

K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179 173

Do there exist k >O numbers, k between k, and k,,, such that the minimum of the

k numbers is between ml and mh, the maximum of the k numbers is between A.41 and

Mh, the sum of the k numbers is between SI and sh, and the average of the k numbers

is between a, and ah?

function Gen-MultisettRanges (m,,mh,M,,Mh,S,,Sh,a,,ah,k,,kh) {

I”

(I)

(2)

I”

I”

(3)

I”

(4)

I”

(5)

we assume finite and closed ranges *I

I* Tighten min,max,average and count bounds. “I

(a) Tighten_MMA_Bounds (m,,mh,M,,Mh,a,,aj,).

(b) Tighten-Count-Bounds (m,,mh,M,,Mh,a,,ah,k,,kh).

if (ObviouslyUnsatisfiable (m/,mh,M,,Mh,S,,Sh,a,,ah,k,,kh)) then

return 0.

For each k in [k,,kh], we now have that [k * a,, k * a,,] overlaps

[(k- l)*m,+M,,mh+(k- l)*Mh]. */

Case A: Based on min and max elements can be < 0, = 0

or > 0. *I

if ([m,,Mh] overlaps [O,O]) then

(a) if ([s,,sh] does not

*Mh]) then return

(b) if ([a,,&] overlaps

(i) if ([S,,Sh] does

return 0.

overlap [(k,, - 1) * m, + kf,,m,, + (kh - 1)

0.

[O,O]) then

not overlap [kh * a,,kh * ah]) then

(ii) else return 1.

(C) if (ah < 0) then

(i) Switch-Signs (m,,mh,M,,Mh,S,,Sh,a,,ah).

I* Falls through to the next case. *I

(d) /* else a, >O */

(i) if ([s,,sh] does not overlap [k, * a,,kh 4 ah]) then

return 0.

(ii) eke if (In_Sum_Gap_NP (m,,mh,M,,M/,,S,,Sh,a,,ah,k,,kh))

then return 0.

(iii) else return 1.

Case B: All elements are negative. Switch everything. *I

if (Mh < 0) then

(a) Switch-Signs (m,,mh,M,,Mh,S,,Sh,a,,ah).

I* Falls through to the next case. */

Case C: All elements are positive. */

I* else m, > 0 */

I* Range for sum outside bounds dictated by min and

max. *I

(a) if ([s,,sh] does not overlap [(k, - 1) * m, + M,, mh + (k,* - 1)

*Mh]) then return 0.

174 K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179

I* Range for sum outside bounds dictated by average. *I

(b) else if ([sr,sh] does not overlap [k~ * a,,kh * ah]) then

return 0.

(c) else if (In_Sum_Gap_PP (m~,mh,M~,Mh,sr,sh,a,,ah,k,,kh)) then

return 0.

(d) else return 1.

Tighten_MMA_Bounds bnl,mh,~l,~h,al,ah) {

1” Tighten bounds for max based on min(S)<max(S). *l

1” Tighten bounds for min based on min(S)<max(S). *l

(2) if (mh>k&) then mh =?v&.

I* Tighten bounds for average based on min(S)<average(S).

(3) if (a, <m/J then al =m,.

I* Tighten bounds for average based on average(S)<max(S).

(4) if (ah>Mh) then ah =Mh.

1

“I

"I

Tighten-Count-Bounds (ml, mh,M[,Mh, a[,ah, k[, kh) {

I* Tighten lower bound for count using min,max and uverage

ranges. *I

(1)
(2)

(3)

1

if (kl<l) then kl=1.

if (ah <((kl - 1) *ml + Ml)/kl and Ml#rnj) then

I” Known range for average to the left of smallest inferred

range. “I

(a) kr = [CM/ - ml)/(ah - mr>l.

if kZ[>(W-, + (kl - 1) * Mh)/k[and il!fh # mh) then

I” Known range for average to the right of smallest

inferred range. */

(a) k= r(Mh - mh)/(Mk - al)].

function Obviously-Unsatisfiable (WI/, mh, M,,Mh,sr, Sh, a,, ah, k,, kh) {

/* Infeasible ranges. *I

(I) if (kl>kh or m[>mk or MI>Mh or sl>sk or al>&) then

return 1.

(2) else return 0.

Switch-Signs (ml,mh,M,,Mk,S,,Sk,U,,Uh) {

(1) [tl,t2] = [-Mh, -M/l; [M/,Mh] = [-mk, --m/l; [mj,mk] = [tl, t2].

(2) t= - a/; al = - aA; ah = t.

K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179 175

(3) t = - s[; s/ = - sh; s,, = t.

