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Functional Bell inequalities can serve as a stronger entanglement witness
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We consider a Bell inequality for a continuous range of settings of the apparatus at each site.
This “functional” Bell inequality gives a better range of violation for generalized GHZ states. Also
a family of N-qubit bound entangled states violate this inequality for N > 5.

A remarkable feature of entanglement is that it gives
rise to correlations that cannot be explained by any local
realistic theory. This is the statement of the Bell theo-
rem [1]. This theorem usually utilizes some inequalities
that are satisfied by any local realistic theory but are
violated by quantum correlations, between two or more
systems. Modulo the well known loopholes, such viola-
tions have actually been experimentally demonstrated.
Violation of such an inequality is a signature of entangle-
ment. However it is not known whether the correlations
in all entangled states are strong enough to violate a Bell
inequality.

The usual formulation of the Bell theorem is for two
apparatus settings at each site [2, 3, 4]. However there
are several reasons for generalizing to more than two set-
tings [5, 6, 7]. The simplest of them is that new Bell in-
equalities could reveal violation of local realism for cases
when the standard inequalities fail. Or they could be
more appropriate to some experimental situations [8].

In this paper, we consider a multipartite Bell inequality
that involves a continuous range of settings at each site
(which we call the “functional” Bell inequality). We show
that the functional Bell inequality is stronger in many
cases than the standard Bell inequalities. This shows
that this inequality may be a useful tool for classification
of states with respect to violation of local realism.
All bipartite pure entangled states violate a Bell in-

equality [9]. The multipartite situation is however more
complicated. For example, using the Bell inequalities for
correlation functions, which involve the usual choice be-
tween two observables for each of the local observers, the
N -qubit generalised GHZ states

|ψN 〉 = sinβ |0〉⊗N
+ cosβ |1〉⊗N

(1)

(with 0 ≤ β ≤ π/4) do not violate any such inequalities
for N separated qubits without postselection for sin2β ≤

1√
2N−1

for odd N [10, 11]. This is quite surprising, con-

sidering the fact that these states are a generalization of

the GHZ state [12] 1√
2

(

|0〉⊗N + |1〉⊗N
)

which strongly

violates the standard Bell inequalities. For the functional
Bell inequality that we consider in this paper, a violation

is obtained for sin2β ≥ 2
(

2
π

)N
which is better than the

previous bounds for Bell violation for odd N ≥ 5.

One of the open questions in quantum information is
whether bound entangled states violate any Bell inequal-
ity. Since the seminal works of dense coding [13] and
teleportation [14], the maximally entangled states have

acquired special significance. However there exist entan-
gled states which cannot be transformed into a maximally
entangled state when the parties, sharing the entangled
state, are separated. Such states has been called bound
entangled states [15]. It is intriguing to consider whether
such states can violate local realism. Indeed it has been
conjectured that bound entangled states with positive
partial transpose (PPT) [16, 17] cannot violate local re-
alism [18]. Further work in this direction has been carried
out in Refs. [19, 20]. In a recent paper, Dür [21], consid-
ers this question in the multipartite scenario. It is shown
there that an N -qubit state

ρN =
1

N + 1

(

|GHZ〉 〈GHZ|+ 1

2

N
∑

k=1

(

Pk + Pk

)

)

(2)

violates a Mermin-Klyshko inequality [3] for N ≥ 8, de-
spite being PPT in all 1 : N − 1 party cuts. Here

|GHZ〉 = 1√
2

(

|0〉⊗N + eiαN |1〉⊗N
)

,

with αN being a phase. And Pk = |φk〉 〈φk|, |φk〉 =
|0〉1 . . . |0〉k−1 |1〉k |0〉k+1 . . . |0〉N with Pk obtained from
Pk by interchanging 0s and 1s in Pk. The Bell violation
in Ref. [21] was exhibited for αN = π

4(N−1) [22]. Further

work was recently done in Ref. [23], where violation of
local realism was obtained for N ≥ 7 for all values of
the parameter αN , by using Bell inequalities that involve
three settings per observer.
We show here that the functional Bell inequality is

violated by the state ρN for N ≥ 6 irrespective of the
value of the parameter αN .
To begin, let us discuss the functional Bell inequality