In-Sum-Gap-NP (mr,mh,MI,Mh,Sl,Sh,ai,ah,kl,kh) {

/* Check if there is some k in [kl,kh] such that [sI,sh]

overlaps the intersection of [k * al,k * ah] and

[(k- l)*ml+M~,mh+(k-l)*~,]. */

I* Case A: Determine a lower count bound based on

sum, min, max. “1

(I) if (sj, <(k, - 1) * rn/ +MI) then

/* sum to the left of smallest inferred range from

min, max. *I

(4 [h,hl= [[h + w - Mhhl,khl.
(2) eke if (s/>rnh + (k, - 1) * Mh) then

/* sum to the right of smallest inferred range from

min,max. “I

(a) [h,hl= [[(sl + Mh - mh,/Mhl,hl.
(3) else [kr , k3] = [ki, kh].

/* CaSf? B: check if [s[,sh] overlaps [k * al,k * ah] for any

k E [kl, k/,1. */

(4) define k{ and kl by si = ki *ah - ki,O<ki <ah, and integer kl.

/* multiset cardinality must be >k{, for sum>s/. */

(5) define ki and ki by sh = k; * al + k&O<ki < al, and integer ki.

I” multiset cardinality must be

(6) if ([ki,ki] is not feasible) then

average alone *I

return 1.

(7) if ([kl,kxl, [kf,kil and [kl,kh] all

<ki, for sum<&. */

I” in a gap, based on

overlap) then

I* any k in the intersection of the three ranges is a

witness. *I

return 0.

(8) else return 1.

In-Sum-Gap-PP (mi,mh,Ml,Mh,S/,Sh,ar,ah,kr,kh) {
/* Check if there is some k in [k/,kh] such that [s[,sh] overlaps

the intersection of [k * al,k * ah] and

[(k- l)*mr+Ml,mh+(k- l>*Mh]. */

/* Case A: check if [sl,sh] overlaps [(k - 1) * rn/ + Ml, mh + (k - I) * Mh]

for any k E [k,,kh]. */

(I) define kl and k2 by sl=mh+(kl-1)*Mh-kz,0<k2<Mh, and

integer kl.

/* multiset cardinality must be 2-k,, for sumas). */

176 K. A. Ross et al. I Theoretid Computer Science 193 (1998) 149-179

(2) define k3 and k4 by sh=(k3 - l)*ml +MI +k4,Q<k4<mt,

and integer k3.

I” multiset cardinality must be <k3, for sum<Sh. */

(3) if ([kl,k3] is not feasible) then 1% in a gap, based on

min and max alone “I

return 1.

/* Case B: check if [s~,sh] overlaps [k * at,k * ah] for any

(4)

(5)

(6)

(7)

(8)

>

k E [kt,k/,]. +I
define ki and ki by sl = k{ * ah - ki,O<ki < ah, and integer

/* multiset cardinality must be >k;, for sum>,sl. */

define kj and ki by sh = kj * at + ki,O<ki < at, and integer

I” multiset cardinality must be <ki, for sum<Sh. */

if ([k,‘,kj] is not feasible) then I+ in a gap, based on

average alone *I

return 1.

if ([kl,k3], [k,‘,k;] and [kt,kh] all overlap) then

I* any k in the intersection of the three ranges is a

witness. *I return 0.

else return 1.

k;.

kj.

-

Theorem A.l. Function GenMultisetRanges returns 1 ifs there exist k>O real

numbers, kt < k < kh, such that the minimum of the k numbers is in [mt,mt,], the

maximum of the k numbers is in [Mt,Mh], the sum of the k numbers is in [st,st,],

and the average of the k numbers is in [a,,ah].

Further, Gen-Multiset_Ranges has polynomial time complexity in the size of the

representation of the input.

Proof. We prove the first part of the theorem by showing that the algorithm returns

1 if and only if the given constraints along with the four axioms of Theorem 4.2 are

satisfiable.

Consider Steps (1) and (2) of Gen-MultisetJanges. Step (la) generates all con-

straints on min, max and average that can be inferred from the given range constraints

on min,max and average and the axioms. Step (lb) extends these by generating all

constraints on count that can be inferred from the given range constraints on min, max

and average and the axioms. Note that all the constraints inferred above are range

constraints on min, max, average and count.

If function Obviously_Unsatisfiable returns 1, the resultant set of constraints is

clearly unsatisfiable. If it returns 0, the conjunction of the given range constraints

on min,max,count and average and all the axioms is satisfiable.

K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179 171

All elements in the multiset have to lie in the range [ml,Mh]; the minimum and max-

imum elements are additionally constrained to lie in the ranges [ml, rnh] and [Ml, MJJ

respectively. If the multiset has i elements, axioms (2) and (3) are satisfied if and only

if the multiset has a sum in the range

[(i- l)*m[+M/,mh+(i- l)*M/J

Also, the average value of the multiset elements has to lie in the range [al,ah]. If the

multiset has i elements, axiom (4) is satisfied if and only if the multiset has a sum in

the range:

[i * at, i * ah].