[6], which essentially follows from a simple geometric ob-
servation that in any real vector space, if for two vectors
h and q one has 〈h | q〉 <‖ q ‖2, then this immediately
implies that h 6= q. In simple words, if the scalar product
of two vectors has a lower value than the length of one
of them, then the two vectors cannot be equal.
Let ̺N be a state shared between N separated par-

ties. Let On be an arbitrary observable at the nth loca-
tion (n = 1, . . . , N). The quantum mechanical prediction
EQM for the correlation in the state ̺N , when these ob-
servables are measured, is

EQM (ξ1, . . . , ξN ) = Tr (O1 . . . ON̺N ) , (3)

where ξn is the aggregate of the local parameters at the
nth site. Our object is to see whether this prediction can
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be reproduced in a local hidden variable theory. A local
hidden variable correlation in the present scenario must
be of the form

ELHV (ξ1, . . . , ξN ) =

∫

dλρ(λ)ΠN
n=1In(ξn, λ), (4)

where ρ(λ) is the distribution of the local hidden variables
and In(ξn, λ) is the predetermined measurement-result
of the observable On(ξn) corresponding to the hidden
variable λ.
Consider now the scalar product

〈EQM | ELHV 〉 =
∫

dξ1 . . . dξN
× EQM (ξ1, . . . , ξN )ELHV (ξ1, . . . , ξN )

(5)
and the norm

‖ EQM ‖2=
∫

dξ1 . . . dξN (EQM (ξ1, . . . , ξN ))2 . (6)

If we can prove that a strict inequality holds, namely for
all possible ELHV , one has

〈EQM | ELHV 〉 ≤ B, (7)

with the number B <‖ EQM ‖2, we would immediately
have EQM 6= ELHV , indicating that the correlations in
the state ̺N are of a different character than in any local
realistic theory. We then could say that the state ̺N
violates the “functional” Bell inequality (7), as this Bell
inequality is expressed in terms of a typical scalar product
for square integrable functions. Note that the value of the
product depends on a continuous range of parameters (of
the measuring apparatuses) at each site.
Let us first consider the case of generalized GHZ states

|ψN 〉 given by (1), and experiments in which each ob-
server is allowed to measure the local observables

On(φn) = |+, φn〉 〈+, φn| − |−, φn〉 〈−, φn| , (8)

where

|±, φn〉 =
1√
2

(

|0〉 ± eiφn |1〉
)

. (9)

The aggregate ξn of local parameters at the nth site is
just the single parameter φn here.
With the notations introduced before, one can find

that the correlation function EQM for the generalised
GHZ state is given by

EQM (φ1, . . . , φN ) = 〈ψN |O1 . . . ON |ψN 〉
= sin (2β) cos

(

∑N
n=1 φn

)

.

Suppose we want to reproduce this correlation function
by local hidden variables. The corresponding correlation
function must be of the form (4). As the allowed values of
the observable On(φn) are ±1, we must correspondingly
have In(φn, λ) = ±1.

Defining the inner product between (the real-valued
functions) f(φ1, . . . , φN ) and g(φ1, . . . , φN ) by

〈f | g〉 = ΠN
n=1

(
∫ 2π

0

dφn

)

f(φ1, . . . , φN )g(φ1, . . . , φN ),

(10)
we have (for the generalised GHZ state |ψN 〉)

‖ EQM ‖2= (2π)N

2
sin22β,

while

〈EQM | ELHV 〉 = ΠN
i=1

(

∫ 2π

0
dφi

)

∫

dλρ(λ)

× ΠN
j=1Ij(φj , λ)cos(

∑N
k=1 φk)sin2β.