Consequently, if the count of the multiset is constrained to lie in the range [ki,kh], the

sum can take values only from the union of the ranges:

u ([(i - 1) *m[+M[,mh + (i - 1) *Mh] n [i * al,i * ah]).
i=k,

In general, this union of ranges may not be convex; there may be gaps.

Thus, the conjunction of the given constraints and axioms (l)-(4) is satisfiable if

and only if there is an i such that the given range on sum, [sl,sh] overlaps with the

range: [(i - 1) * mt + A4t,mh + (i - 1) * Mh] f’ [i * al, i * ah]. The algorithm for testing

the above has three cases, based on the location of the [mt,Mh] range with respect to

zero.

l The first case is when the [mt,Mh] range includes zero. Three subcases arise based

on the location of the [al,uh] range with respect to zero.

The first subcase is when the [a/,~] range includes zero; in this case the union of

the ranges is convex, and is given by

To check that the given range for sum, [s~,sh], overlaps with this intersection of

ranges, it suffices to check that [s,,sL] intersects with each of the ranges separately,

since [(kh - 1) * ml + Ml,mh + (kh - 1) * MJ,] and [kh * al, kh * ah] are known to

intersect at 0. Steps (3a) and (3b) of Gen_Multiset_Ranges check for this subcase.

The second subcase is when the [af,ah] range includes only negative numbers, and

the third subcase is when the [ul,ah] range includes only positive numbers. These

two subcases are symmetric, and we transform the second subcase into the third

subcase in Step (3~) of Gen_Multiset_Ranges, and consider only the third subcase

in detail in Step (3d).

In the third subcase, the sum lies within the range

[(kh - 1) * ml + Ml, mh + (kh - 1) * MJ n bb * ah, * 4

but not all values in this range are feasible - there may be gaps. The conjunction

of constraints is unsatisfiable if and only if the [s,,sh] range lies outside [(kh - 1) *

178 K. A. Ross et al. I Theoretical Computer Science 193 (1998) 149-l 79

ml + MI, mh + (kh - 1) *Mh] n [kl * ai, kh *ah], or entirely within one of the gaps. Since

Function Tighten-Count-Bounds was invoked in Step (lb) of Gen-MultisetRanges,

the two ranges [(kh - 1) * ml + Ml, mh + (kh - 1) * A4h] and [kj * al, kh * ah] overlap.

Consequently, from the property of ranges, it follows that to check that the [s~,s~]

range lies outside the intersection of these two ranges, it suffices to check that [sI,sh]

lies outside at least one of the two ranges; steps (3a) and (3d)(i) check for this.

Steps (3d)(ii) and (iii) check for the second possibility, viz., [s[,sh] lies entirely

within one of the gaps of:

8 ([(i - 1) *ml +Ml,mh + (i - 1) *Mh] fl [i * a/,i * ah]).
i=k,

Tighten-Count-Bounds has adjusted ki to ensure that for kl is the smallest i for

which the ranges [(i - 1) * ml + M[, rnh + (i - 1) * Mh] and [i * al, i * ah] overlap.

Further, Tighten_MMA_Bounds (invoked in Step (la) of Gen_Multiset_Ranges has

tightened Mj,mh,a/ and ah to ensure each of ml dMl,rnl <aI, mh <I& and ah <Mh

hold. The above two points guarantee that for all i> k, it is the case [(i - 1) * rn! +

Ml, mh + (i - 1) *Mh] and [i * a/, i * ah] overlap. Hence, from the property of ranges,

it follows that to check that [sr,sh] does not fall entirely within a gap of

u ([(i-l)*m/+M~,mh+(i-l)*Mh]n[i*a,,i*ah])
i=k,

it suffices to check that there is at least one i in [kl, kh], such that [s[,s~J over-

laps with each of [(i - 1) * rn/ + Ml,mh + (i - 1) * A4h] and with [i * a/,i * ah].

Function In_Sum_Gap_NP checks for this possibility as follows: (a) it computes

the range [kl, kx] such that for each i in [kl, k3], the range [sr,s~J overlaps with

[(i - 1) * ml + M[,mh + (i - 1) * MA]; (b) it computes the range [ki,ki] (using

the same technique as in Multiset_Ranges) such that for each i in [ki,ki], the

range [s/,sh] overlaps with [i * al,i * ah]; (c) finally, it checks that there is some

i which lies in each of the three ranges [k,, kh], [kl, kj] and [kl, ki], which provides

the required witness.

The second case is when the [ml,Mh] range includes only negative numbers, and

hence the average must also be negative. Function Tighten_MMA_Bounds has tight-

ened the [ar,ah] range to include only negative numbers. This is symmetric to the

third case (discussed in detail below), and Switch-Signs (invoked in Step (4a))

transforms the second case into the third case.

The third case is when the [m[,Mh] range includes only positive numbers, and hence

the average must also be positive. Function Tighten_MMA_Bounds has tightened the

[al,ah] range to include only positive numbers. In this case, the sum lies within the

range

[(k~-1)*m~+~~,m~+(kh--1)*~~ln[kr*a,,k~*a~l

but not all values in this range are feasible ~ as before, there may be gaps. The

conjunction of constraints is unsatisfiable if and only if the [s,,sh] range lies outside

K.A. Ross et al. I Theoretical Computer Science 193 (1998) 149-179 179

[(kl - 1) *ml + Mi,rnh + (kh - 1) *Mh] f~ [kl * al,kh * ah], or entirely within one

of the gaps. Since Function TightenCountLBounds was invoked in Step (lb) of

Gen-Multiset-Ranges, the two ranges [(kl - 1) * ml + MI, mh + (kh - 1) * Mh] and

[ki *a/, kj, *ah] overlap. Consequently, from the property of ranges, it follows that

to check that the [sl,sh] range lies outside the intersection of these two ranges, it

suffices to check that [sl,sh] lies outside at least one of the two ranges; steps (5a)

and (5b) of Gen-Multiset-Ranges check for this. Steps (5~) and (5d) check for the

second possibility, viz., [s~,sh] lies entirely within one of the gaps of

u ([(i - 1) *ml +Mj,mh +(i - l)*Mh] n [i*@,i*Uh])
i=k,

As in the third subcase of the first case above, it suffices to check that there is

at least one i in [kl, kh], such that [s/,sh] overlaps with each of [(i - 1) * ml +

Ml,rnh + (i - 1) * Mh] and with [i * a/,~’ * ah]. Function In_Sum_Gap_PP checks

for this possibility as follows: (a) it computes the range [kl, k3] (using the same

technique as in Multiset-Ranges) such that for each i in [kl,k3], the range [S[,sh]

overlaps with [(i - l)*ml +Ml,mh +(i - l)*Mh]; (b) it computes the range [k[, kj]

(using the same technique as in Multiset_Ranges) such that for each i in [ki,kj],

the range [sl,sh] overlaps with [i *al, i * ah]; (c) finally, it checks that there is some

i which lies in each of the three ranges [kl, kh], [kl, k3] and [kl, k;], which provides

the required witness.

This concludes the proof of the first part of the theorem.

The proof of the second part of the theorem is straightforward because the number

of steps in Gen-Multiset-Ranges is bounded above by a constant, and each step is

polynomial in the size of representation of the input. 0

References

[I] J. Jaffar, S. Michaylov, P.J. Stuckey and R.H.C. Yap, The CLP(.%) language and system, ACM Trans.
Programming Languages Systems 14 (1992) 339-395.

[2] A.Y. Levy, IS. Mumick and Y. Sagiv, Query optimization by predicate move-around, in: Proc. Internat.
Conj: on Very Large Databases, Santiago, Chile, September (1994) 96-107.

[3] K. Marriott and P.J. Stuckey, Semantics of constraint logic programs with optimization, Lett.
Programming Languages Systems 2 (1993) 197-212.

[4] J. Melton and A.R. Simon, Understanding the New SQL: A Complete Guide (Morgan Kaufmann,

San Francisco, CA, 1993).

[5] K.A. Ross, D. Srivastava, P.J. Stuckey and S. Sudarshan, Foundations of aggregation constraints, in:

Proc. 2nd Internat. Workshop on Principles and Practice of Constraint Programming, Orcas Island,

WA, Lecture Notes in Computer Science, Vol. 874 (Springer, Berlin, 1994) 193-204.

[6] A. Schrijver, Theory of Linear and Integer Programming, Discrete Mathematics and Optimization

(Wiley-Interscience, New York, 1986).

[7] D. Srivastava and R. Ramakrishnan, Pushing constraint selections, J. Logic Programming 16 (1993)
361-414.

[8] P.J. Stuckey and S. Sudarshan, Compiling query constraints, in: Proc. ACM Symp. on Principles of
Database Systems, Minneapolis, MN, May (1994) 56-67.

[9] S. Sudarshan and R. Ramakrishnan, Aggregation and relevance in deductive databases, in: Proc. Infernat.
Conf on Very Large Databases, Barcelona, Spain, September (1991) 501-512.