It has been shown in Refs. [6, 7] that the modulus of

ΠN
i=1

(
∫ 2π

0

dφi

)
∫

dλρ(λ)ΠN
j=1Ij(φj , λ)cos(

N
∑

k=1

φk)

is less than or equal to 4N (see eqns. (20-23) of Ref.
[6] or eqns. (A9-A18) of [7]). Consequently we have
|〈EQM | ELHV 〉| ≤ 4Nsin2β for the generalised GHZ
state |ψN 〉.
Therefore |〈EQM | ELHV 〉| is strictly less than ‖

EQM ‖2 whenever

sin2β > 2

(

2

π

)N

. (11)

So whenever eq. (11) is satisfied, the generalised GHZ
state |ψN 〉 violates the functional Bell inequality. Using
the WWWZB Bell inequalities [4] for two settings per ob-
server, the range of violation is given by sin2β > 1√

2N−1

for odd N [10, 11], and for even N violation is obtained

for the whole range of β [11]. Note that 1√
2N−1

> 2
(

2
π

)N

⇔
(

π
23/2

)N
>

√
2 which holds for all N ≥ 4. Therefore

the functional Bell inequality shows a better range of vi-
olation for odd N ≥ 5. And the difference between the
two limits of β (for the standard Bell inequalities and
the functional Bell inequality) grows with N . The region
of violation covers the whole range of β as N → ∞ as
in Ref. [11]. However, note that the functional inequal-
ity is less restrictive in the case of N even. Perhaps in
this case a different version of such an inequality must be
used. We leave this question open.
Note that we only consider here violations of the in-

equality with all the N parties separated and without
postselection. The state |ψN 〉 is just sinβ |00〉+cosβ |11〉
in any bipartite cut with all the parties on any side of the
cut being together. Such a bipartite entangled state al-
ways violate a Bell inequality [9]. Also, allowing postse-
lection would always result in a Bell violation as shown by
Popescu and Rohrlich [24]. Similar result can be shown
using numerical approach [25].
We now go over to our second example of states given

by (2). Dür [21] obtained the following interesting result
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in the multi-qubit case. The state ρN of eq.(2) is PPT
[16] in all 1 : N − 1 party cuts. A bipartite state ρAB

which is PPT can be either bound entangled or separa-
ble [15, 17]. If the state has negative partial transposition
[16], it is always entangled [17]. The state ρN has a neg-
ative partial transpose for all 2 : N − 2 party cuts for
N ≥ 4. Consequently the state ρN (for N ≥ 4) is a
bound entangled state as long as all the parties are sep-
arated. Nevertheless, Dür [21] showed that such states
violate Mermin-Klyshko inequalities [3], with the allowed
observables being between σx and σy at all the N loca-
tions (i.e. for the type given by our (8)), for N ≥ 8. In-
terestingly, Aćın [26] showed that if a state violates the
Mermin-Klyshko inequality, it would be possible to cre-
ate a maximally entangled state in at least one bipartite
cut. Further results were obtained in Ref. [27].
In the case of states given by (2), again we allow each

observer to make the measurements corresponding to the
observables On(φn) defined in eq. (8). Then

EQM = Tr (O1 . . . ONρN ) =
1

N + 1
cos(αN −

N
∑

i=1

φi)

Consequently (with the same inner product as in the pre-
vious case)

‖ EQM ‖2= 1

(N + 1)2
1

2
(2π)N

and

|〈EQM | ELHV 〉| ≤
4N

N + 1
,

which is again obtained from the results in Refs. [6, 7].
And therefore

‖ EQM ‖2= 1

(N + 1)2
1

2
(2π)N >

4N

N + 1
≥ |〈EQM | ELHV 〉|

i.e., EQM 6= ELHV for N ≥ 6 irrespective of the value
of the parameter αN . Thus the state ρN violates the
functional Bell inequality for N ≥ 6 for all values of the
parameter αN .

We have considered in this paper, a Bell inequality
which seems to be effective when the standard Bell in-
equalities are not. Contrary to the standard ones, this
Bell inequality is for a continuous range of settings of
the apparatus at each site. We have shown that this
inequality shows Bell violation of the generalised GHZ

state sinβ |0〉⊗N
+ cosβ |1〉⊗N

(with N separated parties
without postselection) for a larger range of the parame-
ter β (for odd N ≥ 5) than by any of the standard Bell
inequalities. Further a 6-qubit one-parameter family of
bound entangled states is shown to violate this inequality.
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